
(CC-311)

Operating System
Lecture: 04 & 05

Professor: Syed Mustaghees Abbas



Fair-share scheduling

➢ Fair-share scheduling is a scheduling strategy for computer
operating systems in which the CPU usage is equally distributed
among system users/groups, as opposed to equal distribution
among processes.

➢ For example, if four users (A,B,C,D) are concurrently executing one
process each, the scheduler will logically divide the available CPU
cycles such that each user gets 25% of the whole (100% / 4 = 25%).

➢ If user B starts a second process, each user will still receive 25%
of the total cycles, but each of user B's processes will now use
12.5%. On the other hand, if a new user starts a process on the
system, the scheduler will reapportion the available CPU cycles
such that each user gets 20% of the whole (100% / 5 = 20%).



Fair-share scheduling

➢ We can also partition users into groups, and apply the fair share
algorithm to the groups as well.

➢ Now the available CPU cycles are divided first among the groups,
then among the users within the groups, and then among the
processes for that user.

➢ For example, if there are three groups (1,2,3) containing three,
two, and four users respectively, the available CPU cycles will be
distributed as follows:

✓ 100% / 3 groups = 33.3% per group

✓ Group 1: (33.3% / 3 users) = 11.1% per user

✓ Group 2: (33.3% / 2 users) = 16.7% per user

✓ Group 3: (33.3% / 4 users) = 8.3% per user



Fair-share scheduling

➢ One common method of logically implementing the fair-share
scheduling strategy is to recursively apply the round-robin
scheduling strategy at each level of abstraction (processes, users,
groups, etc.)

➢ The time quantum required by round-robin is arbitrary, as any
equal division of time will produce the same results.



Priority inversion

➢ In computer science, priority inversion is a problematic scenario in
scheduling in which a high priority task is indirectly preempted by
a medium priority task effectively "inverting" the relative
priorities of the two tasks.

➢ As an example, assume we have three processes, L, M, and H,
whose priorities follow the order L < M < H.

➢ Assume that process H requires resource R, which is currently
being accessed by process L.

➢ Ordinarily, process H would wait for L to finish using resource R.
However, now suppose that process M becomes runnable,
thereby preempting process L.

➢ Indirectly, a process with a lower priority—process M has affected
how long process H must wait for L to relinquish resource R.



Priority inversion (Continued)

➢ This problem, known as priority inversion, can be solved by use of
the priority-inheritance protocol.

➢ According to this protocol, all processes that are accessing
resources needed by a higher-priority process inherit the higher
priority until they are finished with the resources in question.

➢ When they are finished, their priorities revert to their original
values.

➢ In the example above, a priority-inheritance protocol allows
process L to temporarily inherit the priority of process H, thereby
preventing process M from preempting its execution.

➢ When process L has finished using resource R, it relinquishes its
inherited priority from H and assumes its original priority. As
resource R is now available, process H not M will run next.



LOTTERY SCHEDULING

➢ Gives variable numbers of lottery tickets to processes

➢ Holds lotteries to decide which thread will get the CPU

Traditional schedulers

➢ Priority schemes:

✓ Priority assignments often ad hoc : highest priority always wins

✓ Priority inversion: high-priority jobs can be blocked behind low-
priority jobs

➢ “Fair share” schemes adjust priorities with a feedback loop to
achieve fairness

✓ Only achieve long-term fairness



LOTTERY SCHEDULING (Continued)

➢ Priority determined by the number of tickets each thread has:

✓ Priority is the relative percentage of all of the tickets whose owners
compete for the resource

➢ Scheduler picks winning ticket randomly, gives owner the
resource

Example
➢ Three threads

✓ A has 5 tickets

✓ B has 3 tickets

✓ C has 2 tickets

➢ If all compete for the resource

✓ B has 30% chance of being selected

➢ If only B and C compete

✓ B has 60% chance of being selected



LOTTERY SCHEDULING (Continued)

➢ Lottery scheduling is starvation-free
✓ Every ticket holder will finally get the resource

➢ Lottery scheduling is probabilistically fair
✓ If a thread has a t tickets out of T
✓ Its probability of winning a lottery is p = t/T

Transfers of tickets

➢ Explicit transfers of tickets from one client to another

➢ They an be used whenever a client blocks due to some
dependency
✓ When a client waits for a reply from a server, it can temporarily

transfer its tickets to the server

➢ They eliminate priority inversions



LOTTERY SCHEDULING (Continued)

Ticket Inflation

➢ Lets users create new tickets
✓ Like printing their own money

➢ Normally disallowed except among mutually trusting clients
✓ Lets them adjust their priorities dynamically without explicit

communication

Ticket currencies

➢ Consider the case of a user managing multiple threads
✓ Want to let her favor some threads over others
✓ Without impacting the threads of other users

➢ Will let her create new tickets but will debase the individual
values of all the tickets she owns
✓ Her tickets will be expressed in a new currency that will have a

variable exchange rate with the base currency



LOTTERY SCHEDULING (Continued)

➢ Ann manages three threads

✓ A has 5 tickets

✓ B has 3 tickets

✓ C has 2 tickets

➢ Ann creates 5 extra tickets and assigns them to process C

✓ Ann now has 15 tickets

➢ These 15 tickets represent 15 units of a new currency whose
exchange rate with the base currency is 10/15

➢ The total value of Ann tickets expressed in the base currency is
still equal to 10



Cooperating Processes

➢ Processes executing concurrently in the operating system may be
either independent processes or cooperating processes.

