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Memory Management 



Background 

•  The main purpose of a computer system is to execute programs. 
These programs, together with the data they access, must be in 
main memory (at least partially) during execution. 

•  Main memory and the registers built into the processor itself are 
the only storage that the CPU can access directly. 

•  Registers are generally accessible within one cycle of the CPU 
clock. The same cannot be said of main memory, which is 
accessed via a transaction on the memory bus. 

•  Memory access may take many clock cycles to complete, in which 
case the processor normally needs to stall, since it does not have 
the data required to complete the instruction that it is executing.  



Address Binding 

•  Usually, a program resides on a disk as a binary executable file. 
To be executed, the program must be brought into memory. 

•  The process of associating program instructions and data 
to physical memory addresses is called address binding, or 
relocation. 

•  Addresses in the source program are generally relocatable 
addresses generated by the compiler. 

•  Loader will in turn bind the relocatable addresses to absolute 
addresses. 

•  Each binding is a mapping from one address space to another. 



Address Binding (cntd) 



•  User processes must be 
restricted so that they only 
access memory locations 
that "belong" to that 
particular process. 

•  This is usually implemented 
using a base register and a 
limit register for each 
process. 

•  Every memory access made 
by a user process is checked 
against these two registers, 
and if a memory access is 
attempted outside the valid 
range, then a fatal error is 
generated. 



Changing the contents of the base and limit registers is a privileged 
activity, allowed only to the OS kernel.  



Address Binding Techniques 

•  Classically, the binding of program addresses can be done at any 
step along the way:  

•  Compile time:   The compiler translates symbolic addresses to 
absolute addresses. If you know at compile time where the 
process will reside in memory, then absolute addresses can be 
generated (Static). 

•  For example, if we know that a user process will reside starting at 
location R, then the generated compiler code will start at that 
location and extend up from there. If, at some later time, the 
starting location changes, then it will be necessary to recompile 
this code. 



Binding at Compile Time 



Binding at Compile Time (Cont.)�



Address Binding (cntd) 

•  Load time:  If it is not known at compile time where the process 
will reside in memory, then the compiler must generate 
relocatable code. In this case, final binding is delayed until load 
time. 

•  It references addresses relative to the start of the program.  

•  If the starting address changes in RAM, then the program must 
be reloaded but not recompiled. 



Binding at Load Time 
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•  Execution time:  If the process can be moved during its 
execution from one memory segment to another, then binding 
must be delayed until run time. 

•  Special hardware must be available for this scheme to work. Most 
general-purpose operating systems use this method. 



Dynamic Relocation Using a Relocation Register 



Logical vs. Physical Address Space 

–  Logical address – generated by the CPU; also referred to as 
virtual address 

–  Physical address – address seen by the memory unit. Actual 
addresses of RAM 

•  Logical and physical addresses are the same in compile-time and 
load-time address-binding schemes; logical (virtual) and physical 
addresses differ in execution-time address-binding scheme 



Memory-Management Unit (MMU) 

•  Hardware device that maps virtual/logical to physical address 

•  In MMU scheme, the value in the relocation register is added to 
every address generated by a user process at the time it is sent 
to memory 

•  The user program deals with logical addresses; it never sees the 
real physical addresses 



Dynamic relocation using a relocation register 



•  A process can be swapped temporarily out of memory to a 
backing store, and then brought back into memory for 
continued execution. 

•  Backing store – fast disk large enough to accommodate 
copies of all memory images for all users; must provide direct 
access to these memory images 

•  Roll out, roll in –  
swapping variant used  
for priority-based schedu 
ling algorithms; lower-pri 
ority process is swapped  
out so higher-priority  
process can be loaded  
and executed 

Swapping 



Swapping (cntd) 

Major part of swap time is transfer time; total transfer time is 
directly proportional to the amount of memory swapped. 

•  A modification of swapping is used in many versions of UNIX. 
Swapping is normally disabled but will start if many processes are 
running and are using a threshold amount of memory. 

•  Swapping is again halted when the load on the system is 
reduced. 



Contiguous Memory Allocation 

•  Main memory must accommodate both the operating system and 
the various user processes.  

•  Memory is usually divided into two partitions: one for the 
resident operating system and one for the user processes.  

•  Usually the operating system is in low memory.  

•  We will now discuss how to allocate available memory to the 
processes that are in the input queue waiting to be brought into 
memory. 

•  In this contiguous memory allocation, each process is contained 
in a single contiguous section of memory. 



Memory Allocation 

•  One of the simplest methods for allocating memory is to divide 
memory into several fixed-sized partitions.  

•  Each partition may contain exactly one process.  

•  Thus, the degree of multiprogramming is bound by the number of 
partitions.  

•  In this multiple partition method, when a partition is free, a 
process is selected from the input queue and is loaded into the 
free partition.  

