

Table of Contents

Title Page
Copyright Page
Dedication
About the Authors
Preface to the Second Edition
Acknowledgements
CHAPTER 1 - Introduction

1.1 History and Pre-History of the Web
1.2 From Web Pages to Web Sites
1.3 From Web Sites to Web Applications
1.4 Web 2.0: On-line Communities and Collaboration
1.5 The Brave New World of AJAX
1.6 Focus of This Book
1.7 What Is Covered in This Book
1.8 Bibliography

CHAPTER 2 - Core Internet Protocols

2.1 Historical Perspective
2.2 TCP/IP Architecture
2.3 TCP/IP Application Services
2.4 And Then Came the Web ...
2.5 Bibliography

CHAPTER 3 - Birth of the Web: HTTP

3.1 Historical Perspective
3.2 Uniform Resource Locator
3.3 Fundamentals of HTTP
3.4 Better Information Through Headers
3.5 Evolution of the HTTP Protocol
3.6 Summary
3.7 Bibliography

CHAPTER 4 - HTML and Its Roots

2

4.1 Standard Generalized Markup Language
4.2 HTML
4.3 HTML Rendering
4.4 Summary
4.5 Bibliography

CHAPTER 5 - XML Languages and Applications

5.1 Core XML
5.2 XHTML
5.3 Web Services
5.4 XSL
5.5 Summary
5.6 Bibliography
5.7 Web Links
5.8 Endnotes

CHAPTER 6 - Web Servers

6.1 Basic Operation
6.2 Mechanisms for Dynamic Content Delivery
6.3 Advanced Functionality
6.4 Server Configuration
6.5 Server Security
6.6 Summary
6.7 Bibliography

CHAPTER 7 - Web Browsers

7.1 Overview of Browser Functionality
7.2 Architectural Considerations
7.3 Overview of Processing Flow in a Browser
7.4 Processing HTTP Requests
7.5 Processing HTTP Responses
7.6 Cookie Coordination
7.7 Privacy and P3P
7.8 Complex HTTP Interactions
7.9 Summary
7.10 Bibliography

3

7.11 Web Links
7.12 Endnotes

CHAPTER 8 - Active Browser Pages: From JavaScript to AJAX

8.1 Pre-History
8.2 JavaScript
8.3 Cascading Style Sheets
8.4 DHTML
8.5 AJAX
8.6 Case Study: 5-Star Rating
8.7 Summary
8.8 Bibliography
8.9 Web Links
8.10 Endnotes

CHAPTER 9 - Approaches to Web Application Development

9.1 Taxonomy of Web Application Approaches and Frameworks
9.2 Comparative Survey of Web Application Approaches and Frameworks
9.3 Summary
9.4 Bibliography

CHAPTER 10 - Web Application Primer 1: Struts and JSTL

10.1 Case Study: Virtual Realty Listing Services
10.2 Application Requirements
10.3 Technology Choices
10.4 Overview of Struts
10.5 Structure of the VRLS Application
10.6 Design Decisions
10.7 Suggested Enhancements
10.8 Summary
10.9 Bibliography

CHAPTER 11 - Web Application Primer 2: Ruby on Rails

11.1 Comparing Rails with Java EE
11.2 Application Requirements
11.3 Building the Administrative Interface as a Rails Application

4

11.4 Benefits and Drawbacks of Using Rails
11.5 Whither Enterprise Java?
11.6 Summary
11.7 Bibliography
11.8 Web Links
11.9 Endnotes

CHAPTER 12 - Search Technologies

12.1 Overview of Algorithms
12.2 Searching the Web
12.3 Site Search Applications
12.4 Search Engine Optimization
12.5 Summary
12.6 Bibliography
12.7 Web Links
12.8 Endnotes

CHAPTER 13 - Trends and Directions

13.1 XML Query Language
13.2 Semantic Web
13.3 Future of Web Application Frameworks
13.4 Current Trends
13.5 Summary
13.6 Bibliography
13.7 Web Links
13.8 Endnotes

CHAPTER 14 - Conclusions

Index

5

This book delivers a thorough and rigorous introduction to fundamental architectural elements of the web;
this knowledge is a critical foundation for any development engineer working on our advanced web
applications. Just as important, this book provides a challenging, non-trivial example application
demonstrating current best practices which the reader can work through to connect theory to practice. For our
engineers coming from other backgrounds to advanced web development, this book has been a very efficient,
effective learning tool and I would recommend it highly to others who desire a deep understanding of web
architecture and applications.

Chris Corti, Ph.D.
Cisco Systems, Inc.

6

7

Copyright © 2009 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777
Email (for orders and customer service enquiries): cs-books@wiley.com

Visit our Home Page on www.wiley.com
All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS, UK, without the

permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,

England, or emailed to permreq@wiley.com, or faxed to (+44) 1243 770620.
Designations used by companies to distinguish their products are often claimed as trademarks. All brand

names and product names used in this book are trade names, service marks, trademarks or registered
trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned

in this book.
This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If

professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA
Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany
John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, Ontario, L5R 4J3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Shklar, Leon

Web application architecture : principles, protocols, and practices / Leon Shklar and Rich Rosen. - 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-470-51860-1 (pbk.)

8

http://www.wiley.com

1. Web site development. 2. Application software-Development. 3. Web sites-Design. 4. Software
architecture.

I. Rosen, Rich. II. Title.
TK5105.888.S492 2009

005.1’2-dc22
2008052051

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 978-0-470-51860-1
Typeset in 10/12.5 Times by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell and Bain, Glasgow

9

To my beautiful girls: my wife Rita and daughter Victoria.
To the memory of my parents, Hasya and Arcady Shklar, and my grandparents, Tasya and Boris

Korkin.

Leon Shklar

To my parents, Arthur and Toby, and to Celia. Also, to the memory of my high school maths teacher, Jack
Garfunkel, who instilled in his students the value of thinking things through logically, and the value of writing
not for those who already know what you’re talking about, but for those who don’t.

Rich Rosen

10

About the Authors

Leon Shklar currently works for Thomson Reuters where he is the head of technology for Reuters Media.
Previously, Leon headed up the development team for the online edition of the Wall Street Journal at Dow
Jones. Prior to joining Dow Jones, he spent six years at Bell Communications Research and almost as long in
the world of dot-coms and Internet software. Leon holds a Ph.D. in Computer Science from Rutgers
University.

Rich Rosen is a senior developer in the Fixed Income Systems Group at Interactive Data Corporation.
Previously, he was an Application Architect at Dow Jones. Rich began his career at Bell Labs, where his work
with relational databases and the Internet prepared him for the world of Web application development. He is
a co-author of Mac OS X for Unix Geeks, 4th Edition (O’Reilly). Rich holds an M.S. in Computer Science from
Stevens Institute of Technology.

11

Preface to the Second Edition

The expression “web time” connotes a world in which rapid change is the norm, where time is exponentially
condensed. Technological advances that once upon a time might have taken years to transpire now occur in a
matter of months or even days. What’s more, these advances often result in radical paradigm shifts that
change the way we interact with our technology, and with the world at large.

The first edition of this book was published in 2003. Since then, there have been many technological
advances and paradigm shifts, causing some of what we wrote to become dated. New frameworks such as
Ruby on Rails have arisen as a reaction to increasing complexity in the application development process.
AJAX has taken client-side interactivity to a new level, blazing new frontiers in web application functionality.
Search has become a fundamental part of our everyday web experience. Even the core protocols and markup
languages representing the foundation of web technology have evolved since we first wrote about them over
five years ago. Back then, who could have imagined the ascendance of today’s most popular web applications,
such as YouTube, Facebook, eBay, and Wikipedia, or the advances in real-time interactivity that are now
commonplace?

For the second edition of this book, we provide new material covering these changes in the web technology
landscape, while striving to bring existing content up-to-date. We have included new chapters on search
technology and client-side interactivity (JavaScript, DHTML, and AJAX). We have added a second sample
application implemented using Ruby on Rails as a complement to the original Struts application, which has
been updated for the new edition. The chapters on Internet protocols, markup languages, server and browser
architecture, and application development approaches have all been revised and enhanced. It is our hope that
this updated edition will provide readers with deeper insights into the principles, protocols, and practices
associated with the design and development of web applications.

Leon Shklar
Rich Rosen
October 31, 2008

12

13

Acknowledgments

I am grateful to my wife Rita for inspiration and music, and for still being around after all the work that went
into the two editions of this book. My special thanks to our daughter Victoria for her insightful ideas
throughout the project.

Leon Shklar

Ongoing and everlasting thanks to my wife, Celia, for the joy her singing brings into my life, and for enduring
the continued insanity associated with the writing process. Thanks also to my parents and to Celia’s parents
for their love and support.

Rich Rosen

We would both like to thank the following people for their help:

• our editor, Jonathan Shipley, and his assistants, Georgia King and Claire Jardine, for their
professionalism and flexibility throughout the project;
• our technical reviewers, Sue Fitzgerald, Ciaran O’Leary, Ilmi Yoon, Roger Beresford, Yuanzhu
Peter Chen, Ray Cheung and Wei Ding, for taking the time to examine the text and provide us
with valuable insights and advice;
• our colleagues, Otis Gospodnetich and Keith Kim, for their comments and suggestions for the
search chapter, and Heow Eide-Goodman for his comments and suggestions for the chapters on
development approaches and Rails application development.

14

CHAPTER 1

Introduction

IN THIS CHAPTER

• History and pre-history of the web
• From web pages to web sites to web applications
• Web 2.0 and AJAX
• Summary of what is covered in the book

OBJECTIVES

• Offer a historical overview of web technology.
• Introduce the concept of “web applications.”
• Explain the focus and purpose of the book.
• Provide a chapter-by-chapter outline.

15

1.1 History and Pre-History of the Web

Back in 1989, at CERN (the scientific research laboratory near Geneva, Switzerland), Tim Berners-Lee
presented a proposal for an information management system that would enable the sharing of knowledge and
resources over a computer network. We now know this system as the worldwide web (the web). Building on
the foundation of existing Internet protocols and services, it lives up to its name as a ubiquitous network
providing information and communication services to hundreds of millions of people around the world.

From the very beginnings of Internet technology, many people shared the dream of using the Internet as a
universal medium for exchanging information over computer networks. Internet file-sharing services (such as
FTP and Gopher) and message forum services (such as Netnews) provided increasingly powerful mechanisms
for information exchange and brought us closer to fulfilling those goals.

Ted Nelson’s Xanadu project aspired to make that dream a reality, but the goals were lofty and never fully
realized. Nelson coined the term “hypertext” as a way of describing “non-sequential writing - text that
branches and allows choice to the reader.” Unlike the static text of print media, hypertext was intended for use
with an interactive computer screen. It is open, fluid and mutable, and can be connected to other pieces of
hypertext by “links”.

It took Tim Berners-Lee to “marry together” (in his words) the notion of hypertext with the power of the
Internet, bringing those initial dreams to fruition in a way that the earliest developers of both hypertext and
Internet technology might never have imagined. His vision was to connect literally everything, in a uniform
and universal way. Berners-Lee originally promoted the web as a virtual library, a document control system for
sharing information resources among researchers. On-line documents could be accessed via a unique
document address, a universal resource locator (URL). These documents could be cross-referenced via hypertext
links.

From its humble beginnings, the web has expanded exponentially to serve a wide variety of purposes for a
wide variety of people:

• Given its origins, it seems natural that educational institutions and research laboratories were
among the very first users of the web, employing it to share documents and other resources across
the Internet.
• Popular adoption of the web by individuals followed gradually, originally through on-line services,
such as America On-line (now AOL) that slowly but surely integrated with the web and the
Internet. Initially, personal usage of the web was limited to e-mail and web surfing. Eventually,
people began building their own web sites where they posted everything from on-line photo albums
to personal journals that would become known as “blogs.”
• Over time, businesses saw the potential of the web and began to employ it for e-commerce,
providing an on-line medium for buying and selling goods interactively. As more and more people
were connected to the web, the draw of a new source of revenue and the fear that competitors would
get there first and undercut traditional revenue streams made e-commerce increasingly important to
business. E-commerce applications are now being used for everything - from displaying catalogs of

16

available merchandise to providing the means for customers to purchase goods and services securely
on-line.
• As the impact of e-commerce grew, the back-end applications supporting e-commerce became
increasingly important to the companies using it. The front-end, customer-facing web sites needed
to be up to date, synchronized with inventory systems so that customers would know what items
were or weren’t immediately available. Automated fulfillment systems connected to the on-line
ordering mechanisms became commonplace. With that, secure login and registration, including
collection of credit card information and payment processing, became an absolute requirement for
viable e-commerce sites.
• With the maturing of the web, a tug of war arose between sites offering free and paid content.
Google was successful in tilting the balance in favor of free content supported by ads. Even the Wall
Street Journal, which pioneered the notion of paid subscriptions for on-line content, has been
opening up more and more of its content to non-subscribers. Critical technological challenges for
free sites include tracking visitor behavior, providing adaptive personalization, and offering advanced
community-building tools.

The web did not come into existence in a vacuum. It was built on top of core Internet protocols that had
been in existence for many years prior to the inception of the web. Understanding the relationship between
web technology and the underlying Internet protocols is fundamental to the design and implementation of
true web applications. In fact, it is the exploitation of that relationship that distinguishes a web page or web
site from a web application.

17

1.2 From Web Pages to Web Sites

The explosive growth of the web at least partially can be attributed to its grass-roots proliferation as a tool for
personal publishing. The fundamental technology behind the web is relatively simple. A computer connected to
the Internet running a web server was all that was necessary to serve documents. Both CERN and the National
Center for Supercomputer Applications (NCSA) at the University of Illinois had developed freely available web
server software. A small amount of HTML knowledge (and the proper computing resources) got you
something that could be called a web site. Early web sites were just loosely connected sets of pages, branching
hierarchically from a home page; now, a web site is much more than just a conglomeration of web pages.

When the web was in its infancy, academic institutions and technology companies owned the only
computers that were connected to the Internet and could run server software. In those days, personal
computers sitting on people’s desks were still a rarity. If you wanted access to any sort of computing power,
you used a terminal that let you “log in” to a large server or mainframe over a direct connection or dial-up
phone line.

Still, creating and posting web pages quickly became popular among people that had access to scarce
computing power. The original HTML language was simple enough that, even without the more
sophisticated tools we have at our disposal today, it was an easy task for someone to create a web page. (Some
would say too easy.) In the end, all that was needed to create first generation web pages was a simple text
editor.

There is a big difference between a bunch of web pages and a web site. A web site is more than just a group
of web pages that happen to be connected to each other through hypertext links:

• First, there are content-related concerns. Maintaining thematic consistency of content is important
in giving a site some degree of identity.
• There are also aesthetic concerns. In addition to having thematically related content, a web site
should also have a common look and feel across all of its pages, so that site visitors know what they
are looking at. This means utilizing a common style: page layout, graphic design, and typographical
elements.
• Then there are architectural concerns. As a site grows in size and becomes more complex, it is
critically important to organize its content. This includes not just the layout of content on individual
pages, but also the interconnections between the pages (site navigation). If the site becomes so
complex that visitors cannot navigate their way through, even with the help of site maps and
navigation bars, then it needs to be reorganized and restructured.

18

1.3 From Web Sites to Web Applications

Initially, what people shared over the Internet consisted mostly of static information found in files. They
might edit those files, but there were few truly dynamic information services.

Granted, there were a few exceptions: search applications for finding files in on-line archives and services
that provided information about the current weather, or the availability of cans from a soda-dispensing
machine. (One of the first web applications that Tim Berners-Lee demonstrated at CERN was designed to
look up numbers in an on-line phone book using a web browser.) However, for the most part, the information
resources on the web were static documents.

The advent of the dynamic web, which resulted from the proliferation of dynamic information services,
changed all that. The new services ranged from CGI scripts to search engines to packages that connected web
applications to relational databases. No longer was it sufficient to build a web site (as opposed to a motley
collection of web pages). It became necessary to design a web application.

What is a “web application?” It is a client-server application that uses a web browser as its client program. It
delivers interactive services through web servers distributed over the Internet (or an intranet). A web site
simply delivers content from static files. A web application can present dynamically tailored content based on
request parameters, tracked user behaviors, and security considerations.

Web applications power information portals, retail sites, and corporate intranets. They not only provide
information and interact with site visitors, but also collect and update information, maintain access controls,
and support on-line transactions.

A prime example of a dynamic web application is an on-line shopping site. Site visitors browse on-line
catalogs, search for items they want to purchase, add those items to an on-line shopping cart, and place their
orders through a secure interface that encrypts personal information. To enable this functionality, the web
application communicates with warehouses that maintain catalog and inventory information, storing this
information in a database. Users can search the on-line database to obtain information about products. The
application provides a way for users to select items to be added to their shopping carts, maintains shopping
cart contents for the duration of the browser session, and records order information in the database. It
communicates with outside financial institutions to verify credit card and address information, fulfills the
order by directing warehouses to ship the purchased items, and sends confirmation e-mails to purchasers
allowing them to track shipment of their orders.