➢ Independent process cannot affect or be affected by the
execution of another process

➢ Cooperating process can affect or be affected by the execution of
another process



Need for Cooperating Processes

➢ There are several reasons for providing an environment that
allows process cooperation:

✓ Information sharing. Since several users may be interested in the
same piece of information (for instance, a shared file), we must
provide an environment to allow concurrent access to such
information.

✓ Computation speedup. If we want a particular task to run faster, we
must break it into subtasks, each of which will be executing in
parallel with the others. Notice that such a speedup can be achieved
only if the computer has multiple processing elements (such as CPUs
or I/O channels).

✓ Modularity. We may want to construct the system in a modular
fashion, dividing the system functions into separate processes.

✓ Convenience. Even an individual user may work on many tasks at the
same time. For instance, a user may be editing, printing, and
compiling in parallel.



Models of IPC

➢ There are two fundamental models of inter-process 
communication:

✓ Shared Memory
✓ Message Passing

➢ In the shared-memory model, a region of memory that is shared
by cooperating processes is established. Processes can then
exchange information by reading and writing data to the shared
region.

➢ In the message passing model, communication takes place by
means of messages exchanged between the cooperating
processes.



Models of IPC (Continued)



Models of IPC (Continued)

➢ Explanation of the Diagram of Models of IPC
In the above diagram
✓ "(a)" represents message passing.
✓ "(b)" represents shared memory.

➢ Shared memory (b):
✓ Processes A and B each have their own private memory space.
✓ They communicate by reading and writing to a shared memory 

region, which is accessible to both processes.
✓ The kernel manages access to the shared memory region to ensure 

data consistency.

➢ Message passing (a):
✓ Processes A and B communicate by exchanging messages through 

the kernel.
✓ Each process sends messages to the kernel, specifying the receiver 

process and the data to be sent.
✓ The kernel is responsible for delivering the messages to the specified 

receiver process.



Models of IPC (Continued)

Both of the models just discussed are common in operating systems.

➢ Message passing is useful for exchanging smaller amounts of data.

➢ Shared memory allows maximum speed and convenience of
communication, as it can be done at memory speeds when within
a computer and requires no kernel intervention.



Shared Memory Systems

Producer-consumer problem

➢ To illustrate the concept of cooperating processes, let's consider
the Producer-consumer problem, which is a common paradigm
for cooperating processes.

➢ A producer process produces information that is consumed by a
consumer process. For example a web server produces (that is,
provides) HTML files and images, which are consumed (that is,
read) by the client web browser requesting the resource.

➢ One solution to the producer-consumer problem uses shared
memory. To allow producer and consumer processes to run
concurrently, we must have available a buffer of items that can be
filled by the producer and emptied by the consumer. This buffer
will reside in a region of memory that is shared by the producer
and consumer processes.



Producer-consumer problem (Continued)

Now we look at how the bounded buffer can be used to enable
processes to share memory. The following variables reside in a
region of memory shared by the producer and consumer processes:

#define BUFFER_SIZE 10
int buffer [BUFFER_SIZE] ;
int in = 0 ;
int out = 0 ;

The shared buffer is implemented as a circular array with two logical
pointers: in and out. The variable in points to the next free position
in the buffer; out points to the first full position in the buffer. The
buffer is empty when in == out; the buffer is full when
((in + 1) % BUFFER_SIZE) == out.



Producer-consumer problem (Continued)



Producer-consumer problem (Continued)

while (true) {

/* Produce an item */

while (((in + 1) % BUFFER_SIZE) == out)

; //no free buffers

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

while (true) {

while (in == out)

; //nothing to consume

//remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

Producer

Consumer



Producer-consumer problem (Continued)

➢ How many items can be stored in a buffer of size in previous
example?



Producer-consumer problem (Continued)

#define BUFFER_SIZE 10

int buffer [BUFFER_SIZE] ;

int in = 0 ,

int out = 0 ;

int count = 0;



Producer-consumer problem (Continued)

➢ How many items can be stored in a buffer of size in previous
example?

✓ Our solution allowed at most BUFFER.SIZE - 1 items in the buffer at
the same time (refer to old slides).

✓ To remedy this deficiency we can add an integer variable count,
initialized to 0.

✓ Count is incremented every time we add a new item to the buffer
and is decremented every time we remove one item from the
buffer.



