
(CC-311)

Operating System
Lecture: 14 & 15

Professor: Syed Mustaghees Abbas

Virtual Memory

Virtual Memory
•  Virtual memory – separation of user logical memory from

physical memory.

•  Only part of the program needs to be in memory for execution.

•  Logical address space can therefore be much larger than physical
address space. (Virtual address space of a process refers to the
logical (or virtual) view of how a process is stored in memory.)

•  Allows address spaces to be shared by several processes.

•  Allows for more efficient process creation.

•  Virtual memory can be implemented via:
1.  Demand paging
2.  Demand segmentation

Virtual Memory That is Larger Than Physical Memory

Demand paging
•  Consider how an executable program might be loaded from disk

into memory.

•  One option is to load the entire program in physical memory at
program execution time. However, a problem with this approach,
is that we may not initially need the entire program in memory.

•  Alternatively we only load pages as they are needed. This
technique is known as demand paging and is commonly used in
virtual memory systems.

•  With demand-paged virtual memory, pages are only loaded when
they are demanded during program execution.

Demand paging(cntd)
•  A demand-paging system is similar to a paging system with

swapping where processes reside in secondary memory (usually a
disk).

•  When we want to execute a process, we swap it into memory.

•  For swapping a lazy swapper is used. A lazy swapper never
swaps a page into memory unless that page will be needed.

•  A swapper manipulates entire processes, whereas a pager is
concerned with the individual pages of a process. We thus use
pager, rather than swapper, in connection with demand paging.

Transfer of a Paged Memory to Contiguous Disk Space

Demand paging(cntd)
•  For demand paging, we need some form of hardware support to

distinguish between the pages that are in memory and the pages
that are on the disk.

•  The valid-invalid bit scheme can be used for this purpose.

•  Now when this bit is set to "valid" the associated page is both
legal and in memory.

•  If the bit is set to "invalid," the page either is not valid (that is,
not in the logical address space of the process) or is valid but is
currently on the disk.

•  If we guess right and page in all and only those pages that are
actually needed, the process will run exactly as though we had
brought in all pages.

Page Table When Some Pages Are Not in Main Memory

Page Fault

•  If the process tries to access a page that was not brought into
memory causes a page-fault trap.

•  The procedure for handling this page fault is straightforward

–  1. We check whether the reference was a valid or an invalid memory
access.

–  2. If the reference was invalid, we terminate the process. If it was
valid, but we have not yet brought in that page, we now page it in.

–  3. We find a free frame (by taking one from the free-frame list, for
example).

–  4. We schedule a disk operation to read the desired page into the
newly allocated frame.

–  5. When the disk read is complete, we modify the page table to
indicate that the page is now in memory.

–  6. We restart the instruction that was interrupted by the trap. The
process can now access the page as though it had always been in
memory.

Steps in Handling a Page Fault

Pure Demand Paging

•  In pure demand paging we start executing a process with no
pages in memory.

•  When the first instruction is executed, the process immediately
faults for the page.

•  After this page is brought into memory, the process continues to
execute, faulting as necessary until every page that it needs is in
memory.

•  This scheme is pure demand paging: Never bring a page into
memory until it is required.

Copy-on-Write (COW)

•  Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory.

•  Recall that the fork() system call creates a child process as a
duplicate of its parent. Duplicating the pages belonging to the
parent.

•  However most child processes invoke the exec() system call
immediately after creation, thus copying of the parent's address
space may be unnecessary.

•  Alternatively, we can use copy-on-write, which works by allowing
the parent and child processes initially to share the same pages.

•  These shared pages are marked as copy-on-write pages, meaning
that if either process writes to a shared page, a copy of the
shared page is created.

Copy-on-Write (COW)

Copy-on-Write (cntd)

•  For example, assume that the child process attempts to modify a
page, with the pages set to be copy-on-write.

•  The operating system will then create a copy of this page,
mapping it to the address space of the child process.

•  The child process will then modify its copied page and not the
page belonging to the parent process. All unmodified pages can
be shared by the parent and child processes.

•  COW allows more efficient process creation as only modified
pages are copied

A"er%process%1%modifies%page%C.

Copy-on-Write (cntd)

•  Only pages that can be modified need be marked as copy-on-
write. Pages that cannot be modified (pages containing
executable code) can be shared by the parent and child.

•  Many operating systems provide a pool of free pages for such
requests.

