
(CC-311)

Operating System
Lecture: 02 & 03

Professor: Syed Mustaghees Abbas



Operations on processes

➢ The processes in most systems can execute concurrently, and they
may be created and deleted dynamically. These systems must
provide a mechanism for process creation and termination.

➢ In Modern OS different system-calls use for creation and deletion.

➢ Process Creation

✓ A process may create several new processes during the course of
execution. The creating process is called a parent process and the
new processes are called the children of that process.

✓ Each child process can further create other processes,
forming a tree of processes.

✓ Most operating systems identify processes according to a unique
process identifier (or pid), which is typically an integer number.



Process Creation (Continued)



Process Creation (Continued)

➢ In general, a process will need certain resources (CPU time, 
memory, files,I/O devices) to accomplish its task.

➢ When a process creates a subprocess, that subprocess may be able 
to obtain its resources directly from the OS or it may be 
constrained to a subset of the resources of the parent process.

➢ The parent may have to partition its resources among its children
or it may be able to share some resources (such as memory or
files) among several of its children.

➢ Restricting a child process to a subset of the parent’s resources
prevents any process from overloading the system by creating too
many subprocesses.



Process Creation (Continued)

➢ When a process creates a new process there are two possibilities
exist in terms of execution and in term address space

✓ In terms of execution:

1. The parent continues to execute concurrently with its
children.

2. The parent waits until some or all of its children have
terminated.

✓ In terms of the address space:

1. The child process is a duplicate of the parent process (it has the
same program and data as the parent).

2. The child process has a new program loaded into it.



Program using Fork()

➢ ​In Linux new process is created by the fork() 
system call. The new process consists of a copy of 
the address space of the original

➢ Both processes (the parent and the child)
continue execution at the instruction after the
fork(), with one difference: The return code for
the fork() is zero for the new (child) process, 

whereas the nonzero process
identifier of the child is
returned to the parent.



Process Creation (Continued)

➢ Typically, the exec() system call is used after a fork() to replace
the process's memory space with a new program.

➢ It loads a binary file into memory (destroying the memory image
of the program containing the exec() system call) and starts its
execution.

➢ The parent can then create more children; or, if it has nothing else
to do while the child runs, it can issue a wait () system call to
move itself off the ready queue until the termination of the child.



Process Termination

➢ A process terminates when it finishes executing its final

statement and asks the operating system to delete it by 

using the exit() system call.

➢ All the resources of the process: including physical and virtual

memory, open files, and I/O buffers are deallocated by the

operating system.

➢ A process can cause the termination of another process via an

appropriate system call. Usually, such a system call can be invoked

only by the parent of the process that is to be terminated.

Otherwise, users could arbitrarily kill each other's jobs.



Process Termination (Continued)

➢ A parent may terminate the execution of one of its children for
a variety of reasons, such as these:

✓ The task assigned to the child is no longer required.

✓ The parent is exiting, and the operating system does not allow a
child to continue if its parent terminates.

➢ Cascading Termination:

Some systems do not allow a child to exist if its parent has 

terminated. In such systems, if a process terminates (either 

normally or abnormally), then all its children must also be 

terminated. This phenomenon, referred to as cascading 

termination, is normally initiated by the operating system.



Process Scheduling

➢ The objective of multiprogramming is to have some process 
running at all times, to maximize CPU utilization.

➢ For a single-processor system, there will never be more than one
running process.

➢ If there are more processes, the rest will have to wait until the
CPU is free and can be rescheduled.

➢ CPU scheduling is the basis of multiprogrammed operating 
systems

➢ On operating systems that support threads, it is threads—not 
processes—that are in fact being scheduled by the operating 
system. However, the terms process scheduling and thread 
scheduling are often used interchangeably.



Process Scheduling Queues
➢ As processes enter the system, they are put into a job queue,

which consists of all processes in the system.

➢ The processes that are residing in main memory and are ready
and waiting to execute are kept on a list called the ready queue.

➢ This queue is generally stored as a linked list. A ready-queue header
contains pointers to the first and final PCBs in the list. Each PCB
includes a pointer field that points to the next PCB in the ready
queue.

➢ Suppose the process while execution makes an I/O request to a
shared device, such as a disk. Since there are many processes in
the system, the disk may be busy with the I/O request of some
other process.

