
Solved Short questions Past Paper 2022

Q1: MVC Stand for?

Ans: MVC stands for Model-View-Controller. It's a software design pattern frequently
used to develop user interfaces (UIs). The core idea is to separate the application into
three parts:

Model: This represents the data and business logic of the application. It handles things
like data storage, retrieval, and any calculations needed.

View: This is the user interface itself. It's what the user sees and interacts with. It
displays information from the model and doesn't contain any application logic.

Controller: This acts as an intermediary between the model and the view. It receives
user input from the view, updates the model as needed, and instructs the view how to
update itself based on the changes in the model.

MVC is popular because it promotes separation of concerns, which makes code easier
to understand, maintain, and test. Each component has a specific responsibility,
making it easier for developers to work on individual parts without worrying about the
whole system breaking.

MVC is commonly used in web development, but it can also be applied to desktop
applications. There are also various web frameworks that enforce the MVC pattern,
providing a structured way to build web applications.

Q2: How to comment in HTML?

Ans: Adding comments in HTML is useful for explaining your code, making it easier to
understand later on, especially for complex websites or when working with other developers.
Here's how to do it:

HTML Comments Syntax

HTML uses special comment tags to hide sections of code from the browser. Browsers ignore
anything placed between these tags when rendering the webpage.

The syntax for creating comments in HTML is:

HTML

<! -- your comment here -->

Q3: Differentiate between Internal and Inline CSS?

Q4: Differentiate between Internal and External CSS?

Ans:

Q5: Differentiate between stateless and stateful protocol?

Ans: Stateless protocols treat each request from a client as an independent event, with no
memory of previous interactions. Every request contains all the information the server needs to
respond. This makes them:

• Simpler and faster: Stateless servers are easier to design and scale as they don't need
to manage session data.

• Less reliable: Since there's no memory of past requests, error handling and ensuring
data arrives in order can be more complex.

Stateful protocols, on the other hand, maintain a session between the client and server. The
server remembers past interactions and uses that context to process new requests. This allows
for:

• More complex interactions: Stateful protocols are suited for scenarios like file
transfers or video calls where keeping track of progress is essential.

• Improved reliability: Stateful protocols can check for errors and retransmit lost data
packets.

Some common examples:

Stateless protocols: HTTP (used for web browsing), DNS (used for domain name resolution),
UDP (used for real-time data transfer)

Stateful protocols: TCP (used for reliable data transfer), FTP (used for file transfer), Telnet
(used for remote terminal access).

Q6: Difference between Http and https protocol?

Ans: HTTP and HTTPS are both protocols that enable communication between web browsers
and servers. The main difference lies in security:

HTTP (Hypertext Transfer Protocol): This is the foundation of web communication. It
establishes the rules for how data is transmitted between browsers and servers. However,
HTTP doesn't encrypt the data being transferred. This means information you send or receive,
like passwords or credit card details, can be intercepted by someone lurking on the network.
It's like sending a postcard - anyone can read it.

HTTPS (Hypertext Transfer Protocol Secure): This is the secure version of HTTP. HTTPS uses
encryption technology (TLS/SSL) to scramble the data being sent between the browser and
server. This encryption makes it very difficult for anyone to intercept and decode the
information, protecting your privacy. Think of it as sending a sealed letter - only the intended
recipient can open it.

Q7: What is Dynamic we and how it differs from static web?

Ans: Static Website

• Think of a static website like a brochure. The content is pre-written and doesn't change
unless someone edits the code.

• Every visitor sees the same information, regardless of location or previous interactions
with the site.

• Static websites are typically built with HTML, CSS, and Javascript.
• They are faster to load since the content is already prepared.
• Updating a static website requires modifying the code for each page you want to

change. This can be cumbersome for large websites.
• Examples of static websites include personal portfolios, simple business websites, or

informational pages.

Dynamic Website

• Dynamic websites are more like interactive applications. They can tailor content to the
user or update based on information from a database.

• This allows for features like personalized logins, shopping carts, or news feeds that
update with new content.

• Dynamic websites often use server-side scripting languages like PHP, Python, or
ASP.NET to process information and generate custom content.

• They can be slower to load because the content is assembled on the fly.
• Dynamic websites are easier to update since changes can be made in one central

location (like a database) and reflected across the entire website.
• E-commerce stores, social media platforms, and online banking applications are all

examples of dynamic websites.

Q8: What is Difference between 3 layers and 3 tier architecture?

Ans:: The terms "3 layers" and "3-tier architecture" are related, but there's a subtle distinction
between them:

Layers:

• Represent a functional division of software.
• Focuses on how the application is logically organized.
• A single program can have multiple layers.
• Layers typically communicate with each other directly.

