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Virtual Memory 



Virtual Memory 
•  Virtual memory – separation of user logical memory from 

physical memory. 

•  Only part of the program needs to be in memory for execution. 

•  Logical address space can therefore be much larger than physical 
address space. (Virtual address space of a process refers to the 
logical (or virtual) view of how a process is stored in memory.) 

•  Allows address spaces to be shared by several processes. 

•  Allows for more efficient process creation. 

•  Virtual memory can be implemented via: 
1.  Demand paging  
2.  Demand segmentation 



Virtual Memory That is Larger Than Physical Memory 



Demand paging  
•  Consider how an executable program might be loaded from disk 

into memory. 

•  One option is to load the entire program in physical memory at 
program execution time. However, a problem with this approach, 
is that we may not initially need the entire program in memory.  

•  Alternatively we only load pages as they are needed. This 
technique is known as demand paging and is commonly used in 
virtual memory systems.  

•  With demand-paged virtual memory, pages are only loaded when 
they are demanded during program execution. 



Demand paging(cntd)  
•  A demand-paging system is similar to a paging system with 

swapping where processes reside in secondary memory (usually a 
disk). 

•  When we want to execute a process, we swap it into memory.  

•  For swapping a lazy swapper is used. A lazy swapper never 
swaps a page into memory unless that page will be needed. 

•  A swapper manipulates entire processes, whereas a pager is 
concerned with the individual pages of a process. We thus use 
pager, rather than swapper, in connection with demand paging. 



Transfer of a Paged Memory to Contiguous Disk Space 



Demand paging(cntd)  
•  For demand paging, we need some form of hardware support to 

distinguish between the pages that are in memory and the pages 
that are on the disk.  

•  The valid-invalid bit scheme can be used for this purpose. 

•  Now when this bit is set to "valid" the associated page is both 
legal and in memory.  

•  If the bit is set to "invalid," the page either is not valid (that is, 
not in the logical address space of the process) or is valid but is 
currently on the disk.  

•  If we guess right and page in all and only those pages that are 
actually needed, the process will run exactly as though we had 
brought in all pages.  



Page Table When Some Pages Are Not in Main Memory 



Page Fault 

•  If the process tries to access a page that was not brought into 
memory causes a page-fault trap.  

•  The procedure for handling this page fault is straightforward  

–  1. We check whether the reference was a valid or an invalid memory 
access. 

–  2. If the reference was invalid, we terminate the process. If it was 
valid, but we have not yet brought in that page, we now page it in. 

–  3. We find a free frame (by taking one from the free-frame list, for 
example). 

–  4. We schedule a disk operation to read the desired page into the 
newly allocated frame. 

–  5. When the disk read is complete, we modify the page table to 
indicate that the page is now in memory. 

–  6. We restart the instruction that was interrupted by the trap. The 
process can now access the page as though it had always been in 
memory. 



Steps in Handling a Page Fault 



Pure Demand Paging 

•  In pure demand paging we start executing a process with no 
pages in memory.  

•  When the first instruction is executed, the process immediately 
faults for the page.  

•  After this page is brought into memory, the process continues to 
execute, faulting as necessary until every page that it needs is in 
memory.  

•  This scheme is pure demand paging: Never bring a page into 
memory until it is required. 



Copy-on-Write (COW) 

•  Copy-on-Write (COW) allows both parent and child processes to 
initially share the same pages in memory. 

•  Recall that the fork() system call creates a child process as a 
duplicate of its parent. Duplicating the pages belonging to the 
parent. 

•  However most child processes invoke the exec() system call 
immediately after creation, thus copying of the parent's address 
space may be unnecessary.  

•  Alternatively, we can use copy-on-write, which works by allowing 
the parent and child processes initially to share the same pages.  

•  These shared pages are marked as copy-on-write pages, meaning 
that if either process writes to a shared page, a copy of the 
shared page is created.  



Copy-on-Write (COW) 



Copy-on-Write (cntd) 

•  For example, assume that the child process attempts to modify a 
page, with the pages set to be copy-on-write.  

•  The operating system will then create a copy of this page, 
mapping it to the address space of the child process.  

•  The child process will then modify its copied page and not the 
page belonging to the parent process. All unmodified pages can 
be shared by the parent and child processes. 

•  COW allows more efficient process creation as only modified 
pages are copied 
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Copy-on-Write (cntd) 

•  Only pages that can be modified need be marked as copy-on-
write. Pages that cannot be modified (pages containing 
executable code) can be shared by the parent and child.  

•  Many operating systems provide a pool of free pages for such 
requests.  