19

1.4 Web 2.0: On-line Communities and Collaboration

Since 2000, another major trend has arisen in the on-line world, incorporating applications that support user-
generated content, on-line communities, and collaborative mechanisms for updating on-line content. This
trend is often referred to as Web 2.0, because it is closely tied to advances in web technology that herald a new
generation of web applications.

In many respects, Web 2.0 is a harking back to the web as a network for presenting personal hyperlinked
information. Information flow on the web is no longer one way, from the web site to the surfer. Site visitors
contribute information of their own, ranging from reviews and ratings for movies, music, and books to
personal journals, how-to information, and news for popular consumption. These journals go by the name
blogs (short for “web logs”) and the whole blogging movement has resurrected the idea of the personal web
page and elevated its status.

Personal blogs and community web sites encouraging user input may bear a resemblance to the more
personal web of old, but the technology behind them does not. Whereas individual owners could easily
maintain the simple static web sites of old, this has become impractical given the enormous volume and
increasingly malleable nature of content out there today. Blogs, user forums, and collaborative community
sites may look like the simpler web sites of the past, but the underlying functionality supporting them is based
on sophisticated web application technology incorporating user authentication, access control, and content
management services.

20

1.5 The Brave New World of AJAX

Another radical change in the web application landscape was the advent of AJAX (an acronym that stands for
Asynchronous JavaScript and XmlHttpRequest). While the technology advances behind it accumulated
gradually, AJAX represents a paradigm shift that has changed the way web applications are conceived and
developed.

Tim Berners-Lee’s original concept of HTTP was that of a simple stateless request - response protocol.
Such a protocol allows for independent processing of requests and responses, without requiring a persistent
connection. This simplicity fostered wide acceptance of the HTTP protocol but imposed significant
limitations. The only method available for updating page content was to replace the entire page. This
limitation was unsatisfying to those who were used to client-server applications that communicated with their
associated servers directly and continuously. For instance, in such an application, a server-side change to a
value in a spreadsheet cell could immediately be reflected on the screen without refreshing the whole
spreadsheet.

HTTP, and the web experience in general, have evolved in a number of ways since their inception,
introducing elements that allow web transactions to transcend the limitations of a stateless request-response
protocol (e.g., cookies and JavaScript). AJAX is the latest such element, essentially allowing what amounts to
an “end-run” to communicate with a web server indirectly: instead of submitting a direct request to see a new
page from the server, a subordinate background request is submitted (usually through a JavaScript object
called XmlHttpRequest) and the response to that request is used to dynamically modify the content of the
current page in lieu of replacing its content entirely.

The main impact of AJAX is that the web experience is brought closer to that of client-server applications,
allowing for a more immediate dynamic interaction between the user and the web application.

21

1.6 Focus of This Book

The purpose of this book is to provide a guide for learning the underlying principles, protocols, and practices
associated with designing flexible and efficient web applications. Our target audience is senior undergraduate
or graduate students who have already learned the basics of web development and professional developers who
have had some exposure to web application development and want to expand their knowledge.

We expect our readers to have some familiarity with HTML and JavaScript - not at the level of experienced
web designers but enough to create web pages and embed simple JavaScript code to submit forms to a web
server. We recommend at least some exposure to Internet protocols, such as Telnet, FTP, SMTP, HTTP and
SSL. We appreciate that many of our readers may not be familiar with Linux or Unix operating systems.
However, it is helpful to have some understanding of the command-line interfaces provided by interactive
shells, as some of our examples employ such an interface.

As we have said, there is a major difference between web pages, web sites, and web applications. There are
excellent resources dedicated to web page and web site design, and the References section at the end of this
chapter lists some of the best that we know. When we examined the current literature available on the subject
of web application development, we found there were three main categories of book currently available.

• technical overviews
• reference books
• focused tutorials.

Technical overviews are usually very high level, describing technology and terminology in broad terms. They
do not go into enough detail to enable the reader to design and build serious web applications. They are most
often intended for managers who want a surface understanding of concepts and terminology without going
too deeply into specific application development issues. Frequently, such overviews attempt to cover
technology in broad brushstrokes; their subject may be Java, XML, e-commerce, or Web 2.0. Such books
approach the spectrum of technology so broadly that the coverage of any specific area is too shallow for serious
application developers.

Reference books are useful, naturally, as references, but not for the purpose of learning about the technology.
They are great to keep on your desk to look things up once you are already deeply familiar with the
technology, but they are not oriented toward elucidation and explanation.

The focused tutorials concentrate on the usage of specific platforms and products to develop web
applications. Books in this category provide in-depth coverage of very narrow areas, concentrating on how to
use a particular language or platform without necessarily explaining the underlying principles. Such books may
be useful in teaching programmers to develop applications for a specific platform, but they do not provide
enough information about the enabling technologies, focusing instead on the platform-specific
implementation. Should a developer be called upon to rewrite an application for another platform, the
knowledge acquired from these books is rarely transferable to the new platform.

Given the rate of change of the web technologies, today’s platform of choice is tomorrow’s outdated legacy
system. When new development platforms emerge, developers without a fundamental understanding of the

22

inner workings of web applications have to learn the new platforms from the ground up. The challenge is their
lack of understanding of what the systems they implemented using specialized application programming
interfaces (APIs) did behind the API calls. What is missing is the ability to use fundamental technological
knowledge across platforms.

What was needed was a book that covered the basic principles of good application design, the underlying
protocols associated with web technology, and the best practices for creating scalable, extensible, maintainable
applications. With this in mind, we endeavored to write such a book.

The need for such a book is particularly apparent when interviewing job candidates for web application
development positions. Too many programmers have detailed knowledge of particular languages and
interfaces but they are lost when asked questions about the underlying technologies and how they relate to real
problems (e.g., why is it necessary for a server to add a trailing slash to a URL and redirect the request back to
itself?). Such knowledge is not purely academic - it is critical when designing and debugging complex systems.

Too often, developers with proficiency only within a specific application development platform (such as
Active Server Pages, Cold Fusion, PHP, or Perl CGI scripting) are not capable of transferring that proficiency
directly to another platform. The fundamental understanding of core technologies is critical to enable
developers to grow with the rapid technological advances in web application development.

What do we have in mind when we refer to the general principles that need to be understood in order to
properly design and develop web applications? We mean the core protocols and languages associated with web
applications. This includes HyperText Transfer Protocol (HTTP) and HyperText Markup Language (HTML),
which are fundamental to the creation and transmission of web pages, but it also includes older Internet
protocols such as Telnet and FTP, and the protocols used for message transfer such as SMTP and IMAP. A
web application architect must also be familiar with JavaScript, XML, relational databases, graphic design and
multimedia. Web application architects must be well-versed in application server technology and have a
strong background in information architecture.

If you find people with all these qualifications, please let us know: we would love to hire them! Rare is the
person who can not only design a web site but can also perform all the other tasks associated with web
application development: working with graphic designers, creating database schemas, producing interactive
multimedia programs, and configuring e-commerce transactions. More realistically, we can seek someone who
is an expert in one particular area (e.g., e-commerce transactions or browser programming) but who also
understands the wider issues associated with designing web applications.

We hope that, by reading this book, you can acquire the skills needed to design and build complex
applications for the web. There is no “one easy lesson” for learning the ins and outs of application design.
Hopefully, this book will enhance your ability to design and build sophisticated web applications that are
scaleable, maintainable, and extensible.

We examine various approaches to the process of web application development, covering both client-side
presentation technology and server-side application technology. On the client side, we look at both markup
languages and programming languages, from HTML and XML to CSS and JavaScript. On the server side, we
look at the full range of approaches, starting with Server Side Includes (SSI) and CGI, covering template
languages such as Cold Fusion and ASP, examining the intricacies of Java Platform, Enterprise Edition (Java
EE), and finally looking at newer “rapid development” approaches such as Ruby on Rails. At each level, we

23

concentrate not only on the particular development platform, but also on the underlying principles that span
multiple platforms.

24

1.7 What Is Covered in This Book

The organization of this book is as follows:

• Chapter 2: Core Internet Protocols - This chapter offers an examination of the underlying
Internet protocols that form the foundation of the web. It offers some perspectives on the history of
TCP/IP, as well as some details about using several of these protocols in web applications.
• Chapter 3: Birth of the Web: HTTP - The HTTP protocol is covered in detail in this chapter,
with explanations of how requests and responses are transmitted and processed.
• Chapter 4: HTML and Its Roots - In the first of two chapters about markup languages, we go
back to SGML to learn more about the roots of HTML (and of XML). Rather than providing a
tutorial on web design with HTML, the focus is on HTML as a markup language and its place in
web application development.
• Chapter 5: XML Languages and Applications - This chapter covers XML and related
specifications, including XML Schema, XPath, XSLT, and XSL FO, as well as XML applications
such as XHTML and WML.
• Chapter 6: Web Servers - The operational intricacies of web servers is the topic of this chapter,
with in-depth discussion of what web servers must do to support interactions with clients such as
web browsers and HTTP proxies.
• Chapter 7: Web Browsers - As the previous chapter dug deep into the inner workings of web
servers, this chapter provides similar coverage of the inner workings of web browsers.
• Chapter 8: Active Browser Pages: From JavaScript to AJAX - Here we cover the mechanisms for
providing dynamic interactivity in web pages, including JavaScript, DHTML, and AJAX.
• Chapter 9: Approaches to Web Application Development - This chapter contains a survey of
available web application approaches, including CGI, Servlets, PHP, Cold Fusion, ASP, JSP, and
frameworks such as Struts. It classifies and compares these approaches to help readers make
informed decisions when choosing an approach for their project, emphasizing the benefits of using
the Model-View-Controller (MVC) design pattern in implementing applications.
• Chapter 10: Web Application Primer: Virtual Realty Listing Services - Having examined the
landscape of available application development approaches, we decide on Struts along with the Java
Standard Tag Library (JSTL). We give the reasons for our decisions and build a sample employing
the principles we have been discussing in previous chapters. We then suggest enhancements to the
application as exercises to be performed by the reader, including the introduction of an
administrative interface component, using Hibernate for object-relational mapping, and using Java
Server Faces for presentation.
• Chapter 11: Web Application Primer: Ruby on Rails - In this chapter, we revisit the Virtual
Realty Listing Services application and implement its administrative interface using the Ruby on
Rails framework. We describe the general structure of a Rails application, walk through the process
of building an application in Rails, and compare the Java EE - Struts approach with Rails in terms

25

of both ease of development and flexibility of deployment.
• Chapter 12: Search Technologies - Here we describe not only the process of indexing site content
for internal search functionality, but also the mechanisms for structuring a site’s content for optimal
indexing by external search engines. Jakarta’s Lucene and other tools are covered.
• Chapter 13: Trends and Directions - Finally, we look to the future, providing coverage of the
most promising developments in web technology, as well as speculating about the evolution of web
application frameworks.

Chapter 2 starts us off with a study of the core protocols supporting Internet technology, in general, and
the web in particular. Although some might see this as review, it is a subject worth going over to gain both a
historical and a technological perspective.

26

1.8 Bibliography

Berners-Lee, Tim, 2000. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web.
New York: HarperBusiness.

Gehtland, Justin, Galbraith, Ben and Almaer, Dion, 2006. Pragmatic AJAX: A Web 2.0 Primer. Raleigh (NC):
Pragmatic Bookshelf.

Hadlock, Kris, 2007. AJAX for Web Application Developers. Indianapolis (IN): SAMS Publishing (Developer’s
Library).

Nelson, Theodor Holm, 1982. Literary Machines 931 . Sausalito (CA): Mindful Press.

Rosenfeld, Louis and Morville, Peter, 2006. Information Architecture for the World Wide Web, 3rd Edition.
Sebastopol (CA): O’Reilly & Associates.

Williams, Robin and Tollett, John, 2005. The Non-Designer’s Web Book, 3rd Edition. Berkeley (CA): Peachpit
Press.

27

CHAPTER 2

Core Internet Protocols

IN THIS CHAPTER

• TCP/IP
• Telnet
• Electronic mail
• Messaging
• Security and encryption
• FTP and file server protocols
• And then came the web ...

OBJECTIVES

• Offer a historical perspective on TCP/IP.
• Explain the client-server paradigm.
• Provide an overview of key Internet protocols and application services that predate
the web.
• Show how these protocols and services provided the foundation for HTTP and the
web.

As we mentioned in the previous chapter, Tim Berners-Lee did not come up with the worldwide web in a
vacuum. The web as we know it was built on top of core Internet protocols that had been in existence for many
years. Understanding the ideas behind those underlying protocols is important for the discipline of building
robust web applications.

In this chapter, we examine the core Internet protocols that make up the TCP/IP protocol suite, which is the
foundation for the web protocols that are discussed in Chapter 3. We begin with a brief historical overview of
the forces that led to the creation of TCP/IP. We then go over the layers of the TCP/IP stack, and show
where various protocols fit into it. Our description of the client-server paradigm used by TCP/IP applications
is followed by discussion of the various TCP/IP application services, including Telnet, electronic mail (e-

28

mail), message forums, live messaging, and file servers. While some of these protocols and services may be
deprecated, if not obsolete, knowledge of how they work and what they do provides critical insights into the
present and future of web protocols and web applications.

29

2.1 Historical Perspective

The roots of web technology can be found in the original Internet protocols (known collectively as TCP/IP)
developed in the 1980s. These protocols were an outgrowth of work to design a network called the
ARPANET.

The ARPANET was named for the Advanced Research Projects Agency (ARPA) of the US Department of
Defense (DoD). It came into being as a result of efforts in the 1970s to develop an open, common,
distributed, and decentralized computer networking architecture. The DoD’s goal was to resolve numerous
problems with existing network architectures.

First and foremost among these problems was that the typical network topology was centralized. A
computer network had a single point of control directing communication between all the systems belonging to
that network. From a military perspective, such a topology had a critical flaw: destroy that central point of
control and all possibility of communication was lost.

Another issue was the proprietary nature of existing network architectures. Most of them were developed
and controlled by private corporations, who had a vested interest both in pushing their own products and in
keeping their technology to themselves. Furthermore, the proprietary nature of the technology limited the
interoperability between different systems. It was important, even then, to ensure that the mechanisms for
communicating across computer networks were not proprietary or controlled in any way by private interests,
lest the entire network become dependent on the whims of a single corporation.

Thus, the DoD funded an endeavor to design the protocols for the next generation of computer
communications networking architectures. Establishing a decentralized, distributed network topology was
foremost among the design goals for the new networking architecture. Such a topology would allow
communications to continue without disruption, even if any one system was damaged or destroyed. In such a
topology, the network “intelligence” would not reside in a single point of control. Instead, it would be
distributed among many systems throughout the network.

To facilitate this (and to accommodate other network reliability considerations), ARPANET employed a
packet-switching technology, whereby a network “message” could be split up into packets, each of which might
take a different route over the network, arrive in completely mixed-up order, and still be reassembled and
understood by the intended recipient.

To promote interoperability, the protocols needed to be open: readily available to anyone who wanted to
connect their system to the network. An infrastructure was needed to design the set of agreed-upon protocols,
and to formulate new protocols for new technologies that might be added to the network in the future. An
Internet Working Group (INWG) was formed to examine the issues associated with connecting heterogeneous
networks in an open, uniform manner. This group provided an open platform for proposing, debating, and
approving protocols.

The Internet Working Group evolved over time into other bodies, such as the Internet Activities Board
(IAB), later renamed the Internet Architecture Board, the Internet Assigned Numbers Authority (IANA), the
Internet Engineering Task Force (IETF) and the Internet Engineering Steering Group (IESG). These bodies

30

defined the standards that “govern” the Internet. They established the formal processes for proposing new
protocols, discussing and debating the merits of these proposals, and ultimately approving them as accepted
Internet standards.

Proposals for new protocols (or updated versions of existing protocols) are provided in the form of Requests
for Comments, also known as RFCs. Once approved, the RFCs are treated as the standard documentation for
the new or updated protocol.

31

2.2 TCP/IP Architecture

The original ARPANET was the first fruit borne of the DoD endeavor. The protocols behind the
ARPANET evolved over time into the TCP/IP Suite, a layered taxonomy of data communications protocols.
The name TCP/IP refers to two of the most important protocols within the suite, Transmission Control
Protocol (TCP) and Internet Protocol (IP), but the suite is comprised of many other significant protocols and
services.

32

2.2.1 Protocol layers

The protocol layers (above the “layer” of physical interconnection) associated with TCP/IP are:

• the Network Interface layer
• the Internet layer
• the Transport layer
• the Application layer.

Because this taxonomy contains layers, implementations of these protocols are often known as a protocol
stack.

The Network Interface layer is responsible for the lowest level of data transmission within TCP/IP,
facilitating communication with the underlying physical network.

The Internet layer provides the mechanisms for intersystem communications, controlling message routing,
validity checking, and composition and decomposition of message headers. The protocol known as IP (which
stands, oddly enough, for Internet Protocol) operates on this layer, as does the Internet Control Message
Protocol (ICMP), which handles the transmission of control and error messages between systems. Ping is an
Internet service that operates through ICMP.