3-Tier Architecture:

• A specific type of software design based on layers.
• Separates the application into three physical tiers that can run on separate machines.
• Offers advantages like scalability, security, and easier maintenance.
• Communication between tiers often happens through well-defined interfaces.

Q9: Which protocol(s) used to access the web?

Ans: The primary protocol used to access the web is Hypertext Transfer Protocol (HTTP). HTTP
defines the rules for how data is formatted and transmitted between web browsers and web
servers. When you enter a website address into your browser, your browser sends an HTTP
request to the web server for that address. The server then sends an HTTP response back to
your browser, which includes the content of the web page.

In addition to HTTP, other protocols are also involved in web browsing, such as:

• Transmission Control Protocol (TCP): TCP ensures reliable data transmission by
breaking down data into packets, guaranteeing their order of arrival, and checking for
errors.

• Internet Protocol (IP): IP assigns unique addresses (IP addresses) to devices
connected to the internet, allowing them to be identified and located for
communication.

Q10: Differentiate between Get and Post Method?

Ans: GET and POST are both fundamental methods used in HTTP requests, the language web
browsers and servers use to communicate. They seem similar at first glance, but they have
distinct purposes:

GET vs. POST: Key Differences

Function:

• GET: Used to **retrieve data** from a server. Think of it as asking the server a question.
• POST: Used to **send data** to the server, typically to create or update something.

Imagine giving instructions or new information to the server.

Data Placement:

• GET: Data is appended to the URL in the form of query parameters. You've likely seen
this when searching the web; the search terms are added to the URL after a question
mark.

• POST: Data is sent in the request body, hidden from the URL. This is often used for form
submissions where you fill out data in a web form.

Security:

• GET: Less secure because the data is visible in the URL, which can be stored in browser
history or bookmarks. Avoid using GET for sensitive information.

• POST: More secure because the data is not exposed in the URL.

Caching and Bookmarks:

• GET: Requests can be cached by the browser and saved as bookmarks since they are
retrieving public information.

• POST: Requests are typically not cached and cannot be bookmarked as they are
modifying data.

Data Size:

• GET: Limited data size due to URL length restrictions.
• POST: Can handle larger amounts of data as it's not restricted by URL length.

Here's an analogy: Think of GET like a librarian looking up a book in the catalog (retrieving
data), while POST is like giving the librarian a new book to add to the collection (sending data).

Q11: What is default action parameter of form?

Ans: HTML forms themselves don't actually have a default action parameter. The attribute that
controls where the form data gets submitted is called action.

This action attribute specifies the URL of the page that will process the form data when the user
submits the form. By default, if you don't set this attribute, the form will submit the data to the
same page it's located on.

Q12: Why we use XSLT?

Ans: There are a couple of key reasons why XSLT (eXtensible Stylesheet Language
Transformations) is still used today for working with XML data:

Transforming XML into different formats: XSLT excels at taking structured data in XML format
and converting it into a human-readable format like HTML for web pages, but it can also output
PDF, plain text, or even create presentations. This is useful because XML itself isn't designed to
be easily displayed.

Separation of concerns: XSLT allows you to separate the data (stored in XML) from the
presentation (created by XSLT). This makes it easier to maintain and update your data and
presentation layers independently. For instance, you can change the way your data is displayed
on a webpage without affecting the underlying XML data.

Here are some additional benefits of using XSLT:

Reusable stylesheets: XSLT stylesheets can be reused for multiple XML documents that share
a similar structure. This saves time and effort compared to writing custom code for each
document.

Data manipulation: XSLT provides functions for sorting, filtering, and performing other
manipulations on XML data before it's transformed into the desired output format. This can be
useful for presenting the data in a specific way.

Q13: Write down some of the advantages and disadvantages of
cookies?

Ans: Cookies, the little bits of data that websites store on your browser, can be both helpful and
creepy. Here's a quick rundown of the pros and cons:

Advantages:

Convenience: Cookies can remember things about you, like login information or what you
added to your shopping cart. This saves you time from having to re-enter that info all the time.

Personalization: Cookies can track your browsing habits and interests, which allows websites
to show you content and ads that are more relevant to you.

Improved browsing experience: Cookies can help websites remember your preferences, such
as your preferred language or location. This can make browsing the web a more enjoyable
experience.

Disadvantages:

Privacy concerns: Cookies can be used to track your online activity across different websites.
This can make some people feel uncomfortable, like they're being constantly watched.

Security risks: In some cases, cookies can be stolen or used by malicious actors to gain
access to your personal information.

Targeted advertising: While relevant ads can be nice, seeing the same ad follow you around
the web can get annoying.

Q14: What is the use of AJAX?

Ans: AJAX stands for Asynchronous JavaScript and XML. It's a set of techniques used to create
more responsive web applications. The key idea is that AJAX allows web pages to update their
content without having to reload the entire page. This makes websites feel faster and more
interactive for users.

