
(CC-311)

Operating System
Lecture: 10 & 11

Professor: Syed Mustaghees Abbas

Memory Management

Background

•  The main purpose of a computer system is to execute programs.
These programs, together with the data they access, must be in
main memory (at least partially) during execution.

•  Main memory and the registers built into the processor itself are
the only storage that the CPU can access directly.

•  Registers are generally accessible within one cycle of the CPU
clock. The same cannot be said of main memory, which is
accessed via a transaction on the memory bus.

•  Memory access may take many clock cycles to complete, in which
case the processor normally needs to stall, since it does not have
the data required to complete the instruction that it is executing.

Address Binding

•  Usually, a program resides on a disk as a binary executable file.
To be executed, the program must be brought into memory.

•  The process of associating program instructions and data
to physical memory addresses is called address binding, or
relocation.

•  Addresses in the source program are generally relocatable
addresses generated by the compiler.

•  Loader will in turn bind the relocatable addresses to absolute
addresses.

•  Each binding is a mapping from one address space to another.

Address Binding (cntd)

•  User processes must be
restricted so that they only
access memory locations
that "belong" to that
particular process.

•  This is usually implemented
using a base register and a
limit register for each
process.

•  Every memory access made
by a user process is checked
against these two registers,
and if a memory access is
attempted outside the valid
range, then a fatal error is
generated.

Changing the contents of the base and limit registers is a privileged
activity, allowed only to the OS kernel.

Address Binding Techniques

•  Classically, the binding of program addresses can be done at any
step along the way:

•  Compile time: The compiler translates symbolic addresses to
absolute addresses. If you know at compile time where the
process will reside in memory, then absolute addresses can be
generated (Static).

•  For example, if we know that a user process will reside starting at
location R, then the generated compiler code will start at that
location and extend up from there. If, at some later time, the
starting location changes, then it will be necessary to recompile
this code.

Binding at Compile Time

Binding at Compile Time (Cont.)�

Address Binding (cntd)

•  Load time: If it is not known at compile time where the process
will reside in memory, then the compiler must generate
relocatable code. In this case, final binding is delayed until load
time.

•  It references addresses relative to the start of the program.

•  If the starting address changes in RAM, then the program must
be reloaded but not recompiled.

Binding at Load Time

Relative (Relocatable)!
Addresses!

0!

JUMP 400!

LOAD 1200!

400!

1200!

Relative Load Module!

Symbolic"
Addresses!

PROGRAM!

JUMP i!

LOAD j!

DATA!

i!

j!

Source Code!

Compile! Link!

Binding at Load Time (Cont.)�

Address Binding (cntd)

•  Execution time: If the process can be moved during its
execution from one memory segment to another, then binding
must be delayed until run time.

•  Special hardware must be available for this scheme to work. Most
general-purpose operating systems use this method.

Dynamic Relocation Using a Relocation Register

Logical vs. Physical Address Space

–  Logical address – generated by the CPU; also referred to as
virtual address

–  Physical address – address seen by the memory unit. Actual
addresses of RAM

•  Logical and physical addresses are the same in compile-time and
load-time address-binding schemes; logical (virtual) and physical
addresses differ in execution-time address-binding scheme

Memory-Management Unit (MMU)

•  Hardware device that maps virtual/logical to physical address

•  In MMU scheme, the value in the relocation register is added to
every address generated by a user process at the time it is sent
to memory

•  The user program deals with logical addresses; it never sees the
real physical addresses

Dynamic relocation using a relocation register

•  A process can be swapped temporarily out of memory to a
backing store, and then brought back into memory for
continued execution.

•  Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide direct
access to these memory images

•  Roll out, roll in –
swapping variant used
for priority-based schedu
ling algorithms; lower-pri
ority process is swapped
out so higher-priority
process can be loaded
and executed

Swapping

Swapping (cntd)

Major part of swap time is transfer time; total transfer time is
directly proportional to the amount of memory swapped.

•  A modification of swapping is used in many versions of UNIX.
Swapping is normally disabled but will start if many processes are
running and are using a threshold amount of memory.

•  Swapping is again halted when the load on the system is
reduced.

Contiguous Memory Allocation

•  Main memory must accommodate both the operating system and
the various user processes.

•  Memory is usually divided into two partitions: one for the
resident operating system and one for the user processes.

•  Usually the operating system is in low memory.

•  We will now discuss how to allocate available memory to the
processes that are in the input queue waiting to be brought into
memory.

•  In this contiguous memory allocation, each process is contained
in a single contiguous section of memory.

Memory Allocation

•  One of the simplest methods for allocating memory is to divide
memory into several fixed-sized partitions.

•  Each partition may contain exactly one process.

•  Thus, the degree of multiprogramming is bound by the number of
partitions.

•  In this multiple partition method, when a partition is free, a
process is selected from the input queue and is loaded into the
free partition.