The Transport layer provides message transport services between applications running on remote systems.
This is the layer in which the Transmission Control Protocol (TCP) operates. TCP provides reliable, connection-
oriented message transport. Most of the well-known Internet services make use of TCP as their foundation.
However, some services that do not require the reliability (and overhead) associated with TCP make use of
User Datagram Protocol (UDP). For instance, streaming audio and video services would gladly sacrifice a few
lost packets to get faster performance out of their data streams, so these services often operate over UDP,
which trades reliability for performance.

The Application layer is the highest level within the TCP/IP protocol stack. It is within this layer that most
of the services we associate with the Internet operate.

33

2.2.2 Comparison with OSI model

During the period that TCP/IP was being developed, the International Standards Organization (ISO) was
working on its own layered protocol scheme, called Open Systems Interconnection (OSI). While the TCP/IP
taxonomy consists of five layers (if you include the physical connectivity medium as a layer), OSI had seven
layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.

There is some parallelism between the two models. TCP/IP’s Network Interface layer is sometimes called
the Data Link layer to mimic the OSI reference model, while the Internet layer corresponds to OSI’s
Network layer. Both models share the notion of a Transport layer, which serves roughly the same functions in
each model. The Application layer in TCP/IP combines the functions of the Session, Presentation, and
Application layers of OSI.

OSI never caught on and, while some people waited patiently for its adoption and propagation, it was
TCP/IP that became the ubiquitous foundation of the Internet as we know it today.

34

2.2.3 The client - server paradigm

TCP/IP applications tend to operate according to the client-server paradigm. This simply means that, in these
applications, servers (also called services and daemons, depending on the lingo of the underlying operating
system) execute by waiting for requests from client programs to arrive and processing those requests.

Client programs can be applications used by human beings, or they could be servers that need to make their
own requests that can only be fulfilled by other servers. More often than not, the client and the server run on
separate machines, and communicate via a connection across a network.

Command line vs GUI

Over the years, user interfaces to client programs have evolved from command-line interfaces (CLI) to graphical
user interfaces (GUI).

Command-line programs have their origins in the limitations of the oldest human interface to computer
systems: the teletype keyboard. In the earliest days of computing, even simple text-based CRT terminals were
not available - let alone today’s monitors with advanced graphics capabilities. The only way to enter data
interactively was through a teletypewriter interface, one character at a time. A command-line interface (CLI)
prompts the user for the entry of a “command” (the name of a program) and its “arguments” (the parameters
passed to the program). The original PC-DOS operating system and Unix shells use command-line interfaces.

Screen-mode programs allow users to manipulate the data on an entire CRT screen, rather than on one line.
This means that arrow keys can be used to move a cursor around the screen or to scroll through pages of a text
document. Screen-mode programs are still restricted to character-based interfaces.

GUI programs make use of a visual paradigm that offers users a plethora of choices. For most, this is a
welcome alternative to manually typing in the names of files, programs, and command options. The graphics
are not limited to just textual characters, as in screen-mode programs. The GUI paradigm relies on windows,
icons, mouse, pointers, and scrollbars (WIMPS) to display graphically the set of available files and
applications.

Whether command-line or GUI-based, client programs provide the interface by which end users
communicate with servers to make use of TCP/IP services. Although debates rage as to whether GUIs or
CLIs are “better”, each has advantages and disadvantages for different types of users.

Client - server communications

Under the hood, communications between client and server programs take the form of request- response
interactions. The imposition of this constraint on Internet communication protocols means that even the
most primitive command-line interface can make use of TCP/IP services. More sophisticated GUI-based
client programs often hide their command-line details from their users, employing point-and-click and drag-
and-drop functionality to support underlying command-line directives.

After the server acknowledges the success of the connection, the client sends commands on a line-by-line

35

basis. There are single-line and block commands. A single-line command, as the name implies, includes an
atomic command directive on a single line. A block command begins with a line indicating the start of the
command and terminates with a line indicating its end. For example, in the Simple Mail Transfer Protocol
(SMTP), a line beginning with the word HELO initiates an SMTP session, while a line containing just the
word DATA begins a block that ends with a line containing only a period. The server then responds to each
command, usually beginning with a line containing a response code.

A stateful protocol allows a client to support a sequence of commands. The server is required to maintain
the “state” of the connection throughout the transmission of successive commands, until the connection is
terminated. The sequence of transmitted and executed commands is often called a session. Most Internet
services (including SMTP) are session-based and make use of stateful protocols.

HTTP

HTTP is a stateless protocol (see Chapter 3). An HTTP request usually consists of a single
command and a single response. There is no built-in ability to maintain state between
transmitted commands.

Early implementations of client - server architectures did not make use of open protocols. This meant that
client programs had to be as “heavy” as the server programs. A “lightweight” client (also called a thin client)
could only exist in a framework where common protocols and application controls were associated with the
client machine’s operating system. Without such a framework, many of the connectivity features had to be
included directly in the client program, adding to its “weight”. One advantage of using TCP/IP for client-
server applications was that the protocol stack was installed on the client machine as part of the operating
system and the client program itself could be more of a thin client.

Web applications are a prime example of thin clients. Rather than building a custom program to perform
desired application tasks, web applications use the web browser, a program that is already installed on most
end-user systems. You cannot create a client much thinner than a program that users already have on their
desktops!

How Do TCP/IP Clients and Servers Communicate with Each Other?

TCP/IP client programs open a socket, which is simply a TCP connection between the client
machine and the server machine. Servers listen for connection requests that come in through
specific ports. A port is not a physical interface between the computer and the network, but is
simply a numeric reference within a request that indicates which server program is its intended
recipient.

There are established conventions for matching port numbers with specific TCP/IP services.
For example, Telnet services listen for connection requests on port 23, SMTP servers listen to
port 25, and web servers (by default) listen to port 80.

36

37

2.3 TCP/IP Application Services

In this section, we discuss some of the common TCP/IP application services, including Telnet, e-mail,
message forums, live messaging, and file servers. Where appropriate, we compare the original TCP/IP services
with modern counterparts.

38

2.3.1 Telnet

The Telnet protocol operates within the Application layer. It was developed to support Network Virtual
Terminal functionality, which means the ability to “log in” to a remote machine over the Internet. The latest
specification for the Telnet protocol is defined in Internet RFC 854.

Before the advent of personal computers, access to computing power was limited to those who could
connect to a larger server or mainframe computer, either through a dial-up phone line or through a direct
local connection. Whether you phoned in remotely or sat down at a terminal connected directly to the server,
you used a command-line interface to log in. You connected to a single system and your interactions were
limited to that system.

With the arrival of Internet services, you could use the Telnet protocol to log in remotely to systems that
were accessible over the Internet. As we mentioned earlier, Telnet clients are configured by default to connect
to port 23 on the server machine, but the target port number can be overridden in most client programs. This
means you can use a Telnet client program to connect and “talk” to another TCP-based service if you know its
address and its port number, have proper authentication credentials, and understand the format of its
transactions with the server.

Secure Shell

The Telnet protocol is now considered a poor mechanism for connecting to remote systems,
because Telnet servers and clients transmit all their data (including passwords) unencrypted.
Secure Shell (SSH) establishes connections and transfers data over secure channels, encrypting
transmitted data and promoting security (see Section 2.3.5).

39

2.3.2 E-mail

Electronic mail, or e-mail, was probably the first “killer app” in what we now call cyberspace. Since the
Internet had its roots in military interests, naturally the tone of e-mail started out being formal, rigid, and
business-like. Once the body of people using e-mail expanded, and once these people realized what it could be
used for, things lightened up.

Electronic mailing lists provided communities where people with like interests could exchange messages.
These lists were closed systems, in the sense that only subscribers could post messages to the list or view
messages posted by other subscribers. Obviously, lists grew and list managers had to maintain them. Over
time, automated mechanisms were developed to allow people to subscribe (and, even more importantly, to
unsubscribe) without human intervention. These mailing lists evolved into message forums, where people could
publicly post messages on an electronic bulletin board for everyone to read.

These services certainly existed before the birth of the Internet. But in those days, users read and sent their
e-mail by logging in to a system directly (usually via telephone dial-up or direct local connection) and running
programs on that system (usually with a command-line interface). The methods for using these services varied
greatly from system to system, and e-mail connectivity between disparate systems was hard to come by. With
the advent of TCP/IP, the mechanisms for providing these services became more consistent, and e-mail
became uniform and ubiquitous.

The transmission of e-mail is performed through the SMTP protocol. The reading of e-mail is usually
performed through either POP or IMAP.

SMTP

As an application layer protocol, Simple Mail Transfer Protocol (SMTP) normally runs on top of TCP, though
it can theoretically use any underlying transport protocol. The latest specification for the SMTP protocol is
defined in Internet RFC 821 and the structure of SMTP messages is defined in Internet RFC 822. The
application called “sendmail” is an implementation of the SMTP protocol for Unix systems.

SMTP, like other TCP/IP services, runs as a server, service, or daemon. In a TCP/IP environment, SMTP
servers usually run on port 25. They wait for requests to send e-mail messages, which can come from local
system users or from across the network. They are also responsible for evaluating the recipient addresses found
in e-mail messages, determining whether they are valid, and whether their final destination is another
recipient (e.g., a forwarding address or the set of individual recipients subscribed to a mailing list).

If the message embedded in the request is intended for a user with an account on the local system, then the
SMTP server delivers the message to that user by appending it to their mailbox. Depending on the
implementation, the mailbox can be anything from a simple text file to a complex database of e-mail
messages. If the message is intended for a user on another system, then the server must figure out how to
transmit the message to the appropriate system. This may involve direct connection to the remote system or it
may involve connection to a gateway system. A gateway is responsible for passing a message on to other
gateways or sending it directly to its ultimate destination.

40

Before the advent of SMTP, the underlying mechanisms for sending mail varied from system to system.
Once SMTP became ubiquitous as the mechanism for e-mail transmission, these mechanisms became more
uniform. Applications responsible for transmitting e-mail messages, such as SMTP servers, are known as Mail
Transfer Agents (MTAs). Likewise, the applications responsible for retrieving messages from a mailbox,
including POP servers and IMAP servers, are known as Mail Retrieval Agents (MRAs).

Figure 2.1 Command-line interaction with an SMTP server.

E-mail client programs are engineered to allow users to read and send mail. Such programs are known as
Mail User Agents (MUAs). MUAs talk to MRAs to read mail and to MTAs to send mail. In a typical e-mail
client, once the user has composed and submitted a message, the client program directs it to the SMTP
server. First, the client connects to the server by opening a TCP socket to port 25 (the SMTP port) of the
server (even if the server is running on the user’s machine). Figure 2.1 shows an example of an interaction
between a client and an SMTP server.

The client program identifies itself (and the system on which it is running) to the server via the HELO
command. The server decides (based on this identification information) whether to accept or reject the
request. If the server accepts the request, it waits for the client to send further information. One line at a time,
the client transmits commands to the server, sending information about the originator of the message (using
the MAIL command) and each of the recipients (using a series of RCPT commands). Once all this is done,
the client tells the server it is about to send the actual data: the message itself. It does this by sending a
command line consisting of the word DATA. Every line that follows, until the server encounters a line
containing only a period, is considered part of the message body. Once it has sent the body of the message,
the client signals the server that it is done, and the server transmits the message to its destination (either
directly or through gateways). Having received confirmation that the server has transmitted the message, the
client closes the socket connection using the QUIT command.

41

Originally, SMTP servers executed in a very open fashion: anyone knowing the address of an SMTP server
could connect to it and send messages. In an effort to discourage spamming (the sending of indiscriminate
mass semi-anonymous e-mails), many SMTP server implementations allow the system administrator to
configure the server so that it only accepts connections from a discrete set of systems, perhaps only those
within their local domain. Additionally, SMTP servers can use an extension to the SMTP protocol called
SMTP-AUTH to restrict the ability to send e-mail only to authenticated users.

When building web applications that include e-mail functionality (specifically the sending of e-mail), make
sure your configuration includes the specification of a working SMTP server system, which will accept your
requests to transmit messages. To maximize application flexibility, the address of the SMTP server should be
a parameter that can be modified at run time by an application administrator.

MIME

Originally, e-mail systems transmitted messages in the form of standard ASCII text. If a user
wanted to send a file in a non-text or “binary” format (e.g., an image or sound file), it had to be
encoded before it could be placed into the body of the message. The sender had to
communicate the nature of the binary data directly to the receiver, e.g., “The block of encoded
binary text below is a GIF image.”

Multimedia Internet Mail Extensions (MIME) provided a uniform mechanism for
including encoded attachments within a multipart e-mail message. MIME supports the
definition of boundaries separating the text portion of a message (the “body”) from its
attachments, as well as the designation of attachment encoding methods, including “Base64”
and “quoted-printable.” MIME was originally defined in Internet RFC 1341, but the most
recent specifications can be found in Internet RFCs 2045 through 2049.

MIME also supports the notion of content typing for attachments (and for the body of a
message). MIME-types are standard naming conventions for defining the type of data
contained in an attachment. A MIME-type is constructed as a combination of a top-level data
type and a subtype. There is a fixed set of top-level data types, including text, image, audio,
video, and application. The subtypes describe the data in enough detail to select an appropriate
processing program. For example, there are specific programs for processing text/html,
text/plain, image/jpeg, and audio/mp3 files.

POP

The Post Office Protocol (POP) gives users direct access to their e-mail messages stored on remote systems.
POP3 is the most recent version of the POP protocol, first defined in Internet RFC 1725 and revised in
Internet RFC 1939. Most of the popular e-mail clients (including Microsoft Outlook and Mozilla
Thunderbird) use POP3 to access user e-mail. (Even proprietary systems, such as Lotus Notes, offer
administrators the option to configure remote e-mail access through POP.)

Before the Internet, people read and sent e-mail by logging in to a system and running command-line
programs. User messages were usually stored locally in a mailbox file on that system. Even with the advent of

42

Internet technology, many people continued to access e-mail by establishing a Telnet connection to the
system containing their mailbox and running command-line programs (e.g., from a Unix shell) to read and
send mail. (Some people who prefer command-line programs still do!)

Let us look at the process by which POP clients communicate with POP servers to provide user access to e-
mail. First, the POP client must connect to the POP server (which usually runs on port 110), so it can identify
and authenticate the user to the server. This is usually done by sending the user name (user id) and password
one line at a time, using the USER and PASS commands. (Sophisticated POP servers may make use of the
APOP command, which allows the secure transmission of the user name and password as a single encrypted
entity across the network.)

Once connected and authenticated, the POP protocol offers the client a variety of commands it can
execute. Among them is the UIDL command, which responds with an ordered list of message numbers,
where each entry is followed by a unique message identifier. POP clients can use this list (and the unique
identifiers it contains) to determine which messages in the list qualify as “new” (i.e., not yet seen by the user
through this particular client). Having obtained this list, the client can execute the command to retrieve a
message (RETR n). It can also execute commands to delete a message from the server (DELE n) or retrieve
just the header of a message (TOP n 0).

Message headers contain metadata about a message, such as the addresses of its originator and recipients, its
subject, etc. Each message contains a header block (see Figure 2.2) containing a series of lines, followed by a
blank line indicating the end of that block.

The information that e-mail clients include in message lists (e.g., the From, To, and Subject of each
message) comes from the message headers. As e-mail technology advanced, headers began representing more
sophisticated information, including MIME-related data (e.g., content types) and attachment encoding
schemes.

Figure 2.3 provides an example of a simple command-line interaction between a client and a POP server.
GUI-based clients often hide the mundane command-line details from their users. The normal sequence of
operation for most GUI-based POP clients today is as follows:

1. Get the user id and password (the client may already have this information or may need to
prompt the user).
2. Connect the user and verify identity.
3. Obtain the UIDL list of messages.
4. Compare the identifiers in this list to a list that the client keeps locally, to determine which
messages are “new”.
5. Retrieve all the new messages and present them to the user in a selection list.
6. Delete the newly retrieved messages from the POP server (optional).

Although this approach is simple, it is inefficient. All the new messages are always downloaded to the
client. This is inefficient because some of these messages may be quite long or have extremely large
attachments. Users must wait for all of the messages (including large or unwanted messages) to download
before viewing any of the messages they want to read. The current proliferation of spam makes this even more
important today than it was in the past. It would be more efficient for the client to retrieve only message

43

headers and display the information in a message list. It could then allow users the option to selectively
download desired messages for viewing or to delete unwanted messages without downloading them. A web-
based e-mail client helps remove some of this inefficiency.

Figure 2.2 Message header block.

Figure 2.3 Command-line interaction with a POP3 server.

IMAP

Some of the inefficiencies of the POP protocol can be alleviated by the Internet Message Access Protocol
(IMAP). IMAP was intended as a successor to POP, offering sophisticated services for managing messages in
remote mailboxes. IMAP servers provide support for multiple remote mailboxes or folders, so that users can
move messages from an incoming folder (the “inbox”) into other folders kept on the server. In addition, they
also provide support for saving sent messages in one of these remote folders and for multiple simultaneous
operations on mailboxes. IMAP servers commonly listen on TCP port 143.