Producer-consumer problem (Continued)

while (true) {

/* Produce an item */
while (count == BUFFER SIZE)

; //no free buffers

buffer[in] = item;
in = (in + 1) % BUFFER SIZE;
count = count+1;

}

while (true) {

while (count == 0)

; //nothing to consume

// remove an item from the buffer

item = buffer[out];
out = (out + 1) % BUFFER SIZE;
count = count-1;

return item;
}

Producer

Consumer



Message Passing Systems

➢ Message passing provides a mechanism to allow processes to
communicate without sharing the same address space and is
particularly useful in a distributed environment, where the
communicating processes may reside on different computers
connected by a network.

➢ For example, a chat program used on the World Wide Web could
be designed so that chat participants communicate with one
another by exchanging messages.

➢ A message-passing facility provides at least two operations:
send(message) and receive(message). If processes P and Q want
to communicate, they must send messages to and receive
messages from each other; a communication link must exist
between them.



Message Passing Systems (Continued)

➢ We look at issues related to the implementation of message
passing systems:

1. Naming:
➢ In message passing communication can be either direct or

indirect.

➢ In direct communication, each process must explicitly (clearly)
name the recipient or sender of the communication.

➢ send(P, message)—Send a message to process P.

➢ receive(Q, message)—Receive a message from process Q.

➢ The processes need to know only each other’s identity to
communicate.



Message Passing Systems (Continued)

➢ A link is associated with exactly two processes.

➢ This scheme exhibits symmetry in addressing; that is, both the
sender process and the receiver process must name the other to
communicate.

➢ A variant of this scheme employs asymmetry in addressing. Here,
only the sender names the recipient; the recipient is not required
to name the sender.

➢ send(P, message)—Send a message to process P.

➢ receive(id, message)—Receive a message from any process

➢ Both approaches have disadvantage that changing the identifier
of a process may necessitate updation of all references to the old
identifier.



Message Passing Systems (Continued)

➢ With indirect communication, the messages are not sent directly
from sender to receiver but to a shared data structure consisting
of queues (mailbox) that can temporarily hold.



Message Passing Systems (Continued)

➢ While communication, one process sends message to a mailbox
and other process receives it from mailbox.

➢ Each mailbox has a unique identification. For example pipes in
Linux

➢ send(A, message)—Send a message to mailbox A.

➢ receive(A, message)—Receive a message from mailbox A.



Message Passing Systems (Continued)

2. Synchronization:
➢ Message passing may be either blocking or non-blocking— also

known as synchronous and asynchronous.

➢ Blocking send: The sending process is blocked until the message
is received by the receiving process or by the mailbox.

➢ Non-blocking send: The sending process sends the message and
resumes operation.

➢ Blocking receive: The receiver blocks until a message is available.

➢ Non-blocking receive: The receiver retrieves either a valid
message or continue operation.



Message Passing Systems (Continued)

3. Buffering:
➢ Direct or indirect, messages exchanged by communicating

processes reside in a temporary queue which can be
implemented in three ways:

➢ Zero capacity: The queue has a maximum length of zero. In this
case, the sender must block until the recipient receives the
message.

➢ Bounded capacity: The queue has finite length n; thus, at most n
messages can reside in it. If the queue is not full when a new
message is sent, the message is placed in the queue and the sender
can continue execution without waiting, however. If the link is full,
the sender must block until space is available in the queue.

➢ Unbounded capacity: The queues length is potentially infinite; thus,
any number of messages can wait in it. The sender never blocks.


	Slide 1
	Slide 2: Fair-share scheduling
	Slide 3: Fair-share scheduling
	Slide 4: Fair-share scheduling
	Slide 5: Priority inversion
	Slide 6: Priority inversion (Continued)
	Slide 7: LOTTERY SCHEDULING
	Slide 8: LOTTERY SCHEDULING (Continued)
	Slide 9: LOTTERY SCHEDULING (Continued)
	Slide 10: LOTTERY SCHEDULING (Continued)
	Slide 11: LOTTERY SCHEDULING (Continued)
	Slide 12: Cooperating Processes
	Slide 13: Need for Cooperating Processes
	Slide 14: Models of IPC
	Slide 15: Models of IPC (Continued)
	Slide 16: Models of IPC (Continued)
	Slide 17: Models of IPC (Continued)
	Slide 18: Shared Memory Systems
	Slide 19: Producer-consumer problem (Continued)
	Slide 20: Producer-consumer problem (Continued)
	Slide 21: Producer-consumer problem (Continued)
	Slide 22: Producer-consumer problem (Continued)
	Slide 23: Producer-consumer problem (Continued)
	Slide 24: Producer-consumer problem (Continued)
	Slide 25: Producer-consumer problem (Continued)
	Slide 26: Message Passing Systems
	Slide 27: Message Passing Systems (Continued)
	Slide 28: Message Passing Systems (Continued)
	Slide 29: Message Passing Systems (Continued)
	Slide 30: Message Passing Systems (Continued)
	Slide 31: Message Passing Systems (Continued)
	Slide 32: Message Passing Systems (Continued)

