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Deadlocks 



The Deadlock Problem 

•  A set of blocked processes each holding a resource and waiting to 
acquire a resource held by another process in the set. 

•  Example  
–  Consider a system with three CD RVV drives.  
–  Suppose each of three processes holds one of these CD RW 

drives.  
–  If each process now requests another drive, the three 

processes will be in a deadlock state.  
–  Each is waiting for the event "CD RVV is released," which can 

be caused only by one of the other waiting processes. 



The Deadlock Problem 



Bridge Crossing Example 

•  Traffic only in one direction. 
•  The bridge can be viewed as a resource and the cars as 

processes. 
•  If a deadlock occurs, it can be resolved if one car backs up 

(preempt resources and rollback). 
•  Several cars may have to be backed up if a deadlock occurs. 
•  Starvation is possible. 



Why worry about deadlock? 

Not all systems need deadlock analysis 
 – Some are simple 
 – It may not matter (reboot may be an option) 

Some systems are critical 
 – The control system in your car; on a plane; highenergy physics 
 – Life-support systems (during surgery, say) 
 – Online services, where deadlock is expensive 

Each of these systems is managed by an OS 



Necessary conditions for deadlock 

A deadlock situation can arise if the following four conditions hold 
simultaneously in a system: 

1. Mutual exclusion. At least one resource must be held in a non-
sharable mode; that is, only one process at a time can use the 
resource. If another process requests that resource, the 
requesting process must be delayed until the resource has been 
released. 

2. Hold and wait. A process must be holding at least one resource 
and waiting to acquire additional resources that are currently 
being held by other processes. 

3. No preemption. Resources cannot be preempted.; that is, a 
resource can be released only voluntarily by the process holding 
it, after that process has completed its task. 



Necessary conditions for deadlock(cntd) 

4. Circular wait. A set {Pi, ..., Pn} of waiting processes must exist 
such that P0 is waiting for a resource held by P1, P1 is waiting for 
a resource held by P2, ..., Pn-1 is waiting for a resource held by Pn, 
and Pn is waiting for a resource held by P0. 

We emphasize that all four conditions must hold for a deadlock to 
occur. The circular-wait condition implies the hold-and-wait 

condition, so the four conditions are not completely independent. 
However, that it is useful to consider each condition separately. 



Resource-Allocation Graph 

In some cases deadlocks can be understood more clearly through 
the use of Resource-Allocation Graphs, having the following 
properties: 

•  A set of resource categories, { R1, R2, R3, . . ., RN}, which appear 
as square nodes on the graph. Dots inside the resource nodes 
indicate specific instances of the resource. ( E.g. two dots might 
represent two laser printers. ) 

•  A set of processes, { P1, P2, P3, . . ., PN } 

•  Request Edges - A set of directed arcs from Pi to Rj, indicating 
that process Pi has requested Rj, and is currently waiting for that 
resource to become available. 

•  Assignment Edges - A set of directed arcs from Rj to Pi 
indicating that resource Rj has been allocated to process Pi, and 
that Pi is currently holding resource Rj. 



Resource-Allocation Graph(cntd) 

•  Note that a request edge can be converted into an assignment 
edge by reversing the direction of the arc when the request is 
granted. ( However note also that request edges point to the 
category box, whereas assignment edges originates from a 
particular instance dot within the box.) 

•  The resource-allocation graph shown  
depicts the following situation. 
•  The sets P, R, and E: 
P={P1,P2,P3} 
R= {R1,R2,R3,R4} 
E={p1->R1,P2->R3,R1->P2,R2->P1,R2->P2,R3->P3} 

Resource instances: 
•  One instance of resource type R1 

•  Two instances of resource type R2 

•  One instance of resource type R3 

•  Three instances of resource type R4 



Resource-Allocation Graph(cntd) 

•  If a resource-allocation graph contains no cycles, then the system 
is not deadlocked. ( When looking for cycles, remember that 
these are directed graphs. ) 

•  If a resource-allocation graph does contain cycles AND each 
resource category contains only a single instance, then a 
deadlock exists. 