IMAP4, the most recent version of the IMAP protocol, was originally defined in Internet RFC 1730, but
the most recent specification can be found in Internet RFC 2060. The approach used by IMAP differs in
many ways from that of POP. POP clients download e-mail messages from the server. The default behavior
for many POP clients is to delete messages from the server following the download; in practice, many users
elect to leave viewed messages on the server, rather than deleting them after viewing. This is because many

44

people who travel extensively want to check e-mail while on the road, but want to see all of their messages
(even the ones they’ve seen) when they return to their “home machine.” While the POP approach “tolerates”
but does not encourage this sort of user behavior, the IMAP approach eagerly embraces it. IMAP was
conceived with “nomadic” users in mind: users who might check e-mail from literally anywhere, who want
access to all of their saved and sent messages wherever they happen to be. IMAP not only allows the user to
leave messages on the server, it provides mechanisms for storing messages in user-defined folders for easier
accessibility and better organization. Moreover, users can save sent messages in a designated remote folder on
the IMAP server. While POP clients support saving of sent messages, they usually save those messages
locally, on the client machine.

IMAP e-mail client programs work very similarly to POP e-mail clients. In fact, many e-mail client
programs allow users to operate in either POP or IMAP mode. However, the automatic downloading of the
content and attachments for incoming messages does not occur by default in IMAP clients. Instead, an IMAP
client downloads only the header information associated with new messages, requesting the body of an
individual message only when user expresses interest in seeing it.

POP vs IMAP

Although it is possible to write a POP client that downloads only the header information until
the user expressly looks at a message, most do not. POP clients tend to operate in “burst”
mode, getting all the messages on the server in one “shot.” While this may be in some respects
inefficient, it is useful for those whose on-line access is not persistent. By getting all the
messages in one burst, users can work off-line with the complete set of downloaded messages,
connecting to the Internet again only when they want to send responses and check for new
mail.

IMAP clients assume the existence of a persistent Internet connection, allowing discrete
actions to be performed on individual messages, while maintaining a connection to the IMAP
server. Thus, for applications where Internet connectivity may not be persistent (e.g., a
handheld device where Internet connectivity is paid for by the minute), POP might be a better
choice than IMAP.

Because IMAP offers many more options than POP, the possibilities for what can go on in a user session
are much richer. After connection and authentication, users can check new messages, recently seen messages,
unanswered messages, flagged messages, and drafts of messages yet to go out. They can view messages either
in their entirety or in part (e.g., header, body, attachment). They can delete or move messages to other folders.
They can also respond to messages or forward them to others.

IMAP need not be used strictly for e-mail messages. Because security features allow mailbox folders to be
designated as “read only”, IMAP can be used for “message board” functionality as well. However, such
functionality is usually reserved for message forum services.

Web-based e-mail services

Today, web-based e-mail systems, such as Hotmail, Yahoo! Mail, and Gmail, provide users with the means to

45

access e-mail through a web browser, without requiring a specialized locally configured e-mail client program
to access designated POP/IMAP and SMTP servers. This means users can read their e-mail from practically
anywhere, without having to use their own computer. Users behind network firewalls, which block the ports
required for POP3, IMAP, and SMTP access to outside e-mail servers, can read and send e-mail through
web-based services.

Almost all web-based e-mail services employ standard Internet e-mail protocols to store and send e-mail.
Many ISPs provide web-based e-mail services that use IMAP as the underlying storage and retrieval
mechanism, but access to their SMTP and IMAP servers from the Internet is usually blocked. Blocked IMAP
and SMTP servers can be accessed only through the web-based e-mail interfaces. Some services, including
Gmail, expose their POP3 servers to allow e-mail clients retrieve messages (Yahoo! Mail does this only for
paying customers). Open IMAP access is slowly becoming more commonplace, with both AOL and Gmail
now providing this service. The vast majority of services tightly control access to SMTP servers for sending e-
mail to prevent abuse by spammers.

46

2.3.3 Message forums

Message forums are on-line services that allow users to write messages to be posted on the equivalent of an
electronic bulletin board and to read messages that others have posted. These messages are usually organized
into categories so that people can find the kinds of messages they are looking for.

For years, on-line message forums existed in various forms. Perhaps the earliest form was the electronic
mailing list. As we mentioned earlier, mailing lists are closed systems: only subscribers can view or post
messages. In some situations, a closed private community may be exactly what the doctor ordered, but if the
goal is to have open public participation, message forums are more appropriate.

Although message forums were originally localized, meaning that messages appeared only on the system
where they were posted, the notion of distributed message forums took hold. Cooperative networks (e.g.,
FIDONET) allowed systems to share messages, by forwarding them to their network “neighbors.” This
enabled users to see all the messages posted by anyone on any member system.

The original Internet-based version of message forums was Netnews. Netnews organizes messages into
newsgroups, which form a large hierarchy of topics and categories. Among the main divisions are comp (for
computing-related newsgroups), sci (for scientific newsgroups), soc (for socially oriented newsgroups), talk
(for newsgroups devoted to talk) and alt (an unregulated hierarchy for “alternative” newsgroups). The naming
convention for newsgroups is reminiscent of domain names in reverse, e.g., comp.infosystems.www.

Usenet and UUCP

Netnews existed before the proliferation of the Internet. It grew out of Usenet, an
interconnected network of Unix systems. Before the Internet took hold, Unix systems
communicated with each other over UUCP, a protocol used to transmit mail and news over
phone lines. It has been suggested, only half in jest, that the proliferation of Unix by Bell
Laboratories in the 1980s was an effort by AT&T to increase long-distance phone traffic, since
e-mail and Netnews were transmitted by long-distance calls between these Unix systems.

Today, Netnews is transmitted using an Internet protocol called Network News Transfer Protocol (NNTP).
The NNTP specification is defined in the Internet RFC 977. NNTP clients allow users to read (and post)
messages in newsgroups by connecting to NNTP servers. These servers propagate the newsgroup messages
throughout the world by regularly forwarding them to “neighboring” servers.

Netnews functionality is directly incorporated into browsers such as Mozilla, where it is included in the
Thunderbird component. It is possible to create web applications that provide Netnews access through normal
web browser interactions. Google Groups (originally called Deja News) provides an infrastructure for
accessing current and archived newsgroup messages, using the Google search engine to find desired messages.

On-line forums continue to exist in a wide variety of formats. They are commonly implemented as
database-driven services local to their related web sites. Today, the Netnews protocol is relegated to a niche
role in the on-line forums world, but much can be learned from it when it comes to building collaborative
technology for web applications. For the most part, Netnews functionality has been supplanted by web-based

47

http://comp.infosystems.www

forums and blogging services.

48

2.3.4 Chat and messaging protocols

The Instant Messaging (IM) service of America On-line (now AOL) may be responsible for making the
notion of IM-ing someone part of our collective vocabulary but, long before AOL, there was the talk protocol
which enabled users who were logged in to network-connected Unix systems to talk to each other.

A talk server would run on a Unix machine, waiting for requests from other talk servers. (Since talk was a
bi-directional service, servers had to run on the machines at both ends of a conversation.) A user would invoke
a talk client program to communicate with a person on another machine somewhere else on the network, e.g.,
elvis@graceland.org. The talk client program would communicate with the local talk server, which would ask
the talk server on the remote machine whether the other person is on-line. If so, and if that other person was
accepting talk requests, the remote talk server would establish a connection and the two people would use a
screen-mode interface to have an on-line conversation.

Today, the vast majority of Internet users eschew command-line interfaces and the notion of being logged
in to a particular system to communicate with others (the way people used to connect to AOL or
Compuserve) is alien to most people. A protocol such as talk would not work in its original form in today’s
diverse Internet world.

Efforts to create an open, interoperable Instant Messaging protocol have been unsuccessful thus far.
Proprietary instant-messaging systems (such as those from AOL, Yahoo!, and Microsoft) are exclusive, and
intense competition yields a lack of cooperation between instant messaging providers that further limits the
degree of interoperability we can get from them. Many shareware or open-source client programs for instant
messaging implement multiple protocols to provide access to multiple instant-messaging services. For now,
the best solution would seem to be provided by tools that attempt to connect to the widest variety of services.
The providers of these services make this difficult by keeping their specifications proprietary and updating
them frequently, so it is a struggle to keep ahead of these changes. XMPP (formerly known as Jabber) is an
open source instant-messaging protocol that is gaining traction but has not achieved the popularity of better-
known commercial services.

49

2.3.5 Security and encryption

Virtually all the data we’ve discussed up to this point is transmitted “in the clear,” meaning it is readable as
plain text. A “packet sniffer” (a program that scans a TCP/IP network and collects transmitted data) can easily
retrieve all this data. (Although the packet nature of TCP/IP would require observing programs to reorder
and properly sequence all the gathered packets to make any sense of them, such a task is not difficult.) This
means that all of your network traffic (e-mail, chat messages, Telnet connections, etc.) is available to anyone
with the tools to scan that traffic. Securing your data transmissions means encrypting the data so that a hacker
cannot easily decrypt it without knowing the specific “key” associated with the encryption process.

Secure Shell (SSH) serves as a secure replacement for Telnet, encrypting the traffic that would normally be
exposed in a standard Telnet connection. SSH is more than just an alternative to Telnet. Using public key
authentication and the capability called tunneling, SSH enables sophisticated mechanisms for secure data
transmission.

Public key authentication requires a key pair consisting of a private key and a public key. The basic principle
is that messages encrypted with the public key can only be decrypted with the corresponding private key and
vice versa. The key pair is generated by its owner using a key generation utility that is usually included with
SSH client programs. For an individual user, the private key is kept on the user’s computer at a location
known to the SSH client program. The public key is placed on the server machine at a location known to the
SSH server program. Keys are complex (usually 1024 to 2048 bits in size) and breaking the encryption is
sufficiently difficult to deter most attempts.

In practice, this exchange of keys is bidirectional. A server publishes its public key, often called a “host key.”
Clients connecting with that server download its host key and persist it locally. During subsequent
connections, the server uses its private key to encrypt a message for the client. If the client can successfully
decrypt this message using the downloaded host key, this confirms that the server is the machine it claims to
be.

The SSH server tries to authenticate a user attempting to connect using public key authentication. The
authentication process works as follows:

1. The user attempts to connect to a server using an SSH client.
2. The server sends its host key to the client. If this is the first time it connects to the server, the
SSH client program asks the user whether the new host key should be accepted. If the user accepts,
the host key is added to a local store on the client machine and is compared to the key sent down by
the server the next time a connection is attempted. A disparity may be indicative of a “man-in-the-
middle” attack, in which another machine tries to impersonate the target server.
3. The server sends a random message encrypted with the user’s public key to the client.
4. The client attempts to decrypt the message using the user’s private key.
5. The client then sends the decrypted contents of the message back to the server.
6. The server compares the contents of the returned message with the original content. If the
contents match, this proves that the client knows the private key. This evidence is sufficient for the

50

server to authenticate the user.

If the configuration is correct, connection is seamless. Note that no passwords are transmitted across the
network if this mechanism is employed, although SSH can be configured to allow password access. Password
access is less secure because the password must be transmitted in clear text over the network before the
connection can be established.

A private key may be encrypted with a passphrase, meaning that SSH clients require entry of the passphrase
to decrypt the private key before the connection is attempted. This is safer than password authentication
because the passphrase is not transmitted across the network - the decryption process is local to the client
machine.

SSH connections can provide secure access to a command-line login shell on a remote machine but other
kinds of network traffic also need to be secured. Fortunately, SSH provides a way to do this by tunneling
network traffic through an SSH connection using a technique called port forwarding. This means that
TCP/IP requests bound for a particular port on the client machine are “tunneled” through the secure SSH
connection to a port on the server.

Here is an example using IMAP. If you configure your e-mail client to access e-mail via IMAP on a remote
server, it does not function if traffic to port 143 (the standard IMAP port) is blocked by a router or firewall.
Using the port forwarding options of the SSH protocol, you can establish an SSH connection to the server
that “tunnels” TCP/IP traffic directed to a port on your local client machine (e.g., port 9143) to port 143 on
the remote machine. Instead of telling your IMAP client program that the IMAP server it wants to connect
to has the address associated with the inaccessible remote server, you tell it that the IMAP server is located at
localhost (your local machine) on port 9143. IMAP requests made by your e-mail client are then passed
through from localhost:9143 to port 143 on the remote server via the SSH tunnel.

SSH-tunneling approaches work well for securing individual user connections, but publicly accessible
servers need to employ mechanisms that don’t require users to build their own custom SSH tunnels to retrieve
or send e-mail securely. Secure SMTP, POP, and IMAP services are provided over Transport Layer Security
(TLS), formerly known as Secure Sockets Layer (SSL). More sophisticated e-mail providers offer these secure e-
mail services, even as they continue to provide non-secure services for legacy clients. The secure protocols may
be requested by clients through negotiation at connection time. Alternatively, a provider may elect to offer the
secure version of the service on an alternate port (usually 995 for POP and 993 for IMAP).

51

2.3.6 File server protocols

E-mail and live messaging services represent fleeting, transitory communications over the Internet. Once an
instant message or e-mail message has been read, it is usually discarded. Even forum-based messages, archived
or not, lack a degree of permanence, and posters tend not to treat them as anything more than passing
transient dialogs (or, in some unfortunate cases, monologs). Providing remote access to more persistent
documents and files is a fundamental necessity to enable sharing of resources.

For years before the emergence of the Internet, files were shared using electronic Bulletin Board Systems
(BBS). People would dial into a BBS via a modem and gain access to directories of files to download (and,
sometimes, “drop” directories into which their own files could be uploaded). Various file-transfer protocols
(e.g., Kermit, Xmodem, and Zmodem) were used to enable this functionality over telephone dial-up lines.

To facilitate this functionality over the Internet, the File Transfer Protocol (FTP) was created. An FTP
server operates in a manner similar to an e-mail server. Commands exist to authenticate the connecting user,
provide information about available files, and allow the retrieval of selected files. While e-mail servers limit
access to a preset collection of folders (e.g., the inbox) solely for purposes of downloading messages, FTP
servers also allow users to traverse to different directories within the server’s local file system and to download
files from (and, if authorized, upload files into) those directories. The FTP specification has gone through a
number of iterations over the years. The most recent version is Internet RFC 1579. It describes the process by
which FTP servers make files available to FTP clients.

First, a user connects to an FTP server using an FTP client program. FTP interactions usually require two
connections between the client and server: the control connection passes commands and status responses
between the client and the server; the data connection is the connection over which the data transfers occur.
User authentication occurs over the control connection. Once connected and authenticated, the user submits
commands to set transfer modes, change directories, list the contents of directories, and transfer files.
Whether or not the user can enter specific directories, view directory contents, and download or upload files
depends on the access privileges associated with the user account on the server. Note that the root directory of
the FTP server need not be the same as the root directory of the server machine’s local file system. System
administrators can configure FTP servers so that only a discrete directory subtree is accessible through the
FTP server.

FTP servers can allow open access to files without requiring user authentication, through a service called
anonymous FTP. When an FTP server is configured to support anonymous FTP, a user ID called
“anonymous” is defined that accepts any password. Internet etiquette (often called netiquette) prescribes that
users should provide their e-mail address as the password but this convention is rarely adhered to today. The
system administrator can further restrict the file system subtree that is accessible to anonymous users, usually
providing read-only access (although it is possible to configure a drop folder into which anonymous users can
place files). Most of the FTP archives found on the Internet make use of anonymous FTP to provide open
access to files.

Other file server protocols have come into being over the years, but none has achieved the popularity of

52

FTP. FTP is still very popular, but its use over unsecured connections has fallen into disfavor. Secure FTP
(SFTP), which is nothing but FTP through an SSH tunnel, is the preferred mechanism. With the advent of
next generation distributed peer-to-peer (P2P) file-sharing systems (e.g., LimeWire, BitTorrent), we can
expect to see changes in the file server landscape over the next few years.

53

2.4 And Then Came the Web ...

While FTP provided interactive functionality for users seeking to transfer files across the Internet, it was not a
very user-friendly service. FTP clients, especially the command-line variety, were tedious to use and provided
limited interactivity. Once you traversed to the directory you wanted and downloaded or uploaded your files,
your “user experience” was complete. Even GUI-based FTP clients did not appreciably enhance the
interactivity of FTP.

Other services sought to make the on-line experience more interactive. Gopher was a service developed at
the University of Minnesota (hence the name - Minnesota is the “gopher state”) that served up menus to users.
In Gopher, the items in menus were not necessarily file-system directories, as they were in FTP. They were
logical lists of items grouped according to category, leading the user to other resources. These resources did
not have to be on the same system as the Gopher menu. In fact, a Gopher menu could list both local resources
and resources on other systems, including other Gopher menus, FTP archives, and (finally) files. Again, once
you reached the level of a file, your traversal was complete. There was nowhere else to go, except to retrace
your steps back along the path you just took.