•  When the process terminates, the partition becomes available for 
another process. This method is no longer in use. 



Multiprogramming With Variable Tasks (MVT) 

•  In the this scheme, the operating system keeps a table indicating 
which parts of memory are available and which are occupied.  

•  Initially, all memory is available for user processes and is 
considered one large block of available memory, a hole.  

•  When a process arrives and needs memory, we search for a hole 
large enough for this process. If we find one, we allocate only as 
much memory as is needed, keeping the rest available to satisfy 
future requests. 

•  At any given time, we have a list of available block sizes and the 
input queue.  



Multiprogramming With Variable Tasks (MVT) 

•  Memory is allocated to processes until, finally, the memory 
requirements of the next process cannot be satisfied—that is, no 
available block of memory (or hole) is large enough to hold that 
process.  

•  The operating system can then wait until a large enough block is 
available, or it can skip down the input queue to see whether the 
smaller memory requirements of some other process can be met. 

•  At any given time we have a set of holes of various sizes 
scattered throughout memory.  

•  When a process terminates, it releases its block of memory, 
which is then placed back in the set of holes.  



Multiprogramming With Variable Tasks (MVT) 

•  If the new hole is adjacent to other holes, these adjacent holes 
are merged to form one larger hole.  

•  The system may need to check whether there are processes 
waiting for memory and whether this newly freed and recombined 
memory could satisfy the demands of any of these waiting 
processes. 

•  This procedure is a particular instance of the general dynamic 
storage allocation problem, which concerns how to satisfy a 
request of size n from a list of free holes.  

•  There are many solutions to this problem. The first-fit, best-fit 
and worst-fit strategies are the ones most commonly used to 
select a free hole from the set of available holes. 



Best Fit Strategy 

•  Best fit: The allocator places a process in the smallest block of 
unallocated memory in which it will fit. For example, suppose a 
process requests 12KB of memory and the memory manager 
currently has a list of unallocated blocks of 6KB, 14KB, 19KB, 
11KB, and 13KB blocks. The best-fit strategy will allocate 12KB of 
the 13KB block to the process. 



Worst Fit Strategy 

•  Worst fit: The memory manager places a process in the largest 
block of unallocated memory available. The idea is that this 
placement will create the largest hold after the allocations, thus 
increasing the possibility that, compared to best fit, another 
process can use the remaining space. Using the same example as 
above, worst fit will allocate 12KB of the 19KB block to the 
process, leaving a 7KB block for future use. 



First Fit Strategy 

•  First fit: There may be many holes in the memory, so the 
operating system, to reduce the amount of time it spends 
analyzing the available spaces, begins at the start of primary 
memory and allocates memory from the first hole it encounters 
large enough to satisfy the request. Using the same example as 
above, first fit will allocate 12KB of the 14KB block to the 
process. 
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Fragmentation 

•  In the previous diagram above that the Best fit and First fit 
strategies both leave a tiny segment of memory unallocated just 
beyond the new process.  

•  Since the amount of memory is small, it is not likely that any new 
processes can be loaded here.  

•  This condition of splitting primary memory into segments as the 
memory is allocated and deallocated is known as 
fragmentation.  

•  The Worst fit strategy attempts to reduce the problem of 
fragmentation by allocating the largest fragments to new 
processes.  



External Fragmentation  

•  External Fragmentation – total memory space exists to satisfy 
a request, but it is not contiguous 

•  Reduce external fragmentation by compaction 
–  Shuffle memory contents to place all free memory together in 

one large block 
–  Compaction is possible only if relocation is dynamic, and is 

done at execution time 
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Internal Fragmentation  

•  Internal Fragmentation – allocated memory may be slightly 
larger than requested memory; this size difference is memory 
internal to a partition, but not being used 



•  Divide physical memory into fixed-
sized blocks called frames (size is 
power of 2, between 4096 bytes and 
8192 bytes) 

•  Divide logical memory into blocks of 
same size called pages. 

•  Any virtual page can be located 
at any physical page 

•  Translation box converts from virtual 
pages to physical pages 

Paging 
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•  Address generated by CPU is divided into: 

–  Page number (p) – used as an index into a page table 
which contains base address of each page in physical 
memory 

–  Page offset (d) – combined with base address to define 
the physical memory address that is sent to the memory 
unit 

Address Translation Scheme 



Address Translation Scheme 
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•  In paging we have no external fragmentation. Any free 
frame can be allocated to a process that needs it. However, we 
may have some internal fragmentation? 

•  Today, pages typically are between 4 KB and 8 KB in size, and 
some systems support even larger page sizes. 

•  Important aspect of paging is the clear separation between the 
user’s view of memory and the actual physical memory. 

•  The user program views memory as one single space, 
containing only this one program. In fact, the user program is 
scattered throughout physical memory, which also holds other 
programs. 