•  If a resource category contains more than one instance, then the 
presence of a cycle in the resource-allocation graph indicates the 
possibility of a deadlock, but does not guarantee one.  



Resource-Allocation Graph(cntd) 

•  Lets consider the resource-allocation graph given on previous 
slide. Suppose that process P3 requests an instance of resource 
type R2. Since no resource instance is currently available, a 
request edge P3 —>R2 is added to the graph.  

•  At this point, two minimal cycles exist in  
the system: 
•  P1->R1->P2->R3->P3->R2->P1 

•  P2->R3->P3->R2->P2 

•  Processes P1, P2, and P3 are 
deadlocked. Process P2 is waiting for 
the resource R3, which is held by 
process P3. Process P3 is waiting for 
either process P1 or process P2 to 
release resource R2. In addition, 
process P1 is waiting for process P2 to 
release resource R1. 



Resource-Allocation Graph(cntd) 

•  Now consider the resource-allocation  
graph shown. In this example, we also  
have a cycle. 

•  P1->R1->P3->R2->P1 

•  However, there is no deadlock.  
Observe that process P4 may release its 
instance of resource type R?. That  
resource can then be allocated to P3, 
 breaking the cycle. 



Banker’s Algorithm 

•  Banker's algorithm is a resource allocation and deadlock 
avoidance algorithm developed for the safe allocation of 
predetermined maximum possible amounts of all resources. 

•  The Banker's algorithm is run by the operating system whenever 
a process requests resources. 

•  The algorithm avoids deadlock by denying or postponing the 
request if it determines that accepting the request could put the 
system in an unsafe state (one where deadlock could occur).  



Banker’s Algorithm (Working) 

  For the Banker's algorithm to work, it needs to know three 
things: 

1.  How much of each resource each process could possibly request 
[Max] 

2.  How much of each resource each process is currently holding 
[ALLOCATED] 

3.  How much of each resource the system currently has available 
[AVAILABLE] 

 Resources may be allocated to a process only if it satisfies the 
following conditions: 

      request ≤ max, else set error condition as process has crossed 
maximum claim made by it. 

      request ≤ available, else process waits until resources are 
available. 



Safe and Unsafe States 

•  A state is considered safe if it is possible for all processes to finish 
executing. 

•  Since the system cannot know when a process will terminate, or 
how many resources it will have requested by then, the system 
assumes that all processes will eventually attempt to acquire 
their stated maximum resources and terminate soon afterward. 

•  The algorithm determines if a state is safe by trying to find a 
hypothetical set of requests by the processes that would allow 
each to acquire its maximum resources and then terminate 
(returning its resources to the system). Any state where no such 
set exists is an unsafe state. 



Data Structures for the Banker’s Algorithm  

Let n = number of processes, m = number of resources 
types.  

 Available:  Vector of length m. If available [j] = k, there are k 
instances of resource type Rj available. 

 Max: n x m matrix.  If Max [i,j] = k, then process Pi may request 
at most k instances of resource type Rj. 

 Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj. 

 Need:  n x m matrix. If Need[i,j] = k, then Pi may need k more 
instances of Rj to complete its task. 

Need [i,j] = Max[i,j] – Allocation [i,j]. 



Safety Algorithm 

1. Let Work and Finish be vectors of length m and n, respectively.  
Initialize: 

Work = Available 
Finish [i] = false for i - 1,3, …, n. 

2. Find an i such that both:  
(a) Finish [i] = false 
(b) Needi ≤ Work 
If no such i exists, go to step 4. 

3. Work = Work + Allocationi 
Finish[i] = true 
go to step 2. 

4. If Finish [i] == true for all i, then the system is in a safe state. 



Example of Banker’s Algorithm 

•  5 processes P0 through P4; 3 resource types A  
(10 instances), B (5 instances, and C (7 instances). 