Gopher only caught on as a mainstream Internet service in a limited capacity. Over time, for a variety of
reasons, it faded into the woodwork, in part because a better and more flexible service came along right behind
it. That system married the power of the Internet with the capabilities of hypertext, to offer a superior medium
for user interactivity.

Of course, as you have already figured out, that system is the one promoted by Tim Berners-Lee in the late
1980s and early 1990s, known as the worldwide web. In the next chapter, we discuss the TCP/IP-based
protocol underlying the web - HTTP.

QUESTIONS AND EXERCISES

1. Find and download the Internet RFCs associated with the POP3, SMTP and
FTP protocols.
2. What kind of traffic is sent over ICMP?
3. What is the main difference between TCP and UDP? What kinds of traffic would
be suitable for each? What kinds of traffic would be suitable for both? Provide
examples.
4. If you get your e-mail from a provider that offers a POP3 service, use a “Telnet”
client program to connect to your POP3 server. What POP3 commands would you
use to connect, authenticate, and check for mail? What command would you use to
read a message? To delete a message? To view message headers?
5. Assume you are implementing an e-mail client application (an MUA) for a
handheld device that does not have a persistent connection to the Internet. Which
protocol would you use for reading e-mail? For sending e-mail?
6. Which mode of FTP is used at public FTP sites? How does it differ from a

54

“normal” FTP service?

55

2.5 Bibliography

Barrett, Daniel J. and Silverman, Richard E., 2001. SSH, the Secure Shell: The Definitive Guide. Sebastopol
(CA): O’Reilly & Associates.

Comer, Douglas, 1991. Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture.
Englewood Cliffs (NJ): Prentice-Hall.

Davidson, John 1988. An Introduction to TCP/IP. New York: Springer-Verlag.

Hafner, Katie and Lyon, Matthew, 1996. Where Wizards Stay Up Late: The Origins of the Internet. New York:
Simon & Schuster.

Krol, Ed, 1994. The Whole Internet User’s Guide and Catalog, 2nd Edition. Sebastopol (CA): O’Reilly &
Associates.

Smith, Roderick W., 2002. Advanced Linux Networking. Boston (MA): Addison-Wesley Professional.

Stephenson, Neal, 1999. In the Beginning Was the Command Line. New York: Avon Books.

Wood, David, 1999. Programming Internet E-mail . Sebastopol (CA): O’Reilly & Associates.

56

CHAPTER 3

Birth of the Web: HTTP

IN THIS CHAPTER

• Historical perspective
• The Uniform Resource Locator
• Fundamentals of HTTP
• Better information through headers
• Evolution of the HTTP Protocol

OBJECTIVES

• Offer a historical perspective on the main building blocks of the web.
• Discuss fundamentals of the scheme for addressing web resources.
• Discuss fundamentals of the HTTP protocol.
• Set the stage for learning web technologies based on first principles.

57

3.1 Historical Perspective

3.1.1 CERN: birthplace of the web

For all practical purposes, the web started at CERN back in 1989. That is when Tim Berners-Lee wrote a
proposal for a hypertext-based information management system and distributed it among the scientists at
CERN. Although initially interest in the proposal was limited, it sparked the interest of someone else at
CERN, Robert Cailliau, who helped Berners-Lee reformat and redistribute the proposal, referring to the
system as a “World Wide Web.”

By the end of 1990, Berners-Lee had implemented a server and a command-line browser using the initial
version of the protocol (HTTP) that he designed for this system. By the middle of 1991, this server and
browser were made available throughout CERN. Soon thereafter, the software was made available for
anonymous FTP download on the Internet. Interest in HTTP and the web grew, and many people
downloaded the software. A newsgroup, comp.infosystems.www, was created to support discussion of this
new technology.

By the beginning of 1993, there were about 50 different sites running HTTP servers. This number grew to
200 by the autumn of that year. In addition, since the specification for the HTTP protocol was openly
available, others were implementing their own server and browser software, including GUI-based browsers
that supported typographic controls and display of images.

58

http://comp.infosystems.www

3.1.2 Building blocks of the web

There were three basic components devised by Tim Berners-Lee comprising the essence of web technology:

• a markup language for formatting hypertext documents;
• a uniform notation scheme for addressing accessible resources over the network;
• a protocol for transporting messages over the network.

The markup language that allowed cross-referencing of documents via hyperlinks was the HyperText
Markup Language, or HTML, which we discuss in Chapter 4.

The uniform notation scheme is called the Uniform Resource Identifier (URI). For historic reasons, it is most
often referred to as the Uniform Resource Locator (URL). We cover the fundamentals of the URL specification
in Section 3.2.

The bulk of this chapter is devoted to the inner workings of the transport protocol: HyperText Transfer
Protocol, also known as HTTP. Understanding HTTP is critical to designing efficient web applications. This
will become apparent when we discuss the complex interactions between HTML, XML, and web server
technologies such as the Common Gateway Interface (CGI) and the Servlet API. Understanding HTTP is
also critical to maintaining those applications, as any effort to analyze problems in complex web applications
will demonstrate. Understanding the HTTP messages passed between servers, proxies and browsers leads to
necessary insights into the nature of underlying problems.

59

3.2 Uniform Resource Locator

Tim Berners-Lee knew that one piece of the web puzzle would be a notation scheme for referencing
accessible resources anywhere on the Internet. He devised this notational scheme so that it would be flexible,
so that it would be extensible, and so that it would support other protocols besides HTTP. This notational
scheme is known as the Uniform Resource Locator (URL).

I Am He As You Are He As URL as We Are All Together

Participants in the original World Wide Web Consortium (also known as the W3C) had
reservations about Berners-Lee’s nomenclature. There were concerns about his use of the word
“universal” (originally, URL stood for Universal Resource Locator) and about the way a URL
specified a resource’s location (which could be subject to frequent change) rather than a fixed
immutable name. The notion of a fixed name for a resource came to be known as the URN or
Uniform Resource Name.

A URN would be a much nicer mechanism for addressing and accessing web resources than
a URL. URLs utilize “locator” information that embeds both a server address and a file
location. URNs utilize a simpler human-readable name that does not change even when the
resource is moved to another location. The problem is that URNs have failed to materialize as
a globally supported web standard, so for all practical purposes we are still stuck with URLs.

As a matter of convenience, W3C introduced the notion of the Uniform Resource Identifier
(URI), which was defined as the union of URLs and URNs. “URL” is still the most commonly
used term, though “URI” is what you should use if you are a stickler for formal correctness.
Throughout this book, we favor the more widely accepted term “URL” for the strictly
pragmatic reason of minimizing confusion.

The generalized notation associated with a URL is as follows:

Here is an example of a URL:

Let’s break the URL down into its component parts:

• scheme: This portion of the URL designates the underlying protocol to be used (e.g., http or ftp);
it is followed by a colon and two forward slashes. In the example URL, the scheme is http.
• host: This is the IP address (numeric or DNS-based) for the web server being accessed; it usually
follows the colon and two forward slashes. In the example URL, the host is www.mywebsite.com.
• port: This is an optional portion of the URL designating the port number to which the target web

60

http://www.mywebsite.com

server listens. (The default port number for HTTP servers is 80, but some configurations are set up
to use an alternate port number. When they do, that number must be specified in the URL.) The
port number, if it appears, is preceded by a colon.
• path: Logically speaking, this is the path through the file system from the “root” directory of the
server to the desired document. (In practice, web servers may use aliasing to point to documents,
gateways, and services that are not explicitly accessible from the server’s root directory.) The path
immediately follows the server and port number and, by definition, includes that first forward slash.
In the example URL, the path is /sj/test.
• url-params: This portion of the URL includes optional name-value pairs (“URL parameters”). It
was once rarely used but is now used commonly for session identifiers in application servers
supporting the Java Servlet API. They are useful to protect against some browser actions. For
example, when submitting HTML forms using the HTTP GET method, most browsers substitute
query strings of action URLs with attribute-value pairs (see Section 3.3.4). URL parameters are
preceded by a semi-colon immediately after the path information. In the example URL, the URL
parameter is id=8079.
• query-string: This optional portion of the URL contains name-value pairs, which represent
dynamic parameters associated with the request. These parameters are commonly included in links
for tracking and context-setting purposes. They may also be produced from variables in HTML
forms. If present, the query string is preceded by a question mark. Equals signs (=) separate names
and values, and ampersands (&) mark the boundaries between name-value pairs. In the example
URL, the query string is name=bob&x=true.
• anchor: This optional portion of the URL is a reference to a positional marker within the
requested document, like a bookmark. If present, it is preceded by a hash mark or pound sign (“#”).
In the example URL, the anchor is label.

The URL notation here applies to most protocols (e.g., http, https, and ftp). However, some protocols
employ different notations (e.g., mailto:rich.rosen@mycompany.com).

61

3.3 Fundamentals of HTTP

HTTP is the foundation protocol of the web. The most current version of the HTTP protocol is HTTP/1.1,
which is documented in Internet RFC 2616. Web servers and browsers exchange information using the
HTTP protocol, which is why web servers are often called HTTP servers. Similarly, web browsers are
sometimes referred to as HTTP clients, but their functionality goes beyond HTTP support.

It was Tim Berners-Lee’s intent that web browsers should enable access to a wide variety of content, not
just content accessible via HTTP. Thus, even the earliest web browsers were designed to support other
protocols including FTP and Gopher. Today, web browsers support not only HTTP, FTP, and local file
access, but e-mail and Netnews as well. When we refer to an HTTP client, the statements we make are
applicable to browsers, proxies, and other custom HTTP client programs.

HTTP Proxies

HTTP proxies act as both servers and clients, making requests to web servers on behalf of
other clients. Proxies enable HTTP transfers across firewalls. They also provide support for
caching of HTTP messages and filtering of HTTP requests. They fill a variety of other
interesting roles in complex environments.

HTTP is an application-level protocol in the TCP/IP protocol suite, using TCP as the underlying
Transport Layer protocol for transmitting messages. The HTTP protocol uses the request - response paradigm,
which basically means that an HTTP client program sends an HTTP request message to an HTTP server,
which returns an HTTP response message. The structure of these request and response messages is similar to
that of e-mail messages, in that they consist of a group of lines containing message headers, followed by a blank
line, followed by a message body.

HTTP is a stateless protocol, which does not rely on a persistent connection for communication logic. An
HTTP transaction consists of a single request from a client to a server, followed by a single response from the
server back to the client.

Keep It Simple!

HTTP is a very simple protocol, which is both a limitation and a source of strength. Many
people in the industry criticized HTTP because it was a simple stateless protocol with limited
functionality, but it is HTTP that took the world by storm while more sophisticated protocols
never found their momentum.

62

3.3.1 Request - response paradigm

First and foremost, HTTP is based on the request-response paradigm: browsers (and possibly proxies) send
messages to HTTP servers, which generate messages that are sent back to the browsers. The messages sent to
HTTP servers are called requests and the messages generated by the servers are called responses.

In practice, servers and browsers rarely communicate directly - there are one or more proxies in between. A
connection is defined as a virtual circuit (see Figure 3.1) that is composed of HTTP agents, including the
browser, the server, and intermediate proxies participating in the exchange.

63

3.3.2 Stateless protocol

HTTP is a stateless protocol, which contrasts with stateful protocols, such as FTP, SMTP, and POP. When a
protocol is stateful, sequences of related commands are treated as a single interaction. The server must
maintain the “state” of its interaction with the client throughout the transmission of successive commands,
until the interaction is terminated. A sequence of transmitted and executed commands is often called a session.

Stateful Internet protocols manage their sessions within the scope of a single persistent connection. It is
common to have multiple sessions during the course of a single connection. A session may be terminated
without terminating the connection, but terminating the connection means all associated sessions are
simultaneously terminated. Stateful protocols require persistent connections, but the use of persistent
connections alone does not necessarily mean that a protocol is stateful.

Figure 3.1 The request-response virtual circuit.

In contrast, each HTTP exchange consists of a single request and a single response. Thus, HTTP clients
and servers are not required to maintain state between transmitted commands.

Persistence and State

Defining HTTP as a stateless protocol makes things simpler, but it also imposes limitations on
the capabilities of web applications. Prior to HTTP/1.1, the lifetime of a connection was
limited to a single request-response exchange. This meant that there was no way to “batch”
related requests together - for example, to retrieve an HTML page and all the embedded
images in the course of a single connection. This also meant that there was no way to maintain
persistent information about a “session” of successive interactions between a client and server.

HTTP/1.1 assumes that the connection remains in place until it is broken, or until HTTP
servers or clients request that it be broken. This makes it possible to address the “batching”
issue. However, the connection is maintained on a “best-effort” basis, which means that
persistent connections cannot be used to maintain state across requests.

64

We come back to the technicalities of establishing and breaking HTTP connections in
Section 3.5. In Section 3.4.4, we discuss the evolution of cookies as a mechanism for state and
session management in web applications.

65

3.3.3 Structure of HTTP messages

HTTP messages (both requests and responses) have a structure similar to e-mail messages; that is, they
consist of a block of lines comprising the message headers, followed by a blank line, followed by a message body.
However, HTTP messages are not designed for human consumption and have to be expressive enough to
control HTTP servers, browsers, and proxies. This requires quite a bit of sophistication.

E-mail Messages vs HTTP Messages

E-mail messages are intended to pass information directly between people. Thus, both the
message headers and the body tend to be “human-readable.” E-mail messages (originally, at
least) had message bodies that consisted simply of readable plain text, while their message
headers included readable information, such as the sender’s address and the subject.

Over time, the structure of e-mail messages became more sophisticated, in part to provide
support for MIME functionality. Headers were added to control decompression, decoding, and
reformatting of message content. In addition, multi-part messages were introduced, allowing
messages to have multiple independent sections (often corresponding to a body and a set of
attachments).

When HTTP servers and browsers communicate with each other, they perform
sophisticated interactions, based on headers as well as body content. Unlike e-mail messages,
HTTP messages are not intended to be directly human-readable.

Another important difference is that HTTP request and response messages begin with a
special line that does not follow the standard header format. For requests, this line is called the
request line and for responses, it is called the status line.

Let us start with a very simple example: loading a static web page residing on a web server. A user may
manually type a URL into a browser, click on a hyperlink found within the current page displayed in the
browser, or select a bookmarked page to visit. In each of these cases, the desire to visit a particular URL is
translated by the browser into an HTTP request with the following structure:

The first, request, line contains a number of fields:

• METHOD represents one of several supported request methods, chief among them GET and
POST.
• The /path-to-resource field represents the path portion of the requested URL.
• The version-number field specifies the version of HTTP used by the client.

66

After the first line we see a list of HTTP headers, followed by a blank line, often called a <CR><LF> (for
“carriage return and line feed”). The blank line separates the request headers from the body of the request. The
blank line is followed (optionally) by a body, which is in turn followed by another blank line indicating the end
of the request.

If the requested URL is http://www.mywebsite.com/sj/index.html, the following code box shows a
simplified version of the HTTP request that would be transmitted to the web server at www.mywebsite.com:

Note that the request ends with a blank line. In the case of a GET request, there is no body, so the request
simply ends with this blank line. Also, note the presence of a Host header. (We discuss headers in detail in
Section 3.4.)

The server, upon receiving this request, attempts to generate a response. An HTTP response has the
following structure:

The first, status, line contains the HTTP version, followed by a three-digit status code and a brief human-
readable explanation of the status code. Here is a simplified version of the HTTP response that the example
server would send back to the browser, assuming that the requested file exists and the requestor is authorized
to access it:

The request was processed successfully, so the status line shows the success code (200) and a rather brief
explanation of this status (OK). Note the presence of header lines within the response, followed by a blank
line, followed by a block of text. (We see later how a browser figures out that this text is to be rendered as
HTML.)

The process of transmitting requests and responses between browsers and servers is rarely this simple. For

67

http://www.mywebsite.com/sj/index.html
http://www.mywebsite.com

instance, HTML pages may contain references to other accessible resources, such as images, Java applets, and
multimedia objects (audio, video, Flash/Flex). Clients that support the rendering of images, the execution of
applets, and the presentation of multimedia objects must parse the retrieved HTML page to determine what
additional resources are needed to render the page, and then generate HTTP requests to retrieve these
additional resources.

Consider a user who requests http://www.cs.rutgers.edu/~shklar/. In Figure 3.2a, the browser sends a GET
request to the server, which sends back a response and the browser displays the results (Figure 3.2b). The
response contains a reference to an image. The browser creates a GET request for the image and sends it to
the server, which sends the image back (Figure 3.2c). The browser then displays the image to the user (Figure
3.2d).

68

http://www.cs.rutgers.edu/~shklar/

3.3.4 Request methods

There are a variety of request methods specified in the HTTP protocol. The most basic ones defined in
HTTP/1.1 are GET, HEAD, and POST. In addition, there are the less commonly used PUT, DELETE,
TRACE, OPTIONS, and CONNECT.

Figure 3.2 Sequence of requests and responses to load a simple web page.