➢ The process therefore may have to wait for the disk. The list of
processes waiting for a particular I/O device is called a device
queue. Each device has its own device queue.



Ready Queue And Various I/O Device Queues



Queuing Diagram

A common representation for a discussion of process scheduling is a
queuing diagram



Process Scheduling Queues

➢ The circles represent the resources that serve the queues, 

and the arrows indicate the flow of processes in the

system.

➢ A new process is initially put in the ready queue waiting to be 

selected for execution.

➢ Once the process is allocated the CPU and is executing, one 

of several events could occur

➢ The process could issue an I/O request and then be placed in 

an I/O queue.



Process Scheduling Queues

➢ The process could create a new subprocess and wait for the 

subprocess's termination.The parent process goes into 

waiting state.

➢ The process could be removed forcibly from the CPU, as a 

result of an interrupt, and be put back in the ready queue.

➢ A process continues this cycle until it terminates, at which 

time it is removed from all queues and has its PCB and 

resources deallocated.



Schedulers

➢ A process migrates among the various scheduling queues 
throughout its lifetime.

➢ The operating system must select, for scheduling purposes, 
processes from these queues in some fashion. The selection 
process is carried out by the appropriate scheduler from these
queues in some fashion.

➢ A long-term scheduler is typical of a batch system. It runs 
infrequently, ( such as when one process ends selecting one more
to be loaded in from disk in its place ), and can afford to take the
time to implement intelligent and advanced scheduling
algorithms.

➢ The short-term scheduler, or CPU Scheduler, runs very frequently,
on the order of 100 milliseconds, and must very quickly swap one
process out of the CPU and swap in another one.



CPU-I/O Burst Cycle

➢ Process execution consists of a cycle of CPU execution and I/O

wait. Processes alternate between these two states. Process

execution begins with a CPU burst.That is followed by an I/O

burst, which is followed by another CPU burst, then another

I/O burst, and so on.

➢ The durations of CPU bursts have been measured extensively

➢ Although they vary greatly from process to process and from 

computer to computer, generally we have a large number of 

short CPU bursts and a small number of long CPU bursts.



Alternating Sequence of CPU And I/O Bursts



Process Scheduling

➢ In general, most processes can be described as either I/O bound

or CPU bound.

➢ An I/O-bound process is one that spends more of its time doing

I/O than it spends doing computations.

➢ A CPU-bound process, in contrast, generates I/O requests 

infrequently, using more of its time doing computations.

➢ It is important that the long-term scheduler make a careful 

selection. If all processes are CPU bound, the I/O waiting queue

will almost always be empty, devices will go unused, and again the

system will be unbalanced. The system with the best performance

will thus have a combination of CPU- bound and I/O-bound

processes.



Schedulers

➢ On some systems, the long-term scheduler may be absent or 

minimal.

➢ For example, time-sharing systems such as UNIX and Microsoft

Windows systems often have no long-term scheduler but simply

put every new process in memory for the short-term scheduler.

➢ Time-sharing systems, may introduce an additional, 

intermediate level of scheduling known as medium-term 

scheduler.

➢ The key idea behind a medium-term scheduler is that sometimes it

can be advantageous to remove processes from memory and thus

reduce the degree of multiprogramming.



Schedulers

➢ Later, the process can be reintroduced into memory, and its

execution can be continued where it left off. This scheme is called

swapping.

➢ The process is swapped out, and is later swapped in, by the

medium-term scheduler.

➢ Swapping may be necessary to improve the process mix (IO bound

vs CPU bound) or available memory is exhausted and new process

needs to be run requiring memory to be freed up.



Schedulers

➢ CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

➢ For situations 1 and 4, there is no choice in terms of scheduling. A

new process (if one exists in the ready queue) must be selected

for execution. There is a choice, however, for situations 2 and 3.

➢ When scheduling takes place only under circumstances 1 and 4, we

say that the scheduling scheme is non-preemptive or cooperative;

otherwise, it is preemptive.



Preemptive and non-preemptive scheduling?

➢ Processes have priorities and at times it is necessary to run

a certain process that has a higher priority before another 

process although it is running. Therefore, the running

process is interrupted for some time and resumed later

when the high priority process has finished its execution.

This is called preemptive scheduling. Precisely

➢ Preemptive scheduling: The preemptive scheduling is 
prioritized. The highest priority process should always be
the process that is currently utilized.