•  Operating systems typically allocate these pages using a
technique known as zero-fill-on-demand.

•  Zero-fill-on-demand pages have been zeroed-out before being
allocated, thus erasing the previous contents.

Page Replacement

•  If a process of ten pages actually uses only half of them, then
demand paging saves the I/O necessary to load the five pages
that are never used.

•  We could also increase our degree of multiprogramming by
running twice as many processes.

•  If we had forty frames, we could run eight processes, rather
than the four that could run if each required ten frames (five of
which were never used).

•  But if we increase our degree of multiprogramming, we are over-
allocating memory.

•  It is possible, however, that each of these processes suddenly
try to use all ten of its pages, resulting in a need for eighty
frames when only forty are available.

Page Replacement (cntd)

•  Over-allocation of memory manifests itself as follows.

•  While a user process is executing, a page fault occurs. The
operating system determines where the desired page is residing
on the disk but then finds that there are no free frames; all
memory is in use.

•  The operating system could terminate the user process (not the
best choice).

•  The operating system could instead swap out a process, freeing
all its frames and reducing the level of multiprogramming. This
is known as page replacement, and is the most common
solution.

Need For Page Replacement

Basic Page Replacement

Page replacement takes the following approach.

1.  Find the location of the desired page on the disk.
2.  Find a free frame:

1.  If there is a free frame, use it.
2.  If there is no free frame, use a page-replacement algorithm to select a victim

frame.
3.  Write the victim frame to the disk; change the page and frame tables

accordingly.

3.  Read the desired page into the newly freed frame; change the
page and frame tables.

4.  Restart the user process.

•  Notice that, if no frames are free, two page transfers (one out
and one in) are required.

•  This situation effectively doubles the page-fault service time.

Page Replacement

Basic Page Replacement (cntd)

•  We can reduce this overhead by using a modify bit (or dirty
bit).

•  When this scheme is used, each page or frame has a modify bit
associated with it in the hardware.

•  The modify bit for a page is set by the hardware whenever any
word or byte in the page is written into, indicating that the page
has been modified.

•  When we select a page for replacement,
–  If the bit is set, we know that the page has been modified since it was read

in from the disk. In this case, we must write that page to the disk.

–  If the modify bit is not set, however, the page has not been modified since it
was read into memory. Hence we need not write the memory page to the
disk: It is already there.

•  This scheme can significantly reduce the time required to service
a page fault, since it reduces I/O time by one-half if the page
has not been modified

Basic Page Replacement (cntd)

•  There are many different page-replacement algorithms. How do
we select a particular page replacement algorithm? In general,
we want the one with the lowest page-fault rate.

•  We evaluate an algorithm by running it on a particular string of
memory references and computing the number of page faults.

•  The string of memory references is called a reference string.

•  We can generate reference strings artificially (by using a
random-number generator, for example), or we can trace a
given system and record the address of each memory reference.

Basic Page Replacement (cntd)

•  The latter choice produces a large number of data. To reduce the
number of data, we use two facts.

•  We need to consider only the page number, rather than the
entire address. If we have a reference to a page p, then any
immediately following references to page p will never cause a
page fault.

•  For example, if we trace a particular process, we might record
the following address sequence:

0100, 0432, 0101,0612, 0102, 0103, 0104, 0101, 0611, 0102,
0103, 0104,0101,0610, 0102, 0103, 0104, 0101, 0609, 0102,
0105

•  At 100 bytes per page, this sequence is reduced to the following
reference string:

 1,4,1,6,1,6,1,6,1,6,1

Basic Page Replacement (cntd)

•  We next illustrate several page-replacement algorithms. In doing
so, we use the reference string for a memory with three
frames.

 7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1

FIFO Page Replacement

•  The simplest page-replacement algorithm is a first-in, first-out
(FIFO) algorithm.

•  A FIFO replacement algorithm associates with each page the
time when that page was brought into memory.

•  When a page must be replaced, the oldest page is chosen.

•  Although it is easy to understand and program but its
performance is not always good. A bad replacement choice
increases the page-fault rate and slows process execution.

1.  On the one hand, the page replaced may be an initialization module that was
used a long time ago and is no longer needed.

2.  On the other hand, it could contain a heavily used variable that was
initialized early and is in constant use. After we replace an active page with a
new one, a fault occurs almost immediately to retrieve the active page.