•  When the process terminates, the partition becomes available for
another process. This method is no longer in use.

Multiprogramming With Variable Tasks (MVT)

•  In the this scheme, the operating system keeps a table indicating
which parts of memory are available and which are occupied.

•  Initially, all memory is available for user processes and is
considered one large block of available memory, a hole.

•  When a process arrives and needs memory, we search for a hole
large enough for this process. If we find one, we allocate only as
much memory as is needed, keeping the rest available to satisfy
future requests.

•  At any given time, we have a list of available block sizes and the
input queue.

Multiprogramming With Variable Tasks (MVT)

•  Memory is allocated to processes until, finally, the memory
requirements of the next process cannot be satisfied—that is, no
available block of memory (or hole) is large enough to hold that
process.

•  The operating system can then wait until a large enough block is
available, or it can skip down the input queue to see whether the
smaller memory requirements of some other process can be met.

•  At any given time we have a set of holes of various sizes
scattered throughout memory.

•  When a process terminates, it releases its block of memory,
which is then placed back in the set of holes.

Multiprogramming With Variable Tasks (MVT)

•  If the new hole is adjacent to other holes, these adjacent holes
are merged to form one larger hole.

•  The system may need to check whether there are processes
waiting for memory and whether this newly freed and recombined
memory could satisfy the demands of any of these waiting
processes.

•  This procedure is a particular instance of the general dynamic
storage allocation problem, which concerns how to satisfy a
request of size n from a list of free holes.

•  There are many solutions to this problem. The first-fit, best-fit
and worst-fit strategies are the ones most commonly used to
select a free hole from the set of available holes.

Best Fit Strategy

•  Best fit: The allocator places a process in the smallest block of
unallocated memory in which it will fit. For example, suppose a
process requests 12KB of memory and the memory manager
currently has a list of unallocated blocks of 6KB, 14KB, 19KB,
11KB, and 13KB blocks. The best-fit strategy will allocate 12KB of
the 13KB block to the process.

Worst Fit Strategy

•  Worst fit: The memory manager places a process in the largest
block of unallocated memory available. The idea is that this
placement will create the largest hold after the allocations, thus
increasing the possibility that, compared to best fit, another
process can use the remaining space. Using the same example as
above, worst fit will allocate 12KB of the 19KB block to the
process, leaving a 7KB block for future use.

First Fit Strategy

•  First fit: There may be many holes in the memory, so the
operating system, to reduce the amount of time it spends
analyzing the available spaces, begins at the start of primary
memory and allocates memory from the first hole it encounters
large enough to satisfy the request. Using the same example as
above, first fit will allocate 12KB of the 14KB block to the
process.

Primary !
Memory
! !

Best Fit! ! Worst Fit! First Fit!

Fragmentation

•  In the previous diagram above that the Best fit and First fit
strategies both leave a tiny segment of memory unallocated just
beyond the new process.

•  Since the amount of memory is small, it is not likely that any new
processes can be loaded here.

•  This condition of splitting primary memory into segments as the
memory is allocated and deallocated is known as
fragmentation.

•  The Worst fit strategy attempts to reduce the problem of
fragmentation by allocating the largest fragments to new
processes.

External Fragmentation

•  External Fragmentation – total memory space exists to satisfy
a request, but it is not contiguous

•  Reduce external fragmentation by compaction
–  Shuffle memory contents to place all free memory together in

one large block
–  Compaction is possible only if relocation is dynamic, and is

done at execution time

OS

P1

P2

P3

OS

P1

P3

OS

P1

P3

P4

OS

P3

P4

OS

P3

P4

P5

OS

P1

OS

P1

P2

OS OS

P3

P4

P5

P6

compaction

Internal Fragmentation

•  Internal Fragmentation – allocated memory may be slightly
larger than requested memory; this size difference is memory
internal to a partition, but not being used

•  Divide physical memory into fixed-
sized blocks called frames (size is
power of 2, between 4096 bytes and
8192 bytes)

•  Divide logical memory into blocks of
same size called pages.

•  Any virtual page can be located
at any physical page

•  Translation box converts from virtual
pages to physical pages

Paging

0
1
2
3
4
5

0
1
2
3

0
1
2
3
4
5
6
7
8
9
10
11
12
13 Translation

Virtual
Page #

Physical
Page #

0x0000

0x6000

0x0000

0x4000

0x0000

0xE000

•  Address generated by CPU is divided into:

–  Page number (p) – used as an index into a page table
which contains base address of each page in physical
memory

–  Page offset (d) – combined with base address to define
the physical memory address that is sent to the memory
unit

Address Translation Scheme

Address Translation Scheme

Paging&Example&&

Page
Size=!
4bytes!

Physical!
Memory=!
32bytes!

•  In paging we have no external fragmentation. Any free
frame can be allocated to a process that needs it. However, we
may have some internal fragmentation?