Here are some of the common uses of AJAX:

Updating content without reloading: Imagine you're filling out a form on a website. With AJAX,
you can submit the form and have the results displayed on the same page, without having to
wait for a new page to load. This is a much smoother experience for the user.

Live chats and messaging: AJAX is often used to power live chat features on websites. This
allows users to chat with each other in real time, without having to refresh the page to see new
messages.

Social media feeds: Many social media websites use AJAX to update your feed in real time. As
new posts are added, they can be added to your feed without you having to refresh the page.

Infinite scrolling: Some websites use AJAX to implement infinite scrolling. This means that as
you scroll down the page, new content is automatically loaded without you having to click on a
"Next" button.

Q15: Explain the web- architecture?

Ans: Web architecture is essentially the blueprint for how websites and web applications
function. It defines how various components work together to deliver what you see on your
screen when you visit a website. Here's a breakdown of the key aspects:

Components:

Client: This is the user's side, typically a web browser like Chrome or Firefox. It sends requests
to the server and displays the information it receives.

Server: This is the computer or network of computers that stores the website's data and runs
its applications. It processes the client's requests and sends back responses.

Network: This is the infrastructure that connects the client and server, like the internet. It
allows data to flow between them.

Database: This is where the website's information is stored, like product details for an e-
commerce site or articles for a news website.

Communication:

• When you interact with a website, your browser (client) sends a request to the server
using a protocol called HTTP (Hypertext Transfer Protocol).

• The server processes the request, retrieves relevant data from the database (if needed),
and generates a response.

• This response is sent back to your browser using HTTP, often in the form of HTML
(Hypertext Markup Language) that defines the structure of the webpage.

• Your browser interprets the HTML and other elements like CSS (Cascading Style Sheets,
for styling) and JavaScript (for interactivity) to render the webpage you see.

Types of Web Architecture:

There are different architectures depending on the website's complexity. Here are two common
ones:

Client-Server Model: This is the most basic architecture where the client requests data and
the server deliver it.

Multi-Tier Model: This is a more complex architecture where the application is divided into tiers
(presentation, business logic, data) for better organization and scalability.

Other Topics
Q: Differentiate between Static and Dynamic Website?

Static Websites

• Content: Fixed and unchanging for every visitor. Think of it like a printed brochure.
• Updates: Updating content requires modifying the underlying code for each webpage,

which can be time-consuming for large websites.
• Technology: Relies on HTML, CSS, and JavaScript for basic interactivity.

Advantages:

• Faster loading times due to simpler code.
• Easier and cheaper to create and maintain for small websites.
• More secure as there are no complex server-side processes.

Disadvantages:

• Not ideal for frequently updated content.
• Limited interactivity compared to dynamic websites.
• Examples: Simple business websites, online portfolios, brochure websites.

Dynamic Websites

• Content: Can change based on user input, time of day, or other factors.
• Updates: Easier to update content as changes can be made in one central location (like

a database) and reflected across the entire website.
• Technology: Relies on server-side scripting languages like PHP, Python, or ASP.NET to

generate content on the fly. Often uses databases to store content.

Advantages:

• Ideal for websites with frequently changing content or user interaction.
• Enables features like user logins, shopping carts, and personalized content.

Disadvantages:

• Slower loading times compared to static websites due to server-side processing.
• More complex and expensive to create and maintain.
• Requires additional security measures to protect databases and user information.
• Examples: E-commerce websites, social media platforms, news websites, online

banking applications.

Q: Differentiate between servlet and java server pages?

Ans: Purpose:

• Servlets: Pure Java programs that extend the capabilities of web servers. They handle
requests, perform business logic, and generate dynamic content. Think of them as the
workhorses behind the scenes.

• JSP (Java Server Pages): A combination of HTML and Java code. They are easier to read
and write compared to pure servlets as they allow you to embed Java code within HTML.
JSP pages are primarily for presentation logic, meaning they focus on how data is
displayed.

Development Complexity:

• Servlets: Require more coding expertise as they involve writing pure Java code.
• JSP: Generally considered easier to develop due to the mix of HTML and Java snippets.

This makes them a good choice for layouts and user interfaces.

Performance:

• Servlets: Execute faster because there's no compilation step involved.
• JSP: Slower than servlets because the JSP engine needs to translate the JSP page with

embedded Java code into a servlet class before it can be executed.

Q: What is purpose of XSLT?

Ans: XSLT stands for Extensible Stylesheet Language Transformations. It's a language designed
to transform XML documents into other formats, including:

Different XML formats

• Human-readable formats like HTML webpages or plain text
• Other document formats like PDF or XSL Formatting Objects (which can be further

converted to formats like PDF)

Q: What is meant by a mark-up language?

Ans: A markup language is a system that uses instructions hidden within a text document to
define how that text should be formatted and displayed. These instructions are called "tags"
and they are not shown in the final version of the document.