FIFO Page Replacement

Total 15 page faults!!

Belady's anomaly

•  We would expect that giving more memory to a process would
improve its performance but its not true.

•  Belady's anomaly: For some page-replacement algorithms, the
page-fault rate may increase as the number of allocated frames
increases.

•  To illustrate the problems that are possible with a FIFO page-
replacement algorithm, we consider the following reference
string:

 1,2,3,4,1,2,5,1,2,3,4,5

Belady's anomaly

Notice that the number of faults for four frames (ten) is greater
than the number of faults for three frames (nine)! !

Optimal Page Replacement

•  An optimal page-replacement algorithm has the lowest page-fault
rate of all algorithms and will never suffer from Belady's anomaly.

•  Replace the page that will not be used for the longest period of
time.

•  Use of this page-replacement algorithm guarantees the lowest
possible page fault rate for a fixed number of frames.

•  Unfortunately, the optimal page-replacement algorithm is difficult
to implement, because it requires future knowledge of the
reference string.

•  The optimal page replacement algorithm is used mainly for
comparison studies.

Optimal Page Replacement

Total 9 page faults!!

LRU Page Replacement

•  If we replace the page that has not been used for the longest
period of time then this approach is called least-recently-used
(LRU) algorithm.

•  LRU replacement associates with each page the time of that
page's last use.

•  When a page must be replaced, LRU chooses the page that has
not been used for the longest period of time.

•  We can think of this strategy as the optimal page-replacement
algorithm looking backward in time, rather than forward.

•  The LRU policy is often used as a page-replacement algorithm
and is considered to be good. Like optimal replacement, LRU
replacement does not suffer from Belady’s anomaly.

LRU Page Replacement

Total 12 page faults!!

Allocation of Frames

•  How do we allocate the fixed amount of free memory among the
various processes?

•  If we have 93 free frames and two processes, how many frames
does each process get?

•  The simplest case is the single-user system. Consider a single-
user system with 128 KB of memory composed of pages 1 KB in
size. This system has 128 frames.

•  The operating system may take 35 KB, leaving 93 frames for the
user process. Under pure demand paging, all 93 frames would
initially be put on the free-frame list.

•  When a user process started execution, it would generate a
sequence of page faults. The first 93 page faults would all get
free frames from the free-frame list. When the free-frame list was
exhausted, a page-replacement algorithm would he used to
select one of the 93 in-memory pages to be replaced with the
94th, and so on.

Allocation of Frames (cntd)

•  When the process terminated, the 93 frames would once again be
placed on the free-frame list.

•  We can try to keep three free frames reserved on the free-frame
list at all times.

•  Thus, when a page fault occurs, there is a free frame available to
page into. While the page swap is taking place, a replacement
can be selected, which is then written to the disk as the user
process continues to execute.

Minimum Number of Frames

•  Although we cannot allocate more than the total number of
available frames, we must also allocate at least a minimum
number of frames.

•  One reason for allocating at least a minimum number of frames
involves performance.

•  Obviously, as the number of frames allocated to each process
decreases, the page-fault rate increases, slowing process
execution.

•  We must have enough frames to hold all the different pages that
any single instruction can reference.

•  The minimum number of frames is defined by the computer
architecture.

Minimum Number of Frames (cntd)

•  The worst-case scenario occurs in computer architectures that
allow multiple levels of indirection.

•  A simple load instruction could reference an indirect address that
could reference an indirect and so on, until every page in virtual
memory had been touched.

•  To overcome this difficulty, we must place a limit on the levels of
indirection (for example, limit an instruction to at most 16 levels
of indirection).

•  Whereas the minimum number of frames per process is defined
by the architecture, the maximum number is defined by the
amount of available physical memory.

Allocation Algorithms

•  The easiest way to split in frames among n processes is to give
everyone an equal share, m/n frames.

•  For instance, if there are 93 frames and five processes, each
process will get 18 frames. The leftover three frames can be used
as a free-frame buffer pool. This scheme is called equal
allocation.

•  An alternative is to recognize that various processes will need
differing amounts of memory. Consider a system with a 1-KB
frame size. If a small student process of 10 KB and an interactive
database of 127 KB are the only two processes running in a
system with 62 free frames, it does not make much sense to give
each process 31 frames. The student process does not need more
than 10 frames, so the other 21 are, strictly speaking, wasted.