•  Snapshot at time T0: 
   Allocation   Max  Available 
   A B C A B C  A B C 
  P0 0 1 0 7 5 3  3 3 2 
   P1 2 0 0  3 2 2   
   P2 3 0 2  9 0 2 
   P3 2 1 1  2 2 2 
   P4 0 0 2 4 3 3     



Example of Banker’s Algorithm 

•  The content of the matrix. Need is defined to be Max – Allocation. 
   Need 
   A B C 
   P0 7 4 3  
   P1 1 2 2  
   P2 6 0 0  
   P3 0 1 1 
   P4 4 3 1  

•  The system is in a safe state since the sequence < P1, P3, P4, P2, 
P0> satisfies safety criteria.HOW?  



For P1 
•  Available resources – P1(Need) 
•  <3,3,2> - <1,2,2> = <2,1,0> 

•  So P1’s request is satisfied and after using the resources it 
returns the resources to system. 

•  Available = <2,1,0> + P1(Max) = <2,1,0> + <3,2,2> = 
<5,3,2> 

For P3 
•  Available resources – P3(Need) 
•  <5,3,2> - <0,1,1> = <5,2,1> 

•  So P3’s request is satisfied and after using the resources it 
returns the resources to system. 

•  Available = <5,2,1> + P3(Max) = <5,2,1> + <2,2,2> = 
<7,4,3> 



For P4 
•  Available resources – P4(Need) 
•  <7,4,3> - <4,3,1> = <3,1,2> 

•  So P4’s request is satisfied and after using the resources it 
returns the resources to system. 

•  Available = <3,1,2> + P4(Max) = <3,1,2> + <4,3,3> = 
<7,4,5> 

For P2 
•  Available resources – P2(Need) 
•  <7,4,5> - <6,0,0> = <1,4,5> 

•  So P2’s request is satisfied and after using the resources it 
returns the resources to system. 

•  Available = <1,4,5> + P2(Max) = <1,4,5> + <9,0,2> = 
<10,4,7> 



For P0 
•  Available resources – P0(Need) 
•  <10,4,7> - <7,4,3> = <3,0,4> 

•  So P0’s request is satisfied and after using the resources it 
returns the resources to system. 

•  Available = <3,0,4> + P0(Max) = <3,0,4> + <7,5,3> = 
<10,5,7> 



Example of Banker’s Algorithm (cntd) 

•  Suppose now that process P1 requests one additional instance of 
resource type A and two instances of resource type C, so Request 
= (1,0,2).  

•  First we check that Request < Available i-e <1,0,2> < <3,3,2>, 
which is true.  

•  We then pretend that this request has been fulfilled, and we 
arrive at the following new state: 

   Allocation Need Available 
   A B C A B C A B C  
  P0 0 1 0  7 4 3  2 3 0 
  P1 3 0 2 0 2 0   
  P2 3 0 1  6 0 0  
  P3 2 1 1  0 1 1 
  P4 0 0 2  4 3 1  



Example of Banker’s Algorithm (cntd) 

•  We must determine whether this new system state is safe. 

•  To do so, we execute our safety algorithm and find that the 
sequence <P1, P3, P4, P0, P2> satisfies the safety requirement. 
Hence, we can immediately grant the request of process P1. 

•  However when the system is in this state, a request for (3,3,0) 
by P4 cannot be granted, since the resources are not available. 

•  Furthermore, a request for (0,2,0) by P0 cannot be granted, even 
though the resources are available, since the resulting state is 
unsafe. 



The Dining-Philosophers problem 

•  Multiple resources (Dijkstra 1968) 

•  “Five philosophers sit around a table, which is set with 5 plates 
(one for each philosopher), 5 chopsticks, and a bowl of rice. Each 
philosopher alternately thinks and eats. To eat, he needs the two 
chopsticks next to his plate. When finished eating, he puts the 
chopsticks back on the table, and continues thinking.” 