➢ Non-Preemptive scheduling: When a process enters the 
state of running, the process continues to run until it
finishes its service time.



Dispatcher

➢ Dispatcher module gives control of the CPU to the process 

selected by the short-term scheduler; this involves:

✓ switching context

✓ switching to user mode

✓ jumping to the proper location in the user program to restart 

that program

➢ Dispatch latency: time it takes for the dispatcher to stop one

process and start another running



Scheduling Criteria

Many criteria have been suggested for comparing CPU
scheduling algorithms. The criteria include the following:

➢ CPU utilization – keep the CPU as busy as possible

➢ Throughput – Number of processes that complete their 
execution per time unit

➢ Turnaround time – amount of time to execute a particular 
process

➢ Waiting time – amount of time a process has been waiting in the
ready queue. It is the sum of the periods spent waiting in the
ready queue.

➢ Response time – amount of time it takes from when a request
was submitted until the first response is produced



Optimization Criteria

➢ Max CPU utilization

➢ Max throughput

➢ Min turnaround time

➢ Min waiting time

➢ Min response time



First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1

P2

P3

24
3
3

➢ Suppose that the processes arrive in the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

P1 P2 P3

3027240

➢ Waiting time for P1= 0; P2 = 24;  P3 = 27

➢ Average waiting time: (0 + 24 + 27)/3 = 17



Can we somehow reduce the average wait time?



Suppose that the processes arrive in the order

P2 , P3 , P1

➢ The Gantt chart for the schedule is:

➢ Waiting time for P1 = 6;  P2 = 0; P3 = 3

➢ Average waiting time: (6 + 0 + 3)/3 = 3

➢ Much better than previous case

➢ Convoy effect short process behind long process

P2 P3 P1

FCFS Scheduling (Continued)

3060 3



➢ Associate with each process the length of its next CPU burst. 
Use these lengths to schedule the process with the shortest 
time

➢ Two schemes:

✓ Non-preemptive: once CPU given to the process it cannot be

preempted until completes its CPU burst

✓ Preemptive: if a new process arrives with CPU burst 

length less than remaining time of current executing 

process, preempt. This scheme is know as the 

Shortest-Remaining-Time-First (SRTF)

➢ SJF is optimal: gives minimum average waiting time for a 
given set of processes

Shortest-Job-First (SJF) Scheduling



SJF (non−preemptive)

➢Waiting times P1 = 0, P2 = 6, P3 = 3, P4 = 7

➢ Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P3 P2 P4

Example of Non-Preemptive SJF

16128730



➢Waiting times P1 = 9, P2 = 1, P3 = 0, P4 = 2

➢ Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P2 P3 P2 P4 P1

Example of Preemptive SJF

SJF (preemptive)

161175420



➢ A priority number (integer) is associated with each process

➢ The CPU is allocated to the process with the highest priority 
(smallest integer  highest priority)
✓ Preemptive
✓ nonpreemptive

➢ SJF is a priority scheduling where priority is the predicted next 
CPU burst time

➢ Problem  Starvation – low priority processes may never 
execute

➢ Solution  Aging – as time progresses increase the priority of the 
process

Priority Scheduling



➢Waiting times P1=6, P2 =0, P3 =16, P4 =18, P5 =1

➢ Average waiting time = (6 + 0 + 16 +18+1)/5 = 8.2

Example of Non-Preemptive Priority scheduling



➢ Waiting times P1=4, P2 =0, P3 =15, P4 =0, P5 =1

➢ Average waiting time = (4 + 0 + 15 + 0 + 1)/5 = 4

Example of Preemptive Priority scheduling



➢ Each process gets a small unit of CPU time (time quantum), 

usually 10-100 milliseconds. After this time has elapsed, the 

process is preempted and added to the end of the ready 

queue.

➢ If there are n processes in the ready queue and the time 

quantum is q, then each process gets 1/n of the CPU time

in chunks of at most q time units at once. No process waits 

more than (n-1)q time units.

Round Robin (RR)



➢ The Gantt chart is:

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Example of RR with Time Quantum = 20

➢Waiting times P1 = 81, P2 = 20, P3 = 94, P4 = 97

➢ Average waiting time = (81 + 20 + 94 +97)/4 = 73



➢ Performance of the RR algorithm depends heavily on

the size of the time quantum.