•  Operating systems typically allocate these pages using a 
technique known as zero-fill-on-demand.  

•  Zero-fill-on-demand pages have been zeroed-out before being 
allocated, thus erasing the previous contents. 



Page Replacement 

•  If a process of ten pages actually uses only half of them, then 
demand paging saves the I/O necessary to load the five pages 
that are never used.  

•  We could also increase our degree of multiprogramming by 
running twice as many processes.  

•  If we had forty frames, we could run eight processes, rather 
than the four that could run if each required ten frames (five of 
which were never used). 

•  But if we increase our degree of multiprogramming, we are over-
allocating memory.  

•  It is possible, however, that each of these processes suddenly 
try to use all ten of its pages, resulting in a need for eighty 
frames when only forty are available. 



Page Replacement (cntd) 

•  Over-allocation of memory manifests itself as follows.  

•  While a user process is executing, a page fault occurs. The 
operating system determines where the desired page is residing 
on the disk but then finds that there are no free frames; all 
memory is in use. 

•  The operating system could terminate the user process (not the 
best choice). 

•  The operating system could instead swap out a process, freeing 
all its frames and reducing the level of multiprogramming. This 
is known as page replacement, and is the most common 
solution.   



Need For Page Replacement 



Basic Page Replacement 

Page replacement takes the following approach. 

1.  Find the location of the desired page on the disk. 
2.  Find a free frame: 

1.  If there is a free frame, use it. 
2.  If there is no free frame, use a page-replacement algorithm to select a victim 

frame. 
3.  Write the victim frame to the disk; change the page and frame tables 

accordingly. 

3.  Read the desired page into the newly freed frame; change the 
page and frame tables. 

4.  Restart the user process. 

•  Notice that, if no frames are free, two page transfers (one out 
and one in) are required.  

•  This situation effectively doubles the page-fault service time. 



Page Replacement 



Basic Page Replacement (cntd) 

•  We can reduce this overhead by using a modify bit (or dirty 
bit).  

•  When this scheme is used, each page or frame has a modify bit 
associated with it in the hardware.  

•  The modify bit for a page is set by the hardware whenever any 
word or byte in the page is written into, indicating that the page 
has been modified.  

•  When we select a page for replacement,  
–  If the bit is set, we know that the page has been modified since it was read 

in from the disk. In this case, we must write that page to the disk.  

–  If the modify bit is not set, however, the page has not been modified since it 
was read into memory. Hence we need not write the memory page to the 
disk: It is already there.  

•  This scheme can significantly reduce the time required to service 
a page fault, since it reduces I/O time by one-half if the page 
has not been modified 



Basic Page Replacement (cntd) 

•  There are many different page-replacement algorithms. How do 
we select a particular page replacement algorithm? In general, 
we want the one with the lowest page-fault rate. 

•  We evaluate an algorithm by running it on a particular string of 
memory references and computing the number of page faults.  

•  The string of memory references is called a reference string.  

•  We can generate reference strings artificially (by using a 
random-number generator, for example), or we can trace a 
given system and record the address of each memory reference.  



Basic Page Replacement (cntd) 

•  The latter choice produces a large number of data. To reduce the 
number of data, we use two facts. 

•  We need to consider only the page number, rather than the 
entire address. If we have a reference to a page p, then any 
immediately following references to page p will never cause a 
page fault.  

•  For example, if we trace a particular process, we might record 
the following address sequence: 

0100, 0432, 0101,0612, 0102, 0103, 0104, 0101, 0611, 0102, 
0103, 0104,0101,0610, 0102, 0103, 0104, 0101, 0609, 0102, 
0105 

•  At 100 bytes per page, this sequence is reduced to the following 
reference string: 

      1,4,1,6,1,6,1,6,1,6,1 



Basic Page Replacement (cntd) 

•  We next illustrate several page-replacement algorithms. In doing 
so, we use the reference string for a memory with three 
frames. 

   
   7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1 



FIFO Page Replacement 

•  The simplest page-replacement algorithm is a first-in, first-out 
(FIFO) algorithm. 

•  A FIFO replacement algorithm associates with each page the 
time when that page was brought into memory.  

•  When a page must be replaced, the oldest page is chosen. 

•  Although it is easy to understand and program but its 
performance is not always good. A bad replacement choice 
increases the page-fault rate and slows process execution.  

1.  On the one hand, the page replaced may be an initialization module that was 
used a long time ago and is no longer needed.  

2.  On the other hand, it could contain a heavily used variable that was 
initialized early and is in constant use. After we replace an active page with a 
new one, a fault occurs almost immediately to retrieve the active page. 