Paging 



•  Given the following logical address find the corresponding 
physical address. 

•  The memory management scheme is paging with 16-bit 
addressing and frame size of 1024. 

•  Logical address: 0000101011110000 

Paging Example 



•  Because the frame size is 1024, which is 210, then the 10 
rightmost bits of the logical address are used to store the offset 
within the page.  

•  Logical address is 16 bits long and therefore the remaining 
leftmost 6 bits are used to indicate the page number. 

•  So the logical address is divided as follows: 

•  That is, the binary page number is 000010 which is 2 in 
decimal. 

Paging Example(cntd) 



•  Get the information on page 2 from the page table: 

•  So the physical address is the combination of the frame 
number 110011 and the offset 1011110000.That is  

Paging Example(cntd) 



•  Most operating systems allocate a page table for each process.  

•  A pointer to the page table is stored with the other register 
values in the process control block.  

•  When the dispatcher is told to start a process, it must reload 
the user registers and define the correct hardware page-table 
values from the stored user page table. 

•  The hardware implementation of the page table can be done in 
several ways.  

•  In the simplest case, the page table is implemented as a set of 
dedicated registers. 

•  These registers should be built with very high-speed logic to 
make the paging-address translation efficient.  

 Hardware Support 



•  The use of registers for the page table is satisfactory if the 
page table is reasonably small (for example, 256 entries).  

•  Most OS's, however, allow the page table to be very large (for 
example, 1 million entries). 

•  For such machines, the use of fast registers to implement the 
page table is not feasible. Rather, the page table is kept in 
main memory, and a page-table base register (PTBR) 
points to the page table.  

•  Changing page tables requires changing only this one register, 
substantially reducing context-switch time. 

•  The problem with this approach is the time required to access a 
user memory location. If we want to access location, we must 
first index into the page table, using the value in the PTBR 
offset by the page number. 

 Hardware Support (cntd) 



•  With this scheme, two memory accesses are needed to access 
a byte (one for the page-table entry, one for the actual data).  

•  Thus, memory access is slowed by a factor of 2. This delay 
would be intolerable under most circumstances. 

•  The standard solution to this problem is to use a special, small, 
fastlookup hardware cache, called a translation look-aside 
buffer (TLB). 

 Hardware Support (cntd) 



•  The TLB is associative, high-speed memory. Each entry in the 
TLB consists of two parts: a key (or tag) and a value. 

•  TLB─ act as cache for the page table  

•  Whenever a program performs a memory reference, the virtual 
address sent to the TLB to determine if it contains a translation 
for the address 

•  Yes─ a TLB Hit occurs and the TLB returns the physical 
address of the data, and the memory reference continues 

•  No─, a TLB miss occurs, and the system searches the page 
table for the translation 

•  The search is fast; the hardware, however, is expensive. 
Typically, the number of entries in a TLB is small, often 
numbering between 64 and 1,024. 

Translation Look-Aside Buffer (TLB). 



Translation Look-Aside Buffer (TLB). 
•  Some TLBs store address-space identifiers (ASIDs) in each 

TLB entry. An ASID uniquely identifies each process and is used 
to provide address-space protection for that process.  

•  When the TLB attempts to resolve virtual page numbers, it 
ensures that the ASID for the currently running process 
matches the ASID associated with the virtual page.  

•  If the ASIDs do not match, the attempt is treated as a TLB 
miss.  

•  In addition to providing address-space protection, an ASID 
allows the TLB to contain entries for several different processes 
simultaneously. 



Translation Look-Aside Buffer (TLB). 
•  If the TLB does not support separate ASIDs, then every time a 

new page table is selected (for instance, with each context 
switch), the TLB must be flushed (or erased) to ensure that 
the next executing process does not use the wrong translation 
information.  

•  Otherwise, the TLB could include old entries that contain valid 
virtual addresses but have incorrect or invalid physical 
addresses left over from the previous process. 

•  The percentage of times that a particular page number is found 
in the TLB is called the hit ratio.  

•  An 80-percent hit ratio means that we find the desired page 
number in the TLB 80 percent of the time.  



Effective Access Time  
•  If it takes 20 nanoseconds to search the TLB and 100 

nanoseconds to access memory, then a mapped-memory 
access takes 120 nanoseconds when the page number is in the 
TLB.  

•  If we fail to find the page number in the TLB (20 nanoseconds), 
then we must first access memory for the page table and frame 
number (100 nanoseconds) and then access the desired byte in 
memory (100 nanoseconds), for a total of 220 nanoseconds.  

•  To find the effective memory-access time, we weight each case 
by its probability: 

effective access time = 0.80 x 120 + 0.20 x 220 
                                   = 140 nanoseconds. 
•  In this example, we suffer a 40-percent slowdown in memory-

access time (from 100 to 140 nanoseconds). 



Paging hardware with TLB 
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