➢ If the time quantum is extremely large, the RR policy is 

the same as the FCFS policy

➢ If the time quantum is extremely small (say, 1 

millisecond), the RR approach is called processor sharing 

and creates the appearance that each of n processes has

its own processor running at 1/n the speed of the real 

processor. (context switching overhead)

Round Robin (RR)



Time Quantum and Context Switch Time



➢ Multilevel queue is used when processes can be classified into

groups based on some characteristic like response time, priority

etc like

✓ foreground (interactive)

✓ background (batch)

➢ Ready queue is partitioned into separate queues and each 

queue has its own scheduling algorithm

✓ foreground – RR

✓ background – FCFS

➢ Processes are permanently assigned to one queue, generally

based on some property of the process, such as process priority, 

or process type.

Multilevel Queue Scheduling



➢ Scheduling must be done between the queues. Two options

✓ Fixed priority preemptive scheduling; Each queue has

absolute priority over lower-priority queues. Possibility of

starvation.

✓ Time slice; each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e.,

80% to foreground in RR

20% to background in FCFS

✓ Since processes cannot change their foreground or 

background nature (move from one queue to another), 

this scheme is inflexible.

Multilevel Queue (Continued)



Multilevel Queue Scheduling

highest priority

lowest priority



➢ Multilevel feedback-queue scheduling algorithm allows a process

to move between queues.

➢ Processes are scheduled according to the characteristics of their

CPU bursts.

➢ If a process uses too much CPU time, it will be moved to a lower-

priority queue. This scheme leaves I/O-bound and interactive

processes in the higher-priority queues.

➢ In addition, a process that waits too long in a lower- priority

queue may be moved to a higher-priority queue. This form of

aging prevents starvation.

Multilevel Feedback Queue Scheduling



➢ Three queues:
✓ Q0: RR with time quantum 8 milliseconds

✓ Q1: RR time quantum 16 milliseconds

✓ Q2: FCFS

➢ Scheduling: The scheduler first executes all processes in queue
0. Only when queue 0 is empty will it execute processes in
queue 1. Similarly, processes in queue 2 will only be executed if
queues 0 and 1 are empty.

✓ A process entering the ready queue is put in queue 0 and given a

time quantum of 8 milliseconds.

✓ If it does not finish within this time, it is moved to the tail of

queue 1. If queue 0 is empty, the process at the head of queue 1 is

given a quantum of 16 milliseconds.

✓ If it does not complete, it is preempted and is put into queue 2.

Processes in queue 2 are run on an FCFS basis but are run only

when queues 0 and 1 are empty.

Example of Multilevel Feedback Queue



➢ Hence highest priority is given to any process with a CPU 

burst of 8 milliseconds or less as such a process will

quickly get the CPU, finish its CPU burst, and go off to its

next I/O burst.

➢ Processes that need more than 8 but less than 24 

milliseconds are also served quickly, although with

lower priority than shorter processes.

➢ Long processes automatically sink to queue 2 and are

served in FCFS order with any CPU cycles left over from

queues 0 and 1.

Multilevel Feedback Queue (Continued)



Multilevel Feedback Queues


	Slide 1
	Slide 2: Operations on processes
	Slide 3: Process Creation (Continued)
	Slide 4: Process Creation (Continued)
	Slide 5: Process Creation (Continued)
	Slide 6: Program using Fork()
	Slide 7: Process Creation (Continued)
	Slide 8: Process Termination
	Slide 9: Process Termination (Continued)
	Slide 10: Process Scheduling
	Slide 11: Process Scheduling Queues
	Slide 12: Ready Queue And Various I/O Device Queues
	Slide 13: Queuing Diagram
	Slide 14: Process Scheduling Queues
	Slide 15: Process Scheduling Queues
	Slide 16: Schedulers
	Slide 17: CPU-I/O Burst Cycle
	Slide 18: Alternating Sequence of CPU And I/O Bursts
	Slide 19: Process Scheduling
	Slide 20: Schedulers
	Slide 21: Schedulers
	Slide 22: Schedulers
	Slide 23: Preemptive and non-preemptive scheduling?
	Slide 24: Dispatcher
	Slide 25: Scheduling Criteria
	Slide 26: Optimization Criteria
	Slide 27: First-Come, First-Served (FCFS) Scheduling
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