Think of it like adding annotations to a recipe. The recipe itself is the content, but you might add
tags (like italics or bold) to highlight important instructions or ingredients. In the same way,
markup languages use tags to tell a computer program how to display the content, such as
headings, paragraphs, or images.

Here are some key points about markup languages:

Structure and Formatting: They are used to define the structure and formatting of a document,
such as headings, paragraphs, lists, and images.

Tags: They use special symbols or tags inserted in the document to achieve this. These tags are
instructions for the computer program, not part of the content you see yourself.

Human and Computer Readable: They are designed to be readable by both humans and
computer programs. The content itself is normal text, and the tags are easy to understand for
humans.

Examples: Some of the most common markup languages include HTML (used for web pages),
XML (used for data exchange), and LaTeX (used for technical documents).

Q: What are the differences between sessions and cookies?

Ans: Sessions and cookies are both parts of the machinery that keeps websites working
smoothly behind the scenes, but they differ in where they store information and how long they
last.

Location:

• Cookies: These are tiny text files stored on the user's device, like their computer or
phone. Whenever you visit a website that uses cookies, information gets added to your
cookie stash.

• Sessions: On the other hand, sessions live on the server side. The server is basically the
computer running the website. Think of it as the website's brain. Sessions store
information there temporarily.

Lifespan:

• Cookies: These can last for a short time, like just during your current visit to a website,
or for a much longer period. It depends on how the website is set up.

• Sessions: Sessions generally disappear once you close your browser window. That's
because the server forgets about the session that was associated with you.

Data Storage:

• Cookies: Cookies can only hold a small amount of data, usually up to 4 kilobytes (KB).
They're good for things like remembering your login information or what you added to
your shopping cart.

• Sessions: Sessions can hold a lot more data compared to cookies. This lets them store
more complex information about your activity on a website.

Q: What are the differences between a servlet and JSP?

Ans:

Q: What do you mean by request dispatcher and send redirection?

Ans: Request Dispatcher (forward):

• Server-side: Works entirely on the server. The web container manages the flow without
involving the user's browser.

• Single request: The original user request is forwarded to another resource (like a servlet
or JSP) within the same server for further processing.

• Transparent: The user's browser address bar remains unchanged, making the
redirection invisible.

• Faster: Since it's handled internally, it's generally faster than redirection.
• Request object preserved: The original request object is available to the forwarded

resource.

Send Redirection:

• Client-side: Involves the user's browser. The server sends a response with a status
code (like 302 Found) instructing the browser to make a new request to a different URL.

• Two requests: A new request is initiated by the browser to the redirected URL.
• Visible: The user's browser address bar updates to show the new URL.
• Slower: Requires an extra round trip between the browser and server, making it slower.
• Request object lost: The original request object isn't accessible on the redirected

resource.

Q: Difference between WWW and Internet?

Ans:

Q: Write down a life cycle of a JSP Page?

ANS: The life cycle of a JSP page governs its entire process, from its creation to when it's no
longer needed. It closely resembles the life cycle of a servlet, with an extra step for translation.
Here's a breakdown of the key stages:

• Translation: When a JSP page is first requested, the web container's JSP translator
kicks in. This translator transforms the JSP page's code, including HTML tags and JSP
elements, into a servlet class.

• Compilation: Following translation, the web container compiles the generated servlet
class into a bytecode file (class file). This bytecode can be directly executed by the Java
Virtual Machine (JVM).

• Class loading: The class file is then loaded by the web container's class loader. This
makes the compiled servlet class accessible for further processing.

• Instantiation: An instance of the servlet class is created. This creates an object
representation of the JSP page in memory.

• Initialization (jspInit()): The container invokes the jspInit() method of the servlet class.
This method is used for initialization tasks specific to the JSP page, like establishing
database connections or loading resources.

• Request Processing (_jspService()): This is the heart of the JSP page's functionality.
The container calls the _jspService() method to handle incoming client requests. Here,
the JSP page interacts with various resources like databases, session objects, and
request parameters to generate dynamic content.

Q: What are the components of Java Beans?

Ans: JavaBeans are reusable components in Java that follow specific design conventions. These
conventions allow for easy integration with development tools and frameworks. Here are the
key components of a JavaBean:

• Properties: These represent the data or state of the bean. Properties have getter and
setter methods, also known as accessor and mutator methods, to control access and
modification of the data.

• Methods: Similar to regular Java methods, these define the functionalities of the bean.
Unlike properties, methods don't have a specific naming convention.

• Events: This mechanism allows beans to communicate with other objects by notifying
them of specific occurrences. JavaBeans components can utilize event handling similar
to Swing in Java.

• Persistence: This optional feature enables JavaBeans to store their state for later
retrieval. This is useful for maintaining data across program sessions.

1

