
(CC-311)

Operating System
Lecture: 01

Professor: Syed Mustaghees Abbas



What is an Operating System?

➢ A program that acts as an intermediary between a user of
a computer and the computer hardware.



➢ A more common definition is that the operating system is
the one program running at all times on the computer
(usually called the kernel), with all else being systems
programs and application programs. This last definition is
the one that we generally follow.

➢ Kernel panic?
✓ Displays a serious error message when encountering a critical, 

unrecoverable problem.
✓ System crash, preventing normal operation.
✓ like "blue screen of death" in Windows.

What is an Operating System?



Device Controller and Device Driver

➢ A device controller is a physical part of a computer 
system that makes sense of the signals going to, and 
coming from the CPU for the different input/output 
devices.

➢ The Device Controller receives the data from a connected
device and stores it temporarily in some special purpose
registers (i.e. local buffer) inside the controller. Then it
communicates the data with a Device Driver.

➢ For each device controller there is an equivalent device 
driver which is the standard interface through which the 
device controller communicates with the Operating Systems
through Interrupts.

➢ Device controller is a hardware whereas device driver is a
software.



Device Controller and Device Driver



Interrupts vs Polling

➢ When interacting with a device controller, the CPU can 
wait for a response by polling the status register(s), i.e., by
periodically checking whether the status of the device has
changed. This is known as Polling.

➢ Problem with polling: The CPU is busy waiting for some 
event to happen. CPU utilization will be low. So Interrupts
are used by devices for asynchronous event notification.

➢ Interrupt is a signal to the processor emitted by 
hardware or software indicating an event that needs 
immediate attention.



Interrupts vs Polling

➢ When an interrupt is fired, the CPU jumps to a predefined
position in the kernel's address space and executes an
interrupt handler. When an interrupt occurs, the CPU can
start reading data from the device controller's data
registers.

➢ Incoming interrupts are disabled while another interrupt is
being processed to prevent a lost interrupt.

➢ Device controller informs CPU that it has finished its 
operation by causing an interrupt.



Hardware vs Software Interrupts

➢ A hardware interrupt is an electronic alerting signal sent to
the processor from an external device, either a part of the
computer itself such as a disk controller or an external
peripheral.

➢ A software interrupt (also called a monitor call) is 
caused either by an exceptional condition in the 
processor itself, or a special instruction in the 
instruction set which causes an interrupt when it is 
executed.

➢ Software interrupt is often called a trap or exception 
and is used for errors or events occurring during 
program execution that are exceptional enough that 
they cannot be handled within the program itself.



Dual mode of operation

➢ Dual-mode operation allows OS to protect itself and 
other system components

➢ User mode and kernel mode

➢ Mode bit provided by hardware

➢ Provides ability to distinguish when system is running 
user code or kernel code

➢ Some instructions designated as privileged, only 
executable in kernel mode

➢ System call changes mode to kernel, return from call 
resets it to user

➢ For example, if an I/O instruction is executed under user
mode, the hardware does not execute it, although 
identifies it as an illegal execution and traps it to the 
operating system.



➢ A process can be thought of as a program in execution.

➢ Needs certain resources—such as CPU time, memory,
files, and I/O devices—to accomplish its task.

➢ It is a unit of work in most systems.

➢ Systems consist of a collection of processes: Operating-
system processes execute system code or system mode,
and user processes execute user code or user mode.

➢ The operating system is responsible for the following 
activities in connection with process:

✓ Creation and Deletion of both user and system processes

✓ The scheduling of processes

✓ Provision of mechanisms for synchronization communication

✓ Deadlock handling for processes.

What is a Process?



Process Division
➢ Process memory is divided into four

sections.
✓ The text section comprises the compiled

program code, read in from non-volatile 
storage when the program is launched.

✓ The data section stores global and static
variables, allocated and initialized prior to
executing main.

✓ The heap is used for dynamic memory
allocation, and is managed via calls to new,
delete, malloc, free, etc.

✓ The stack is used for local variables. Space
on the stack is reserved for local variables
when they are declared (at function
entrance or elsewhere, depending on the
language), and the space is freed up when
the variables go out of scope. It is also used
for function return values.



Stack Overflow

➢ Note that the stack and the heap start at opposite ends of
the process's free space and grow towards each other. If
they should ever meet, then either a stack overflow error
will occur, or else a call to new or malloc will fail due to
insufficient memory available.



Process states

➢ As a process executes, it changes state. The state of a 
process is defined in part by the current activity of that 
process. Each process may be in one of the following 
states:



Process states

➢ New: The process is in the stage of being created.

➢ Ready: The process has all the resources available that 
it needs to run, but the CPU is not currently working 
on this process's instructions.

➢ Running: The CPU is working on this process's 
instructions.

➢ Waiting: The process cannot run at the moment, 
because it is waiting for some resource to become 
available or for some event to occur.

For example: The process may be waiting for keyboard 
input, disk access request, inter-process messages, a 
timer to go off, or a child process to finish.

➢ Terminated: The process has completed.



Process Control Block (PCB)

➢ When processes are swapped out of 

memory and later restored, additional 

information must also be stored and 

restored. Key among them are the 

program counter and the value of all 

program registers.

➢ For each process there is a Process 

Control Block, PCB, which stores the 

following ( types of ) process- specific 

information.



Process Control Block (PCB)

➢ Process State: Running, waiting, etc., as discussed above.

➢ Process ID, and parent process ID.

➢ CPU registers and Program Counter: These need to be 
saved and restored when swapping processes in and out of 
the CPU.

➢ CPU-Scheduling information: Such as priority information 
and pointers to scheduling queues.

➢ Memory-Management information: e.g. page tables or 
segment tables.

➢ Accounting information: user and kernel CPU time 
consumed, account numbers, limits, etc.

➢ I/O Status information: Devices allocated, open file tables, 
etc.



CPU Switch From Process to Process



Thread
➢ The process model discussed so far has implied that a process is 

a program that performs a single thread of execution.

➢ For example, when a process is running a word-processor 
program, a single thread of instructions is being executed. This 
single thread of control allows the process to perform only one 
task at one time.

➢ The user cannot simultaneously type in characters and run the 
spell checker within the same process.

For example: Many modern operating systems have extended 
the process concept to allow a process to have multiple threads 
of execution and thus to perform more than one task at a time.

➢ A thread is a light-weight process.

➢ Thread is a lighter than Process but heavier than the child 
process

➢ Thread and Child Process are not same. Thread is a lighter than 
Process but heavier than the Child Process.



Single and Multithreaded Processes



Benefits of Threads

➢ Responsiveness

➢ Resource Sharing. (Threads in a process share the same 
address space)

➢ Economy. (Operating System using thread concept are less 
expensive)

➢ Utilization of MP(Micro Processor) Architectures. (Multiple 
threads can run on multiple CPUs in parallel )


	Slide 1
	Slide 2: What is an Operating System?
	Slide 3: What is an Operating System?
	Slide 4: Device Controller and Device Driver
	Slide 5: Device Controller and Device Driver
	Slide 6: Interrupts vs Polling
	Slide 7: Interrupts vs Polling
	Slide 8: Hardware vs Software Interrupts
	Slide 9: Dual mode of operation
	Slide 10
	Slide 11: Process Division
	Slide 12: Stack Overflow
	Slide 13: Process states
	Slide 14: Process states
	Slide 15: Process Control Block (PCB)
	Slide 16: Process Control Block (PCB)
	Slide 17: CPU Switch From Process to Process
	Slide 18: Thread
	Slide 19: Single and Multithreaded Processes
	Slide 20: Benefits of Threads