•  To solve this problem, we can use proportional allocation, in
which we allocate available memory to each process according to
its size.

Allocation Algorithms (cntd)

•  In both equal or proportional allocation, a high-priority process is
treated the same as a low-priority process.

•  By its definition, however, we may want to give the high-priority
process more memory to speed its execution, to the detriment of
low-priority processes.

•  One solution is to use a proportional allocation scheme wherein
the ratio of frames depends on the priorities of processes or on a
combination of size and priority.

Global versus Local Allocation

•  We can classify page-replacement algorithms into two broad
categories: global replacement and local replacement.

•  Global replacement allows a process to select a replacement
frame from the set of all frames, even if that frame is currently
allocated to some other process.

•  Local replacement requires that each process select from only its
own set of allocated frames.

•  In local replacement, the number of frames allocated to a process
does not change. With global replacement, a process may take
frames from other processes, thus increasing the number of
frames allocated to it.

Global versus Local Allocation (cntd)

•  One problem with a global replacement algorithm is that a
process cannot control its own page-fault rate. The set of pages
in memory for a process depends not only on the paging behavior
of that process but also on the paging behavior of other
processes.

•  Local replacement might hinder a process, however, by not
making available to it other, less used pages of memory.

•  Global replacement generally results in greater system
throughput and is therefore the more common method.

Thrashing

•  If any process does not have the number of frames it needs to
support pages in active use, it will quickly page-fault.

•  After replacing some page. it quickly faults again, and again, and
again, replacing pages that it must bring back in immediately.

•  This high paging activity is called thrashing. A process is
thrashing if it is spending more time paging than executing.

•  Thrashing results in severe performance problems.

•  Consider the following scenario. The operating system monitors
CPU utilization. If CPU utilization is too low, we increase the
degree of multiprogramming by introducing a new process to the
system.

Thrashing (cntd)

•  A global page-replacement algorithm is used; it replaces pages
without regard to the process to which they belong.

•  Now suppose that a process enters a new phase in its execution
and needs more frames. It starts faulting and taking frames away
from other processes.

•  These processes need those pages, however, and so they also
fault, taking frames from other processes.

•  As these faulting processes queue up for the paging device, the
ready queue empties and CPU utilization decreases.

•  The CPU scheduler sees the decreasing CPU utilization and
increases the degree of multiprogramming as a result.

Thrashing (cntd)

•  The new process tries to get started by taking frames from
running processes, causing more page faults and a longer queue
for the paging device.

•  Thrashing has occurred, and system throughput plunges.

•  The page fault rate increases tremendously. No work is getting
done, because the processes are spending all their time paging.

•  We can limit the effects of thrashing by using a local replacement
algorithm.

•  With local replacement, if one process starts thrashing, it cannot
steal frames from another process and cause the latter to thrash
as well.

•  However, the problem is if the processes are thrashing, they will
be in the queue for the paging device most of the time.

Thrashing (cntd)

•  The average service time for a page fault will increase because of
the longer average queue for the paging device.

Memory-Mapped Files

•  Normally a sequential read of a file on disk using the standard
system calls open(), read(), and write() requires a system call
and disk access each time.

•  We can use the virtual memory techniques to treat file I/O as
routine memory accesses.

•  This approach, known as memory mapping a file, allows a part of
the virtual address space to be logically associated with the file.

•  It is accomplished by mapping a disk block to a page (or pages)
in memory.

•  A page-sized portion of the file is read from the file system into a
physical page . Subsequent reads and writes to the file are
handled as routine memory accesses, which simplifies file access
and eliminating the overhead of using the read() and write()
system calls.

Memory-Mapped Files (cntd)

•  Writes to the file mapped in memory are not necessarily
immediate writes to the file on disk.

•  Some systems may choose to update the physical file when the
operating system periodically checks whether the page in
memory has been modified.

•  When the file is closed, all the memory-mapped data are written
back to disk and removed from the virtual memory of the
process.

•  Multiple processes may be allowed to map the same file
concurrently, to allow sharing of data.

•  The virtual memory map of each sharing process points to the
same page of physical memory—the page that holds a copy of
the disk block.

Memory-Mapped Files (cntd)

•  The memory-mapping system calls can also support copy-on-
write functionality, allowing processes to share a file in read-only
mode but to have their own copies of any data they modify.

	Slide 1