Method to Their Madness

HTTP/1.1 servers are not obliged to implement all the request methods. At a minimum, any
general-purpose server must support the methods GET and HEAD. All other methods are
optional, though you’d be hard-pressed to find a server in common usage today that does not
support POST requests. Most of the newer servers also support the PUT and DELETE
methods.

Servers may implement custom methods and define constraints and processing behavior for
them. This approach only makes sense for closed environments and is rarely used.

69

Figure 3.3 A web form (a) displayed in a browser and (b) the HTML that creates the form.

Request methods impose constraints on the message structure. Specifications that define how servers
should process requests, including the Common Gateway Interface (CGI) and the Java Servlet API, include
discussions of how different request methods should be treated.

GET method

GET is the simplest of the request methods. When you type a URL in your browser, follow a bookmark, or
click on a hyperlink to visit another page, the browser uses the GET method when making the request to the
web server.

GET requests date back to the very first versions of HTTP. A GET request does not have a body and,
until version 1.1, was not required to have headers. (HTTP/1.1 requires that the Host header should be
present in every request, in order to support virtual hosting, which we discuss in Section 3.5.1.)

Let’s take a look at the request that is submitted by an HTTP/1.1 browser when you fill out a simple
HTML form to request a stock quote. When we enter a value into the form (see Figure 3.3a), the browser
constructs a URL comprised of the action field from the form (see Figure 3.3b) followed by a query string
containing all of the form’s input parameters and the values provided for them.

The query string is separated from the rest of the URL by a question mark. Thus, if the user enters
“YHOO”, the browser constructs the URL http://finance.yahoo.com/q?s=YHOO and the submitted request
is as follows (some optional headers are omitted for simplicity):

The response that comes back from the server looks something like this:

70

http://finance.yahoo.com/q?s=YHOO

POST method

The fundamental difference between GET and POST requests is that POST requests have a body: content
that follows the block of headers, with a blank line separating the headers from the body. Going back to the
sample form in Figure 3.3, let’s change the request method to POST. Notice that the browser now puts form
parameters into the body of the message, rather than appending them to the URL as part of the query string:

The response that arrives from finance.yahoo.com happens to be the same as when using the GET method,
but only because the designers of the server application decided to support both request methods in the same
way:

Note that we removed most of the optional headers in the GET and POST requests and the server
responses to concentrate on the most essential communication parameters.

GET vs POST

Many web applications are sensitive to the request method employed when accessing a URL.
Some applications may accept one request method but not another. Others may perform
different functions depending on which request method is used.

For example, some JAVA EE application developers implement Java servlets that rely on the
GET method to display an input form. The action field of the form references the same servlet
through the same URL, but using the POST method. The application may be designed to
display a form when it receives a request using the GET method and to process the form (and
return the results of the processing) when it receives a request using the POST method.

71

http://finance.yahoo.com

HEAD method

Requests that use the HEAD method are processed similarly to requests that use the GET method, except
that the server sends back only headers in the response. This means the body of the response is not sent back
and only headers are available to the client. This may be sufficient to enable the client to make decisions about
further processing and may reduce the overhead associated with future requests that return the actual content
in the message body.

If we were to revisit the sample form in Figure 3.3 and change the request method to HEAD, we would
notice that the request did not change (except for the word HEAD rather than GET), and the response
contains the same headers as before but no body.

Historically, HEAD requests were often used to support caching. A browser can use a cached copy of a
resource (rather than going back to the original source to re-request the content) if the cache entry was created
after the date that the content was last modified. If the creation date for the cache entry is earlier than the
content’s last modification date, then the browser should retrieve a “fresh” copy of the content from the
source.

Suppose we want to look at a page that we visit regularly in our browser (e.g., Leon’s home page). If we
have visited this page recently, the browser will have a copy of the page stored in its cache. The browser can
determine whether it needs to re-retrieve the page by first submitting a HEAD request:

The response comes back with a set of headers, including content modification information:

As you can see from the response, this is a very old page. The browser (or some other HTTP client) can
compare the content modification date with the creation date of the cache entry, and resubmit the same
request with the GET method if the cache entry is obsolete. We save bandwidth when the content does not
change by making a HEAD request. Since responses to HEAD requests do not include the message body,
which contains the content, the data transfer overhead is smaller than with the GET request. On the flip side,
when the content does change, it takes two requests instead of one to retrieve the content (a HEAD request
to discover the change and a GET request to retrieve new content).

Today, more efficient ways to support caching are available (see Sections 3.4.2 and 3.5.2). The HEAD
method is still very useful for implementing change-tracking systems, testing and debugging new applications,
and discovering server capabilities.

72

73

3.3.5 Status codes

The first line of a response is the status line, consisting of the protocol and its version number, followed by a
three-digit status code and a brief explanation of that status code. The status code tells an HTTP client
(browser or proxy) either that the response was generated as expected, or that the client needs to perform a
specific action, which may be further parameterized via information in the headers. The explanation portion
of the line is for human consumption: changing it or omitting it does not cause a properly designed HTTP
client to change its actions.

HTTP/1.1 defines five categories of response messages based on their first character:

• Status codes that start with “1” are classified as informational.
• Status codes that start with “2” indicate successful responses.
• Status codes that start with “3” tell the client to perform additional actions (e.g., redirection).
• Status codes that start with “4” represent client request errors or special conditions.
• Status codes that start with “5” represent server errors.

Informational status codes (1xx)

These status codes serve solely informational purposes. They do not denote success or failure of a request, but
rather impart information about its further processing. Servers use the status code of 100 to notify clients that
they may continue with a partially submitted request (e.g., submit a body after the initial submission of POST
headers). Clients can indicate their intent to partially submit a request by including the Expect: 100-continue
header. A server can examine such requests, determine whether it is capable of satisfying them, and send an
appropriate response. If the server is capable of satisfying the request, the response contains a status code of
100:

If the server cannot satisfy the request, it sends a response with a status code indicating a client request error
(a code starting “4”).

Successful response status codes (2xx)

The most common successful response status code is 200, which indicates that the request was successfully
completed and that the requested resource is being sent back to the client:

74

Status code 201 indicates that the request was satisfied and that a new resource was created on the server.

Redirection status codes (3xx)

Status codes starting with a “3” indicate that additional actions are required to satisfy the original request.
Normally this involves a redirection: the browser is instructed to resubmit the request to another URL.

For example, 301 and 302 both instruct the HTTP client to look for the originally requested resource at the
new location specified in the Location header of the response. The difference between the two is that 301 tells
the client (and proxies) that the resource has moved permanently and that it should always look for that
resource at the new location. 302 tells the client that the resource has moved temporarily, and to consider this
relocation a one-time deal, just for purposes of this request. In either case, the client should, immediately
upon receiving a 301 or 302 response, construct and transmit a new request “redirected” at the new location.

Redirections happen all the time, often unbeknownst to the user. Browsers are designed to respond silently
to redirection status codes, so that users never see redirection happen. Some browsers either do not support
redirection or allow users to disable the redirection temporarily for debugging and other purposes. To remain
compatible with such browsers, web servers can include a message body that explicitly references a link to the
new location. This affords the user an opportunity to follow the link manually.

An interesting example of redirection occurs when a user enters a URL specifying a directory, but leaves off
the terminating slash. To visit Leon’s web site at Rutgers University, you could enter
http://www.cs.rutgers.edu/~shklar in your browser. This would result in the following HTTP request:

But ~shklar is a directory on a Rutgers web server, not a file. Web servers are designed to treat a URL
ending in a slash as a request for a directory. Such requests may, depending on the server configuration, return
either a file with a default name, e.g., index.html, if it exists or a listing of the directory’s contents. In either
case, the web server must first redirect the request, from http://www.cs.rutgers.edu/~shklar to
http://www.cs.rutgers.edu/~shklar/, in order to make the browser aware of the proper location:

75

http://www.cs.rutgers.edu/~shklar
http://www.cs.rutgers.edu/~shklar
http://www.cs.rutgers.edu/~shklar/

Note that the body of the response would not be displayed by browsers that support redirection. Browsers
that do not support redirection would display the HTML body leaving it up to the user to follow the link to
the new location.

As we demonstrate in Chapter 7, pages that reference external objects through relative URLs may not
render correctly, unless the browser knows the proper base URL. A missing slash would result in the browser
omitting the trailing directory from the base URL, making it impossible to resolve relative URLs correctly
within the body of the response.

Remember the Slash!

This example offers a valuable lesson: if you are trying to retrieve a directory listing (or the
default page associated with a directory), don’t forget the trailing “/”. When manually visiting a
URL representing a directory in your browser, you may not even notice the redirect and extra
connection resulting from omitting the trailing slash. However, when your applications
generate HTML pages containing links to directories, forgetting to add that trailing slash
within these links may double the number of requests sent to your server.

Today’s sophisticated proxies react to the 301 status by updating internal relocation tables, so that in the
future they can submit the relocation response without contacting the destination server. This may sometimes
lead to unexpected behavior when server applications are designed without proper regard for differences
between 301 and 302 status codes. A typical example is redirecting users to the login page when they are
trying to access a protected URL. It is common to include the original URL as a query string parameter.
Applications can use this parameter to send users back to the original URL once their credentials are verified.
Unfortunately, if the server uses 301 to redirect to the original page, the redirection may be cached. As a
result, users may continue to be redirected to the login page every time they go to the original URL, even after
they have obtained the credentials.

Imagine that you are a webmaster and you started getting complaints from some users that they cannot
login. Neither you nor your quality assurance (QA) team can reproduce it. How long will it take you to figure
out that the complainers access the Internet through a caching proxy that was upgraded and is now caching
301 redirections?

Client request error status codes (4xx)

76

Status codes that start with “4” indicate an abnormal condition with the client request. It can be a malformed
request (400 Bad Request), an authorization challenge (401 Not Authorized), access denial (403 Forbidden),
or the server’s inability to find the requested resource (404 Not Found). Although 400, 401, 403, and 404 are
the most common status codes in this category, other less common status codes are quite interesting. For
example, if the server is not able to manage partially submitted requests using the Expect: 100-continue
mechanism, it is supposed to respond with 417:

In another example, the client might use the If-Unmodified-Since header to request a resource only if it has
not changed since a specific date:

Since this resource has changed, the server sends back the 412 Precondition Failed response:

Server error status codes (5xx)

Status codes that start with “5” indicate a server problem that prevents it from satisfying an otherwise valid
request (e.g., 500 Internal Server Error or 501 Not Implemented).

Status codes represent a powerful means of controlling browser and proxy behavior. There are a large
number of different status codes representing different response conditions. Familiarity with status codes is
critical when implementing HTTP servers, and it is just as critical when building advanced web applications.

77

3.4 Better Information Through Headers

As we already know, HTTP headers are a form of message metadata. Enlightened use of headers makes it
possible to construct sophisticated applications that establish and maintain sessions, set caching policies,
control authentication and authorization, and implement business logic. The HTTP protocol specification
makes a clear distinction between general headers, request headers, response headers, and entity headers.

General headers apply to both request and response messages, but do not describe the body of the message,
for example:

• The Date header specifies the time and date that this message was created.
• The Connection header indicates whether the client or server that generated the message intends
to keep the connection open. Note that keep-alive is the default setting for HTTP/1.1. It is often
used for backward compatibility with HTTP/1.0 servers and proxies.
• The Warning header stores text for human consumption, something that would be useful when
tracing a problem:

Request headers allow clients to pass additional information about themselves and about the
request, for example:

• The User-Agent header identifies the software (e.g., a web browser) responsible for making the
request.
• The Host header was introduced to enable a single web server to service multiple domains (see
Section 6.3.1).
• The Referer header provides the server with context information about the request. If the request
came about because a user clicked on a link found on a web page, the header is set to the URL of
that page.
• The Authorization header is transmitted with requests for resources that are restricted only to
authorized users. Browsers include this header in follow-up requests after being notified of an
authorization challenge via a response with a 401 status code and prompting the user for credentials
(i.e., userid and password). Once the server accepts the credentials (as indicated by a successful status
code), the browser continues to include them in all further requests that access resources within the
same authorization realm. Note that the expiration of authorization credentials is browser-specific.
For more information, see Section 3.4.3).

78

Response headers help the server to pass additional information about the response that
cannot be inferred from the status code alone:

• The Location header specifies a URL toward which the client should redirect its original request.
It always accompanies the 301 and 302 status codes that direct clients to the new location.
• The WWW-Authenticate header accompanies the 401 status code that indicates an authorization
challenge. The value in this header specifies the protected realm for which proper authorization
credentials must be provided before the request can be processed. In the case of a web browser, the
combination of the 401 status code and the WWW-Authenticate header causes users to be
prompted for authentication credentials (i.e., userid and password).
• The Server header is not tied to a particular status code. It is an optional header that identifies the
server software.

Entity headers describe either message bodies or (in the case of request messages that have no
body) target resources. Common entity headers include:

• The Content-Type header specifies the MIME type of the message body’s content.
• The Content-Length header provides the length of the message body in bytes. It is optional for
response messages and required for requests that have a body. When included in a response, it may
be used by browsers to impart information about rendering progress. Without this header, the
browser can only display how much data has been downloaded. When it is included, the browser
can display the amount of data as a percentage of the total size of the message body.
• The Last-Modified header, when present in a response, provides the last modification date of the
content that is transmitted in the body of the message. It is critical for the effective functioning of
browser and proxy caching mechanisms.

79

3.4.1 Support for content types

So far we have concentrated on message metadata, and for a good reason: understanding metadata is critical to
the process of building applications. Still, somewhere along the line, there’d better be some content. After all,
without content, web applications would have nothing to present for end users to see and interact with.

You have probably noticed that, when it comes to content you view on the web, your browser might do one
of several things. It might:

• render the content as a text page or an HTML page;
• present content inline (within the browser window) through a plug-in;
• launch a helper application capable of presenting non-HTML content;
• get confused into showing the content of an HTML file (or worse, a server-side script) as plain
text without attempting to render or execute it.

What is going on? Obviously, browsers do something to determine the content type and to perform actions
appropriate for that type.

HTTP borrows its content typing system from Multipurpose Internet Mail Extensions (MIME). MIME is
the standard that was designed to help e-mail clients to display non-text content.

Extending MIME

HTTP has extended MIME and made use of it in ways that were never considered by its
original designers. Still, the use of MIME means that web browsers and e-mail clients have
much in common, which is why it was so natural to integrate the two.

As in MIME, the data type associated with the body of an HTTP message is defined via a two-layer
ordered encoding model, using the Content-Encoding and Content-Type headers. In other words, for the
body to be interpreted according to the type specified in the Content-Type header, it has to first be decoded
according to the encoding method specified in the Content-Encoding header.

In HTTP/1.1, valid settings for the Content-Encoding header are gzip, for content encoded with the
GNU zip program, compress, for content encoded with the Unix compress program, or deflate, for content
encoded with the zlib format documented in Internet RFCs 1950 and 1951. (The HTTP/1.0 settings x-gzip
and x-compress are equivalent to the HTTP/1.1 settings gzip and compress. HTTP/1.1 servers and browsers
are required to support HTTP/1.0 settings for backward compatibility.)

Obviously, if web servers encode content using these encoding methods, web browsers (and other clients)
must be able to perform the reverse operations on encoded message bodies prior to rendering or processing
the content. When the web server includes the Content-Encoding: gzip header with the response, the
browser knows to decode the encoded content prior to presentation. For example, a browser is intelligent
enough to open a compressed document file (e.g., test.doc.gz) and automatically invoke Microsoft Word to let
you view the original test.doc file.

The Content-Type header is set to a media type that is defined as a combination of a type, a subtype, and
attribute-value pairs:

80

http://test.doc.gz
http://test.doc

The most common example is:

The type is set to text and the subtype to html, which tells the browser to render the message body as an
HTML page. Another example is:

Here the subtype is plain. The parameter string is passed to whatever client program ends up processing the
body whose content type is text/plain. The parameter may have some impact on how the client program
processes the content. If the parameter is not known to the program, it is ignored. Some other examples of
MIME types are text/xml and application/xml for XML content, application/pdf for Adobe Portable Data
Format (PDF), and video/quicktime for QuickTime videos.

Since MIME was introduced to support multimedia transfers over e-mail, it is not surprising that it
provides for the inclusion of multiple independent entities within a single message body. In the e-mail
context, these multipart messages usually take the form of a textual message body plus attachments.

The multipart structure is very useful for HTTP transfers in both directions (client-to-server and server-to-
client). In the client-to-server direction, form data entered through a browser can be accompanied by client-
side file content that is transmitted to the server. We discuss multipart messages used for submitting HTTP
requests via HTML forms in Chapter 6.