FIFO Page Replacement 

Total 15 page faults!!



Belady's anomaly 

•  We would expect that giving more memory to a process would 
improve its performance but its not true. 

•  Belady's anomaly: For some page-replacement algorithms, the 
page-fault rate may increase as the number of allocated frames 
increases.  

•  To illustrate the problems that are possible with a FIFO page-
replacement algorithm, we consider the following reference 
string: 

   1,2,3,4,1,2,5,1,2,3,4,5 



Belady's anomaly 

Notice that the number of faults for four frames (ten) is greater 
than the number of faults for three frames (nine)! !



Optimal Page Replacement 

•  An optimal page-replacement algorithm has the lowest page-fault 
rate of all algorithms and will never suffer from Belady's anomaly. 

•  Replace the page that will not be used for the longest period of 
time. 

•  Use of this page-replacement algorithm guarantees the lowest 
possible page fault rate for a fixed number of frames. 

•  Unfortunately, the optimal page-replacement algorithm is difficult 
to implement, because it requires future knowledge of the 
reference string. 

•  The optimal page replacement algorithm is used mainly for 
comparison studies. 



Optimal Page Replacement 

Total 9 page faults!!



LRU Page Replacement 

•  If we replace the page that has not been used for the longest 
period of time then this approach is called least-recently-used 
(LRU) algorithm. 

•  LRU replacement associates with each page the time of that 
page's last use. 

•  When a page must be replaced, LRU chooses the page that has 
not been used for the longest period of time.  

•  We can think of this strategy as the optimal page-replacement 
algorithm looking backward in time, rather than forward. 

•  The LRU policy is often used as a page-replacement algorithm 
and is considered to be good. Like optimal replacement, LRU 
replacement does not suffer from Belady’s anomaly. 



LRU Page Replacement 

Total 12 page faults!!



Allocation of Frames 

•  How do we allocate the fixed amount of free memory among the 
various processes?  

•  If we have 93 free frames and two processes, how many frames 
does each process get? 

•  The simplest case is the single-user system. Consider a single-
user system with 128 KB of memory composed of pages 1 KB in 
size. This system has 128 frames.  

•  The operating system may take 35 KB, leaving 93 frames for the 
user process. Under pure demand paging, all 93 frames would 
initially be put on the free-frame list.  

•  When a user process started execution, it would generate a 
sequence of page faults. The first 93 page faults would all get 
free frames from the free-frame list. When the free-frame list was 
exhausted, a page-replacement algorithm would he used to 
select one of the 93 in-memory pages to be replaced with the 
94th, and so on.  



Allocation of Frames (cntd) 

•  When the process terminated, the 93 frames would once again be 
placed on the free-frame list. 

•  We can try to keep three free frames reserved on the free-frame 
list at all times.  

•  Thus, when a page fault occurs, there is a free frame available to 
page into. While the page swap is taking place, a replacement 
can be selected, which is then written to the disk as the user 
process continues to execute.  



Minimum Number of Frames 

•  Although we cannot allocate more than the total number of 
available frames, we must also allocate at least a minimum 
number of frames.  

•  One reason for allocating at least a minimum number of frames 
involves performance.  

•  Obviously, as the number of frames allocated to each process 
decreases, the page-fault rate increases, slowing process 
execution.  

•  We must have enough frames to hold all the different pages that 
any single instruction can reference. 

•  The minimum number of frames is defined by the computer 
architecture. 



Minimum Number of Frames (cntd) 

•  The worst-case scenario occurs in computer architectures that 
allow multiple levels of indirection. 

•  A simple load instruction could reference an indirect address that 
could reference an indirect and so on, until every page in virtual 
memory had been touched. 

•  To overcome this difficulty, we must place a limit on the levels of 
indirection (for example, limit an instruction to at most 16 levels 
of indirection).  

•  Whereas the minimum number of frames per process is defined 
by the architecture, the maximum number is defined by the 
amount of available physical memory.  



Allocation Algorithms 

•  The easiest way to split in frames among n processes is to give 
everyone an equal share, m/n frames.  

•  For instance, if there are 93 frames and five processes, each 
process will get 18 frames. The leftover three frames can be used 
as a free-frame buffer pool. This scheme is called equal 
allocation. 

•  An alternative is to recognize that various processes will need 
differing amounts of memory. Consider a system with a 1-KB 
frame size. If a small student process of 10 KB and an interactive 
database of 127 KB are the only two processes running in a 
system with 62 free frames, it does not make much sense to give 
each process 31 frames. The student process does not need more 
than 10 frames, so the other 21 are, strictly speaking, wasted. 