•  Today, pages typically are between 4 KB and 8 KB in size, and
some systems support even larger page sizes.

•  Important aspect of paging is the clear separation between the
user’s view of memory and the actual physical memory.

•  The user program views memory as one single space,
containing only this one program. In fact, the user program is
scattered throughout physical memory, which also holds other
programs.

Paging

•  Given the following logical address find the corresponding
physical address.

•  The memory management scheme is paging with 16-bit
addressing and frame size of 1024.

•  Logical address: 0000101011110000

Paging Example

•  Because the frame size is 1024, which is 210, then the 10
rightmost bits of the logical address are used to store the offset
within the page.

•  Logical address is 16 bits long and therefore the remaining
leftmost 6 bits are used to indicate the page number.

•  So the logical address is divided as follows:

•  That is, the binary page number is 000010 which is 2 in
decimal.

Paging Example(cntd)

•  Get the information on page 2 from the page table:

•  So the physical address is the combination of the frame
number 110011 and the offset 1011110000.That is

Paging Example(cntd)

•  Most operating systems allocate a page table for each process.

•  A pointer to the page table is stored with the other register
values in the process control block.

•  When the dispatcher is told to start a process, it must reload
the user registers and define the correct hardware page-table
values from the stored user page table.

•  The hardware implementation of the page table can be done in
several ways.

•  In the simplest case, the page table is implemented as a set of
dedicated registers.

•  These registers should be built with very high-speed logic to
make the paging-address translation efficient.

 Hardware Support

•  The use of registers for the page table is satisfactory if the
page table is reasonably small (for example, 256 entries).

•  Most OS's, however, allow the page table to be very large (for
example, 1 million entries).

•  For such machines, the use of fast registers to implement the
page table is not feasible. Rather, the page table is kept in
main memory, and a page-table base register (PTBR)
points to the page table.

•  Changing page tables requires changing only this one register,
substantially reducing context-switch time.

•  The problem with this approach is the time required to access a
user memory location. If we want to access location, we must
first index into the page table, using the value in the PTBR
offset by the page number.

 Hardware Support (cntd)

•  With this scheme, two memory accesses are needed to access
a byte (one for the page-table entry, one for the actual data).

•  Thus, memory access is slowed by a factor of 2. This delay
would be intolerable under most circumstances.

•  The standard solution to this problem is to use a special, small,
fastlookup hardware cache, called a translation look-aside
buffer (TLB).

 Hardware Support (cntd)

•  The TLB is associative, high-speed memory. Each entry in the
TLB consists of two parts: a key (or tag) and a value.

•  TLB─ act as cache for the page table

•  Whenever a program performs a memory reference, the virtual
address sent to the TLB to determine if it contains a translation
for the address

•  Yes─ a TLB Hit occurs and the TLB returns the physical
address of the data, and the memory reference continues

•  No─, a TLB miss occurs, and the system searches the page
table for the translation

•  The search is fast; the hardware, however, is expensive.
Typically, the number of entries in a TLB is small, often
numbering between 64 and 1,024.

Translation Look-Aside Buffer (TLB).

Translation Look-Aside Buffer (TLB).
•  Some TLBs store address-space identifiers (ASIDs) in each

TLB entry. An ASID uniquely identifies each process and is used
to provide address-space protection for that process.

•  When the TLB attempts to resolve virtual page numbers, it
ensures that the ASID for the currently running process
matches the ASID associated with the virtual page.

•  If the ASIDs do not match, the attempt is treated as a TLB
miss.

•  In addition to providing address-space protection, an ASID
allows the TLB to contain entries for several different processes
simultaneously.

Translation Look-Aside Buffer (TLB).
•  If the TLB does not support separate ASIDs, then every time a

new page table is selected (for instance, with each context
switch), the TLB must be flushed (or erased) to ensure that
the next executing process does not use the wrong translation
information.

•  Otherwise, the TLB could include old entries that contain valid
virtual addresses but have incorrect or invalid physical
addresses left over from the previous process.

•  The percentage of times that a particular page number is found
in the TLB is called the hit ratio.

•  An 80-percent hit ratio means that we find the desired page
number in the TLB 80 percent of the time.

Effective Access Time
•  If it takes 20 nanoseconds to search the TLB and 100

nanoseconds to access memory, then a mapped-memory
access takes 120 nanoseconds when the page number is in the
TLB.

•  If we fail to find the page number in the TLB (20 nanoseconds),
then we must first access memory for the page table and frame
number (100 nanoseconds) and then access the desired byte in
memory (100 nanoseconds), for a total of 220 nanoseconds.

•  To find the effective memory-access time, we weight each case
by its probability:

effective access time = 0.80 x 120 + 0.20 x 220
 = 140 nanoseconds.
•  In this example, we suffer a 40-percent slowdown in memory-

access time (from 100 to 140 nanoseconds).

Paging hardware with TLB

	Slide 1