In the server-to-client direction, a web server can implement primitive image animation by feeding the
browser a multipart sequence of images. Netscape used to provide an example of a primitive image animation
technique that generates a stream of pictures of Mozilla (the Godzilla-like dragon that was the mascot of the
original Netscape project). The original description and demonstration on the Netscape site are no longer
available. We have reproduced them on our web site at http://www.webappbuilders.com/demo/pushpull. It is
based on requesting a stream of images from a server application:

The response is a multipart/x-mixed-replace message. This content type instructs the browser to render
enclosed image bodies one at a time but within the same screen real estate. The individual images are encoded
and separated by the boundary string specified in the header:

81

http://www.webappbuilders.com/demo/pushpull

Message typing is necessary to help both servers and browsers determine proper actions in processing
requests and responses. Browsers use types and sub-types either to select a proper content-rendering module
or to invoke a third-party tool (e.g., Microsoft Word). Multipart-rendering modules control recursive
invocation of proper rendering modules for the body parts. In the example above, the browser’s page-
rendering module invokes the browser’s image-rendering module once per image, passing it the same screen
location for each image.

Server-side applications use type information to process requests. For example, consider a server-side
application responsible for receiving files from a browser and storing them locally. This application requires
type information in order to separate file content from accompanying form data that defines the file name and
target location.

82

3.4.2 Caching control

HTTP caching is a set of mechanisms allowing HTTP responses to be held in some form of temporary
storage medium, as a means of improving application performance. Instead of satisfying future requests by
going back to the original data source, the saved copy of the data can be used. This eliminates the overhead of
re-executing the original request and greatly improves server throughput.

Three types of caching are employed in web application environments: server-side caching, browser-side
caching, and proxy-side caching. In this section, we deal with browser-side and proxy-side caching, leaving
server-side caching for Chapter 6.

Take a Walk on the Proxy Side

In the real world, HTTP messages are rarely passed directly between servers and browsers.
Most commonly, they pass through intermediate proxies. These proxies perform a variety of
functions in the web application environment, including the relaying of HTTP messages
through firewalls and supporting the use of server farms (conglomerations of server machines
that look to the outside world as if they have the same IP address or host name).

Admittedly, proxies sit in the middle, between servers and browsers, so it may seem silly to
talk about “proxy-side” caching. Even though the wording may seem strange, do not dismiss
the notion of proxy-side caching as some sort of anomaly.

When is the use of a cached response appropriate? This is a decision usually made by the server or by web
applications running on the server. Many requests arrive at a given URL, but the server may deliver different
content for each request, as the underlying source of the content is constantly changing. If the server “knows”
that the requested content is relatively static and is not likely to change, it can instruct browsers, proxies, and
other clients to cache that particular response. If the content is so static that it is never expected to change, the
server can tell its clients that the response can be cached for an arbitrarily long period. If the content has a
limited lifetime, the server can still make use of caching by telling its clients to cache the response but only for
that limited period. Even if the content is constantly changing, the server can make the decision that its
clients can tolerate out-of-date content for a limited time.

Web servers and server-side applications are in the best position to judge whether clients should be allowed
to cache their responses. There are two mechanisms for establishing caching rules, one for HTTP/1.0 and the
other for HTTP/1.1. Because there are web servers and clients that still support only HTTP 1.0, any attempt
to support caching must provide for both mechanisms in what is hopefully a backward-compatible fashion.

HTTP/1.1 provides a mechanism for enforcing caching rules based on the Cache-Control header, which
can take the following values:

• The public setting removes all restrictions and authorizes both shared and user-localized caching
mechanisms to store the response.
• The private setting indicates that the response is directed at a single user and should not be stored
in a shared cache. For instance, if two authorized users both make a secure request to a particular

83

URL to obtain information about their private accounts, obviously it would be a problem if an
intermediate proxy decided it could improve performance for the second user by sending a cached
copy of the first user’s response.
• The no-cache setting indicates that neither browsers nor proxies are allowed to cache the response.
However, there are a number of options associated with this setting that make it somewhat
complicated. The header may list the names of specific HTTP headers that are not cached (i.e., that
must be re-acquired from the server that originated the cached response). If such headers are listed,
then the response may be cached, excluding those listed headers.

HTTP/1.0 browsers and proxies are not guaranteed to obey instructions in the Cache-Control header,
which was first officially introduced in HTTP/1.1. For practical purposes, this means that the mechanism is
only reliable in controlled environments where all the clients are compliant with HTTP/1.1. In the real world,
there are still HTTP/1.0 browsers and proxies around.

A partial solution is to use the deprecated Pragma header, which has only one defined setting: no-cache.
When used with the Cache-Control header, it prevents HTTP/1.0 browsers and proxies from caching the
response. However, this alone may not have the desired effect on clients that are compliant with HTTP/1.1,
since the Pragma header is deprecated and may not be properly supported in those clients. Thus, a more
complete backward-compatible solution would be to include both Pragma and Cache-Control headers, as in
the following example:

This response is guaranteed to prevent HTTP/1.0 agents from caching it altogether and to prevent
HTTP/1.1 agents from storing it in a shared cache. HTTP/1.1 agents may or may not ignore the Pragma:
no-cache header. If they don’t ignore it, efficiency will suffer but at least we played it safe to ensure that we do
not implement a potentially dangerous caching policy.

84

3.4.3 Security

Authentication is the process of verifying user identity; authorization is the process of checking whether the
user has access to a particular resource. HTTP provides built-in support for basic authentication , where user
credentials (userid and password) are transmitted via the Authorization header as a single encoded string.
Since this string is simply encoded (not encrypted), this mechanism is only safe if performed over a secure
connection. Many web applications implement their own authentication and authorization schemes that go
beyond basic HTTP authentication.

HTTP authentication

It is very easy to tell whether an application is using built-in HTTP authentication or its own authentication
scheme. When a web application is using built-in HTTP authentication, the browser displays its built-in,
pop-up authentication dialog, prompting the user for the credentials, rather than requesting this information
within the page-rendering window.

When built-in HTTP authentication is employed and a request for a restricted resource is sent to a server,
the browser receives the 401 status code indicating that the request is not authorized, as in the following
example:

Having received this response, the browser prompts the user for a userid and password associated with the
realm specified in the WWW-Authenticate header (in this case, Chapter3). The realm name helps users to
find their names and passwords, and serves as a logical organizing principle for access control - designating
which resources require what types of authorization. Web masters can administer web servers to define
realms, associate them with files and directories, and establish userids and passwords that limit access to these
resources. (Note: Mechanisms for defining security realms are server-specific and can vary greatly between
different servers and operating systems.)

In response to the browser prompt, the user specifies a name and password. After collecting this input from
the user, the browser resubmits the original request with the Authorization header. The value of this header is
a string composed of the word Basic (the only type of authentication that is officially supported) and the
colon-separated, base64-encoded representations of the user name and password.

85

Insecurity

Note that the user name and password are encoded but not encrypted. Encryption is a secure
form of encoding, wherein the content can only be decoded if a unique key is known. Simple
encoding mechanisms, like the Base64 encoding used in basic HTTP authentication, can be
decoded by anyone who knows the encoding scheme. Obviously, this is very dangerous when
encoded (not encrypted) information is transmitted over an insecure connection.

Secure connections (using extensions to the HTTP protocol, such as Secure HTTP) encrypt
all transmitted information; thus sensitive information (like passwords) is secure.

It is hard to believe that there are still a large number of web sites - even e-commerce sites -
that transmit passwords over open connections and establish a secure connection only after the
user has logged in!

As a user of the web, whenever you are prompted for your name and password, you should
always check whether the connection is secure. With HTTP-based authentication, you should
check that the URL of the page you are attempting to access uses https (Secure HTTP) for its
protocol. With proprietary authentication schemes, you should check the URL that is
supposed to process your user name and password. For example, with a form-based login, you
should check the URL defined in the action attribute.

As a designer of applications for the web, you have to incorporate these safeguards into your
applications to ensure the security of users’ sensitive information.

The server, having received the request with the Authorization header, attempts to verify the user
credentials. If the userid and password match the credentials for a valid user within that realm, the server
serves the content. The browser associates the authorization credentials with the authorized URL, and uses
them as the value of the Authorization header in future requests to dependent URLs. Since the browser does
this automatically, users are not prompted again until they encounter a resource that belongs to a different
security realm.

Dependent URLs

We say that a URL “depends” on a second URL, if the portion of the second URL up to and
including the last slash is a prefix of the first URL. For example, the URL
http://www.cs.rutgers.edu/~shklar/classes/ depends on the URL
http://www.cs.rutgers.edu/~shklar/. This means that, having submitted authorization
credentials for http://www.cs.rutgers.edu/~shklar/, the browser would know to resubmit those
same credentials within the Authorization header when requesting
http://www.cs.rutgers.edu/~shklar/classes/.

If the server fails to verify the userid and password sent by the browser, it either resends the security
challenge using the status code 401 or refuses outright to serve the requested resource, sending a response with
the status code of 403 Forbidden. The latter happens when the server exceeds a defined limit of security
challenges. This limit is normally configurable and is designed to prevent simple break-ins by trial and error.

We have described the so-called basic authentication that is supported by both HTTP/1.0 and HTTP/1.1.

86

http://www.cs.rutgers.edu/~shklar/classes/
http://www.cs.rutgers.edu/~shklar/
http://www.cs.rutgers.edu/~shklar/
http://www.cs.rutgers.edu/~shklar/classes/

It is a bit simplistic but it does provide reasonable protection - as long as you are transmitting over a secure
connection. Most commercial applications that deal with sensitive financial data use their own authorization
and authentication mechanisms that are not built into HTTP. Commonly, user names and passwords are
transmitted in the bodies of POST requests over secure connections. These bodies are interpreted by server
applications that decide whether to send back content, repeat the password prompt or display an error
message. These server applications don’t use the 401 status code that triggers the built-in authentication
mechanism, though they may choose to use the 403 status code indicating that access to the requested
resource is forbidden.

87

3.4.4 Session support

We have mentioned several times now that HTTP is a stateless protocol. So what do we do if we need to
implement a stateful application? The most obvious example of maintaining state in a web application is the
on-line shopping cart. When you visit an e-commerce site, you view catalog pages describing items, then add
them to your “cart” as you decide to purchase them. When the time comes to process your order, the site
remembers what items you have placed in your cart. How does it know, if HTTP requests are atomic and
disconnected from each other?

To maintain state between HTTP requests, it suffices to provide some mechanism for the communicating
parties to establish agreements for transferring state information in HTTP messages. HTTP/1.1 establishes
these agreements through Set-Cookie and Cookie headers. Set-Cookie is a response header sent by the server
to the browser, setting state information or a session identifier that references a server-side state. Cookie is a
request header transmitted by the browser in subsequent requests to the same (or a related) server. Either it
consists of explicit elements of state information or it is set to a session identifier, which helps to associate
requests with sessions.

Server applications can use the Set-Cookie header as follows:

An attribute - value pair, <name> = <value>, is sent back by the browser in qualifying subsequent requests.
The Max-Age attribute defines the lifetime of the cookie in seconds (in other words, this attribute tells the
browser how long to keep the cookie around). The Expires attribute represents a deprecated mechanism for
defining the lifetime of the cookie by providing its expiration date. The Path and Domain attributes delimit
which requests qualify, by specifying the server domains and URL paths to which this cookie applies. The
Secure attribute tells the browser to forego submitting corresponding Cookie headers except over a secure
connection. Finally, the Version attribute identifies the version of the state management specification. The
absence of this attribute tells browsers to default to the original Netscape specification, which uses the Expires
attribute to set an expiration date instead of the Max-Age attribute to set the time to live.

Servers may instead use the more recently defined Set-Cookie2 header, which is a slightly modified version
of the Set-Cookie header:

As you can see, the main difference is in making it possible to limit the applicability of the cookie further

88

beyond the domain by adding an explicit list of ports.

Cookie2 Confusion

Browsers that support the Set-Cookie2 header use the advanced controls defined for this
header in submitting follow-up Cookie headers. They are supposed to include Cookie2 headers
in their requests to notify servers that they can include either Set-Cookie or Set-Cookie2
headers in their responses.

While the Set-Cookie2 header is a more advanced and flexible version of the Set-Cookie
header, the Cookie and Cookie2 headers have nothing to do with one another. The Cookie2
header does not contain state information. Instead, it is set to the version of the state
management specification supported by the browser.

Domains may be set to suffixes of the originating server’s host name containing at least two periods (three,
for domains other than com, org, edu, gov, mil, and int). The value of the domain attribute must match the
server domain. For example, an application running on cs.rutgers.edu can set the domain to .rutgers.edu, but
not to .mit.edu. A domain value of .rutgers.edu means that this cookie applies to requests destined for hosts
with names of the form *.rutgers.edu. The value for the path attribute defaults to the path of the URL
associated with the server application, but may be set to any path prefix beginning at “/”, which stands for the
server root.

For subsequent requests directed at URLs where the domain, path, and port match, the browser must
include a Cookie header with the appropriate attribute-value pair.

Cookie Jars

Browsers and other HTTP clients must maintain a “registry” of cookies sent to them by
servers. For cookies that are intended to last only for the duration of the current browser
session, an in-memory table is sufficient. For cookies with a defined lifetime, persistent storage
mechanisms are required.

In this example, a server application running on the cs.rutgers.edu server generates a Set-Cookie header of
the following form:

The domain is set to .rutgers.edu and the path is set to /test/. This instructs the browser to include a
Cookie header with the value Name = Leon every time that a request is made for a resource on a Rutgers
server where the URL path starts with /test/. The absence of the expiration date means that this cookie is
maintained only for the duration of the current browser session.

Now let us consider a more complicated example for renting a movie. We start with submitting a
registration by visiting a URL that lets us sign in to a secure movie rental web site. Let us assume we have
been prompted for authorization credentials by the browser and have provided them so that the browser can

89

http://cs.rutgers.edu
http://rutgers.edu
http://mit.edu
http://rutgers.edu
http://rutgers.edu
http://cs.rutgers.edu
http://rutgers.edu

construct the Authorization header:

Once the server has recognized and authenticated the user, it sends back a response containing a Set-
Cookie header with a customer id:

From this point on, every time the browser submits a request directed to https://www.sample-movie.
rental.com/movies/*, it includes a Cookie header containing the customer id:

In this case, we are visiting a page of recommended movies. The server response now contains a movie
recommendation:

Now we request access to the movie. Note that, given the URL, the browser has to include both the userid
and the id of the recommended movie within the Cookie header:

We get back the acknowledgment containing access information for the recommended movie:

Note that the server sends back two new cookie values, CHANNEL and PASSWD, but they are
associated with the URL path /movies/action/. Now, the browser has to include movie access information
with action requests. Note that for such requests the Cookie headers contain values applicable both to
/movies/ and to /movies/action/ paths:

90

http://www.sample-movie.rental.com/movies/*

Requests directed at URLs matching only the /movies/ path do not include attribute - value pairs associated
with the /movies/action/ path:

Poisoned Cookies

Not all HTTP cookies are good for you - some are pure poison. Ill-behaved sites can use
cookies not only to track your behavior, but also to collect and distribute personal information
illicitly and to exploit browser security holes.

The Platform for Privacy Preferences (P3P) defines a self-policing mechanism designed to
restrict browser acceptance of cookies based on declarations made by the originating sites about
their purpose for collecting user information. These declarations are in plain English as well as
XML. XML declarations are the input for generating HTTP headers that control browser
acceptance of cookies. False XML declarations that do not match statements made in plain
English can result in legal liability. (There is more about this in Chapter 7.)

Of course, rogue sites that do not abide by P3P policies are not especially concerned with
legalities. They know they are toast if caught anyway - with or without P3P. So be safe - do
not point your browser to sites that use numeric IP addresses instead of domain names or
domain suffixes you do not recognize. Also, be careful about very long URLs with legitimate
domains owned by ISPs - they can point to poorly controlled hosted environments.

91

3.5 Evolution of the HTTP Protocol

HTTP has evolved a good deal since its inception in the early 1990s. The more it evolves, the more care is
needed to support backward compatibility. Many years have passed since the introduction of HTTP/1.1 but
in the real world, there are still servers, browsers, and proxies that support HTTP/1.0. What’s more, not all
HTTP/1.1-compliant programs properly fall back to the HTTP/1.0 specification when they receive an
HTTP/1.0 message.

In this section, we discuss the reasoning behind some of the most important changes that were introduced
with HTTP/1.1, the compatibility issues that affected protocol designers’ decisions, and the challenges still
facing web application developers in dealing with these issues.

92

3.5.1 Virtual hosting

One of the challenges facing HTTP/1.1 designers was to provide support for virtual hosting, which is the
ability to map multiple host names to a single IP address. For example, a single server machine may host web
sites associated with multiple domains. There must be a way for the server to determine the intended host. In
addition, the introduction of proxies into the request stream creates additional problems in ensuring that a
request reaches its host.

In HTTP/1.0, a request passing through a proxy has a slightly different format from the request ultimately
received by the destination server. As we have seen, the request that reaches the host has the following form,
including only the path portion of the URL in the first line of the request:

Requests that must pass through proxies need to include some reference to the destination server, otherwise
that information would be lost and the proxy would have no idea which server should receive the request. For
this reason, the full URL of the resource is included in the first line of the request, as shown below:

Proxies that connect to the destination server are responsible for editing requests that pass through them, to
remove server information from request lines.