•  To solve this problem, we can use proportional allocation, in 
which we allocate available memory to each process according to 
its size. 



Allocation Algorithms (cntd) 

•  In both equal or proportional allocation, a high-priority process is 
treated the same as a low-priority process.  

•  By its definition, however, we may want to give the high-priority 
process more memory to speed its execution, to the detriment of 
low-priority processes.  

•  One solution is to use a proportional allocation scheme wherein 
the ratio of frames depends on the priorities of processes or on a 
combination of size and priority. 



Global versus Local Allocation 

•  We can classify page-replacement algorithms into two broad 
categories: global replacement and local replacement.  

•  Global replacement allows a process to select a replacement 
frame from the set of all frames, even if that frame is currently 
allocated to some other process.  

•  Local replacement requires that each process select from only its 
own set of allocated frames. 

•  In local replacement, the number of frames allocated to a process 
does not change. With global replacement, a process may take 
frames from other processes, thus increasing the number of 
frames allocated to it. 



Global versus Local Allocation (cntd) 

•  One problem with a global replacement algorithm is that a 
process cannot control its own page-fault rate. The set of pages 
in memory for a process depends not only on the paging behavior 
of that process but also on the paging behavior of other 
processes. 

•  Local replacement might hinder a process, however, by not 
making available to it other, less used pages of memory.  

•  Global replacement generally results in greater system 
throughput and is therefore the more common method. 



Thrashing 

•  If any process does not have the number of frames it needs to 
support pages in active use, it will quickly page-fault.  

•  After replacing some page. it quickly faults again, and again, and 
again, replacing pages that it must bring back in immediately. 

•  This high paging activity is called thrashing. A process is 
thrashing if it is spending more time paging than executing. 

•  Thrashing results in severe performance problems.  

•  Consider the following scenario. The operating system monitors 
CPU utilization. If CPU utilization is too low, we increase the 
degree of multiprogramming by introducing a new process to the 
system.  



Thrashing (cntd) 

•  A global page-replacement algorithm is used; it replaces pages 
without regard to the process to which they belong.  

•  Now suppose that a process enters a new phase in its execution 
and needs more frames. It starts faulting and taking frames away 
from other processes.  

•  These processes need those pages, however, and so they also 
fault, taking frames from other processes.  

•  As these faulting processes queue up for the paging device, the 
ready queue empties and CPU utilization decreases. 

•  The CPU scheduler sees the decreasing CPU utilization and 
increases the degree of multiprogramming as a result.  



Thrashing (cntd) 

•  The new process tries to get started by taking frames from 
running processes, causing more page faults and a longer queue 
for the paging device.  

•  Thrashing has occurred, and system throughput plunges.  

•  The page fault rate increases tremendously. No work is getting 
done, because the processes are spending all their time paging. 

•  We can limit the effects of thrashing by using a local replacement 
algorithm.  

•  With local replacement, if one process starts thrashing, it cannot 
steal frames from another process and cause the latter to thrash 
as well.  

•  However, the problem is if the processes are thrashing, they will 
be in the queue for the paging device most of the time.  



Thrashing (cntd) 

•  The average service time for a page fault will increase because of 
the longer average queue for the paging device.  



Memory-Mapped Files 

•  Normally a sequential read of a file on disk using the standard 
system calls open(), read(), and write() requires a system call 
and disk access each time.  

•  We can use the virtual memory techniques to treat file I/O as 
routine memory accesses.  

•  This approach, known as memory mapping a file, allows a part of 
the virtual address space to be logically associated with the file. 

•  It is accomplished by mapping a disk block to a page (or pages) 
in memory.  

•  A page-sized portion of the file is read from the file system into a 
physical page . Subsequent reads and writes to the file are 
handled as routine memory accesses, which simplifies file access 
and eliminating the overhead of using the read() and write() 
system calls. 



Memory-Mapped Files (cntd) 

•  Writes to the file mapped in memory are not necessarily 
immediate writes to the file on disk.  

•  Some systems may choose to update the physical file when the 
operating system periodically checks whether the page in 
memory has been modified.  

•  When the file is closed, all the memory-mapped data are written 
back to disk and removed from the virtual memory of the 
process. 

•  Multiple processes may be allowed to map the same file 
concurrently, to allow sharing of data.  

•  The virtual memory map of each sharing process points to the 
same page of physical memory—the page that holds a copy of 
the disk block.  



Memory-Mapped Files (cntd) 

•  The memory-mapping system calls can also support copy-on-
write functionality, allowing processes to share a file in read-only 
mode but to have their own copies of any data they modify. 
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