•  Philosophers are processes, and chopsticks are resources. 



The Dining-Philosophers problem 



Problems with dining philosophers 

•  The system may deadlock: if all 5 philosophers take up their left 
chopstick simultaneously, the system will halt (unless one of 
them puts one back) 

•  A philosopher may starve if her neighbors have alternating eating 
patterns 



Simple Solution to Dining philosopher’s Problem 

•  Simple solution to the dining philosopher problem is to restrict 
the number of philosophers allowed access to the table.  

•  If there are N chopsticks but only N-1 philosophers allowed to 
compete for them, at least one will succeed, even if they follow a 
rigid sequential protocol to acquire their chopsticks. 

•  This solution is implemented with an integer semaphore, 
initialized to N-1. This solution avoid deadlock a situation in which 
all of the philosophers have grabbed one chopstick and are 
deterministically waiting for the other, so that there is no hope of 
recovery.  

•  However, they may still permit starvation, a scenario in which at 
least one hungry philosopher never gets to eat. 



Simple Solution to Dining philosopher’s Problem 

•  Starvation occurs if the solution allow an individual to eat 
repeatedly, thus keeping another from getting a chopstick.  

•  The starving philosopher runs, perhaps, but doesn't make 
progress. Under some notions of fairness the solutions given 
above can be said to be correct.  



Arbitrator solution using semaphore 

•  Another approach is to guarantee that a philosopher can only pick 
up both forks or none by introducing an arbitrator, e.g., a waiter.  

•  In order to pick up the forks, a philosopher must ask permission 
of the waiter.  

•  The waiter gives permission to only one philosopher at a time 
until he has picked up both his forks. Putting down a fork is 
always allowed. The waiter can be implemented as a mutex.  

•  In addition to introducing a new central entity (the waiter), this 
approach can result in reduced parallelism: if a philosopher is 
eating and one of his neighbors is requesting the forks, all other 
philosophers must wait until this request has been fulfilled even if 
forks for them are still available. 



Arbitrator solution using semaphore(cntd) 

•  Another approach is to guarantee that a philosopher can only pick 
up both forks or none by introducing an arbitrator, e.g., a waiter.  

•  In order to pick up the forks, a philosopher must ask permission 
of the waiter.  

•  The waiter gives permission to only one philosopher at a time 
until he has picked up both his forks. Putting down a fork is 
always allowed. The waiter can be implemented as a mutex.  

•  In addition to introducing a new central entity (the waiter), this 
approach can result in reduced parallelism: if a philosopher is 
eating and one of his neighbors is requesting the forks, all other 
philosophers must wait until this request has been fulfilled even if 
forks for them are still available. 



Resource Hierarchy solution 

•  Let’s number the forks: 

•  Now(the(rule(is,(if(you’re(using(two(forks,(you(need(to(pick(up(the(lower(numbered(
fork(first.(



Resource Hierarchy solution 



Resource Hierarchy solution 

•   Philosopher#1 picks up fork #1 
•   Philosopher#2 picks up fork #2 
•   Philosopher#3 picks up fork #3 
•   Philosopher#4 picks up fork #4 
•   Philosopher#5 can’t pick up fork #5! Because he will need two 

forks and he needs to pick up the lower numbered fork first! 

•  So fork #5 goes to Philosopher#4 – no deadlock! 



Resource Hierarchy solution 

•  Resource hierarchy avoids deadlocks! But it is slow. Suppose you 
have forks #3 and #5. Then you decide you need fork #2. Well 
forks #3 and #5 are larger numbers. So you’ll have to: 

•      put down fork #5 
•      put down fork #3 (the order you put these down in doesn’t 

matter) 
•      pick up fork #2 
•      pick up fork #3 

•  Wastes a lot of time! 
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