HTTP/1.1 is designed to support virtual hosting. It requires that server information be retained for all
requests because destination servers need to know which of the virtual hosts is responsible for processing the
request. The obvious solution would have been to make HTTP/1.1 browsers and proxies always to include
server information:

This would have been fine except that there are still HTTP/1.0 proxies out there that are ready to cut server
information from request URLs every time they see it. Obviously, HTTP/1.0 proxies do not know anything
about HTTP/1.1 and have no way of making the distinction. Nonetheless, it makes sense to support this
request format for both HTTP/1.1 servers and proxies. (There may come a day when we do not have to worry
about HTTP/1.0 proxies any more. We can only hope)

For now, we need a redundant source of information that is not affected by HTTP/1.0 proxies. This is the
reason for the Host header, which must be included with every HTTP/1.1 request:

93

Whether this request passes through an HTTP/1.0 proxy or an HTTP/1.1 proxy, information about the
ultimate destination of the request is preserved. Obviously, requests with abbreviated URLs (only the path
portion) must be supported as well:

94

3.5.2 Caching support

In Section 3.4.2, we described mechanisms through which servers provide information about caching policies
with responses to browsers, proxies, and other clients. If the supplied headers tell a client that caching is
feasible for this particular response, the client must then make a decision as to whether it should use a cached
version of the response that it already has available, rather than go back to the source location to access the
data.

In HTTP/1.0, the main mechanism for supporting browser-side caching was based on HEAD requests. A
request employing the HEAD method returns exactly the same response as its GET counterpart, but without
the body. In other words, only the headers are present, providing the requestor with all of the response’s
metadata without the overhead of transmitting the entire content. If a client has a cached copy of a previously
requested resource, it is sensible to submit a HEAD request for that resource, check the date provided in the
Last-Modified header, and resubmit a GET request only if the date is later than that of the saved cache entry.
This improves server throughput by eliminating the need for unnecessary retransmission of content. The only
time the actual data has to be retrieved is when the cache entry is out of date. Unfortunately, for frequently
changing data, most HEAD requests would require a follow-up GET request. In the worst-case scenario, we
can double the number of requests without achieving savings on content transmission.

HTTP/1.1 implements a more efficient approach to this problem using two new headers: If-Modified-
Since and If-Unmodified-Since. Going back to an earlier example:

Assuming there is an expired cache entry for this resource that was last modified at 22:28 on April 27,
2008, the browser can send a request for this resource with the If-Modified-Since header set to that date and
time. If the resource has not changed since that point in time, we get back the response with the 304 Not
Modified status code and no body. Otherwise, we get back the body (which may then be placed in the cache,
replacing any existing cache entry for the same resource).

On the flip side, let’s examine the following request where we are attempting to retrieve a historic version of
content, which does not include changes that occurred after 22:28 on April 27, 2008:

For this request, we either get back the unchanged resource or an empty response (no body) with the 412
Precondition Failed status code.

Both headers can be used in HTTP/1.1 requests to eliminate unnecessary data transmissions without the
cost of extra requests.

95

96

3.5.3 Persistent connections

Since HTTP is a stateless protocol, it does not require persistent connections. A connection is supposed to last
long enough for a browser to submit a request and receive a response. Originally, there was no support for
extending the lifetime of a connection beyond a single request-response transaction.

Since the cost of connecting to a server across the network is considerable, there are mechanisms within
existing network protocols for reducing or eliminating that overhead by creating persistent connections. To
improve performance, we need to allow connections to persist across multiple requests, but we should not
depend on persistent connections for application logic.

Early on, developers used workarounds involving multipart MIME messages to get connections to persist
across multiple independent bodies of content. (We saw an example of this when we discussed image
animation using server push via multipart messages.)

Late in the lifecycle of HTTP/1.0, developers of servers and browsers introduced the proprietary
Connection: keep-alive header, as part of a somewhat desperate effort to support persistent connections in a
protocol that was not designed for it. Not surprisingly, it did not work well. Considering all the intermediate
proxies that might be involved in the transmission of a request, there are considerable difficulties in using this
mechanism to keep connections open. Just one intermediate proxy that lacks support for the keep-alive
extension is enough to cause the connection to be broken.

HTTP/1.1 connections are persistent, except when explicitly closed by a participating program via the
Connection: close header. It is entirely legal for a server or a browser to be HTTP/1.1-compliant without
supporting persistent connections as long as they include Connection: close with every message. Theoretically,
including the Connection: keep-alive header in HTTP/1.1 messages makes no sense, since the absence of
Connection: close means that the connection needs to be persistent.

However, there is no way to ensure that all proxies are HTTP/1.1-compliant and know to maintain a
persistent connection. In practice, including Connection: keep-alive does provide a partial solution - it works
for HTTP/1.0 proxies that support it as a proprietary extension. Once again, failure to maintain a persistent
connection may degrade performance but does not have any impact on application behavior.

HTTP/1.1 support for persistent connections includes pipelining requests: browsers can queue request
messages without waiting for responses. Servers are responsible for submitting responses to browser requests
in the order of their arrival. Browsers that support persistent connections must maintain request queues, keep
track of server responses, and resubmit requests that remain on queues if connections are dropped and
reestablished. We discuss HTTP/1.1 support for persistent connections in further detail in Chapter 6.

97

3.6 Summary

In this chapter, we have discussed the fundamental facets of the HTTP protocol. We did not intend it as an
exhaustive discussion of all the protocol’s features, but rather as an overview of the main principles and a case
study for understanding and working with current and future HTTP specifications from the World Wide
Web Consortium. W3C specifications are the ultimate references that need to be consulted when architecting
complex applications.

Understanding HTTP is critical to the design of advanced web applications. It is a prerequisite for utilizing
the full power of Internet technologies that are discussed in this book. Knowledge of the inner workings of
HTTP promotes reasoning from first principles, and simplifies the daunting task of learning the rich variety
of protocols and APIs that depend on its features. We recommend that you return to this chapter as we
proceed with our discussion of web application technologies.

In Chapter 4, we initiate our discussion of markup languages starting with HTML and its roots, moving on
to XML and XML applications in Chapter 5.

QUESTIONS AND EXERCISES

1. Consider the following hyperlink:

What HTTP/1.0 request will be submitted by a browser?

What HTTP/1.1 request will be submitted by a browser?

2. Consider the example in Question 1. Will these requests change if the browser is
configured to contact an HTTP proxy? If yes, how?
3. What is the structure of a POST request? What headers have to be present in
HTTP/1.0 and HTTP/1.1 requests?
4. Use a Telnet client program to submit a request to a web server. Start the Telnet
client and connect to port 80 of the server machine. Build the request by manually
typing it in line by line:

a. Start with a request method (e.g., GET or POST), a URL,
and an HTTP version (e.g. HTTP/1.1).
b. Follow this line with the required Host header and a series of
optional request headers (one header per line).
c. Enter an additional carriage return to end the request with a
blank line.

What do you see in the response that comes back from the

98

server? Try adding and omitting headers, as well as changing the
request method. Observe the changes in the response. What
happens if you omit the Host header?

Repeat the experiment with HTTP/1.0 in the request line.

5. Name two headers that, if present in an HTTP response, always have to be
processed in a particular order. State the order and explain.
6. How can multipart MIME be used to implement “server push”? When is it
appropriate? Construct a sample HTTP response implementing server push using
Multipart MIME.
7. Suppose that a content provider puts up a “ring” of related sites:

Suppose now this provider wants unsophisticated users to remain
“sticky” to a particular site by preventing them from switching to
a different site in the ring more frequently than once an hour. For
example, after a user first accesses
www.site4.provider.hahaha.com, she has to wait for at least an
hour before being able to access another site in the ring but can
keep accessing the same site as much as she wants.

Hints: Use cookies and look elsewhere if you need more than
two or three lines to describe your solution.

8. Remember the example in which the server returns a redirect when a URL
pointing to a directory does not contain the trailing slash? What would happen if the
server did not return the redirect but returned an index.html file stored in that
directory right away? Would that be a problem? If you are not sure about the answer,
come back to this question after Chapter 7.

99

http://www.site4.provider.hahaha.com

3.7 Bibliography

Gourley, David and Totty, Brian, 2002. HTTP: The Definitive Guide. Sebastopol (CA): O’Reilly &
Associates.

Krishnamurthy, Balachander and Rexford, Jennifer, 2001. Web Protocols and Practice. Boston (MA): Addison-
Wesley.

Loshin, Peter, 2000. Big Book of World Wide Web RFCs. San Francisco: Morgan Kaufmann.

Shiflett, Chris, 2003. HTTP Developer’s Handbook. SAMS Publishing.

Thomas, Stephen, 2001. HTTP Essentials. Chichester: John Wiley and Sons Ltd.

Yeager, Nancy and McGrath, Robert, 1996. Web Server Technology. San Francisco: Morgan Kaufmann.

100

CHAPTER 4

HTML and Its Roots

IN THIS CHAPTER

• Standard Generalized Markup Language (SGML)
• Document Type Definitions (DTDs)
• Hypertext Markup Language (HTML)
• HTML rendering

OBJECTIVES

• Discuss SGML and its place in the history of markup languages.
• Discuss the evolution of HTML and prepare readers for XML.
• Discuss the structure of HTML documents.
• Discuss Cascading Style Sheets (CSS) and their role in separating markup from
rendering.

One of the original cornerstones of the web is HTML-asimple markup language whose primary purpose is to
enable cross-referencing of documents through hyperlinks. In this chapter, we discuss HTML and its origins
as an SGML application. We cover SGML fundamentals and show how HTML is defined within the
framework of SGML. We then cover selected HTML and CSS functionality. Dynamic presentation
technologies (including DHTML, JavaScript, and AJAX) are covered in Chapter 8.

Our objective in this chapter is to discuss the capabilities of HTML and related technologies. In the course
of our discussion we provide examples of HTML documents to illustrate selected facets of HTML as a
language. We touch upon CSS and its relationship to HTML, with the goal of explaining the role of both
languages in rendering documents. However, we do not intend this chapter to be an HTML tutorial nor are
we aiming to convey the finer points of page design.

101

Figure 4.1 SGML, XML, and their applications.

It is important to know HTML’s origins in order to understand its place in the overall evolution of markup
languages. Admittedly, SGML is a niche language, though it is certainly one with an extensive history. Thus,
it may not be of interest to every reader. We believe that knowledge of SGML is useful both from a historical
perspective and to better understand the advantages of XML and opportunities presented by XML and
related technologies. However, readers who want to get through the material quickly can skip directly to
Section 4.2, bypassing the details of our SGML discussion.

The eXtensible Markup Language (XML) is the cornerstone of a new generation of markup languages,
which are covered in Chapter 5. Our immediate objective is to understand the relationship of SGML and
HTML with XML, XHTML, and related technologies.

Both SGML and XML are meta-languages for defining specialized markup languages. Figure 4.1
illustrates that XML is a subset of SGML (at least, it was at the time of its initial introduction). As you can
see, both HyTime and HTML are SGML applications, while XHTML, SMIL, SOAP, and WML are
XML applications. Since XML was defined as a subset of SGML, it is theoretically possible to construct
SGML specifications for these languages, but since they are much easier to define using XML, you are not
likely to find SGML specifications for them. We come back to this discussion in Chapter 5.

102

4.1 Standard Generalized Markup Language

HTML did not just appear out of the void. It was defined as an application of the Standard Generalized
Markup Language (SGML) - a language for defining markup languages. SGML was created long before the
advent of the web. SGML’s predecessor, GML, was introduced in 1969 in an IBM research project on
integrated legal information systems. Its goal was to promote file sharing between editorial and information
retrieval systems. Not by accident, GML stands not only for Generalized Markup Language, but also for the
initials of the surnames of its inventors (Charles Goldfarb, Edward Mosher, and Raymond Lorie).

SGML was created by the American National Standards Institute (ANSI) in an effort to define a text
description standard based on GML. The first working draft was published by ANSI in 1980. It took six
drafts until it was declared an industry standard in 1983. Very soon after, it was adopted by the US Internal
Revenue Service and the Department of Defense.

SGML was designed to define annotation and typing schemes that were jointly referred to as markup. Such
markup schemes were originally intended to determine page layouts and fonts. Later, they were extended to
cover all kinds of control sequences that are inserted into text to serve as instructions for formatting, printing,
and other kinds of processing.

SGML was not the first attempt at digital typesetting - people had been using LaTeX, troff, and other
programs that produced all kinds of incompatible proprietary formats. This caused tremendous pains and gave
birth to a great number of conversion programs that never did the job correctly. SGML was the first attempt
to create a language for creating different specialized but compatible markup schemes, which makes SGML a
meta-markup language. As a result, it became quite easy to convert documents in LaTeX and other legacy
formats to HTML and other SGML applications. In fact, as soon as it became clear that only a few
converters were important and that converters to different SGML markups could share code, it became more
practical to achieve decent results.

An SGML application (e.g., HTML) consists of four main parts that all have different roles in defining
syntax and semantics of the documents:

• the SGML declaration, which specifies characters and delimiters that may legally appear in the
application;
• the Document Type Definition (DTD), which defines valid markup constructs and may include
additional definitions such as numeric and named character entities (e.g., " or ");
• a specification that describes the semantics to be ascribed to the markup and can impose additional
syntax restrictions that cannot be expressed in the DTD;
• document instances containing content and markup that each contain a reference to the DTD that
should be used to interpret it.

In this section, we discuss elements of sample SGML applications. Our examples center mainly on the
HTML specification, setting the stage for the rest of the chapter.

DTDéjà Vu

103

Many among you may have encountered DTDs and other related constructs in the context of
XML. Do not get confused - this chapter does not talk about XML. DTDs were first
introduced in SGML and found their way into XML much later. We discuss the
commonalities and differences between SGML and XML DTDs in Chapter 5. For now, keep
an open mind and do not overreact when you see DTDs that look just a little different from
what you may be used to.

104

4.1.1 SGML declaration

The role of the SGML declaration is to set the stage for understanding DTDs that define valid markup
constructs for SGML applications. The declaration has to specify the character set, delimiters, and constraints
on what may be specified in a DTD.

Document character set

The problem of defining a proper character set becomes apparent when you face a screen full of very odd
characters that were perfectly readable when you composed your document on another system. That is when
you realize that “A” is not always an “A” but something incomprehensible if interpreted by a program that has
a different convention for representing characters. The two most commonly used conventions for representing
text are American Standard for Coded Information Interchange (ASCII) and Extended Binary-Coded
Decimal Interchange Code (EBCDIC). ASCII is the one you are probably most familiar with - it is used on
most personal computers. EBCDIC is a format associated with older mainframe-based systems. Within both
systems, there are many permutations, which depend on the country or the application domain.

What is needed is a way to associate the bit combination for a particular character used in the document
with that character’s meaning. It is too verbose to define character meanings directly, which is why SGML
allows them to be defined as modifications to standard character sets. For example, the EBCDIC system
represents capital letters C and D using bit combinations B‘11000011’ (decimal 195) and B’11000100’
(decimal 196). Suppose that we need to represent these characters in the seven-bit character-encoding
standard known as ISO 646. Characters “C” and “D” are encoded in this standard using bit combinations
B‘01000011’ (decimal 67) and B’01000100’ (decimal 68). The SGML declaration for this association looks
like the example shown in Figure 4.2.

In this example, ISO 646 is the base character set. We define two additional characters that are mapped to
characters “C” and “D” of the base set. In addition, we state that the EBCDIC capital letter “E” (decimal 197)
does not occur in the document-abit strange but it may make sense in some bizarre case.

Figure 4.3 contains the character set definition for HTML 4. As we can see, except for the unused
characters, the HTML 4 character set maps directly into the ISO-defined base set. Characters that are
mapped to “UNUSED” (e.g., two characters starting at decimal 11 and 18 characters starting at decimal 14)
must not occur in HTML 4 documents.

Figure 4.2 An SGML character set definition for EBCDIC characters.

105

Figure 4.3 SGML character set definition for HTML 4.

Concrete syntax

The SGML language is defined using “delimiter roles” rather than concrete characters. SGML always refers
to delimiters by their role names. Once it comes to defining the concrete syntax for an application, roles are
associated with character sequences. For example, even though most SGML applications use the </ character
sequence as a delimiter, this sequence is not part of SGML. In practice, the SGML role “etago”, indicating
the start of the end tag is often associated with </ in syntax declarations but it could be associated with [* [/, <
[!, or another bizarre sequence.

It is important to make a clear distinction between the SGML language and the reference concrete syntax that
is also included in the SGML specification. For example, while SGML makes use of delimiter roles, the
reference implementation associates these roles with commonly used character sequences (<, </, >, />, etc.).
SGML applications can defer to definitions included in the reference concrete syntax for convenience. Syntax
declarations also include the following components:

• characters that should not be used in documents (“shunned” characters);
• bit combinations that are mapped to the function characters (SPACE, record start);
• characters that can be used in names and other naming rules;
• reserved keywords that are used within SGML (e.g., PCDATA);
• additional constraints (e.g., the maximum name length).

Figure 4.4 contains the partial syntax definition for HTML 4. It starts with the enumeration of binary
codes for characters that should be avoided in HTML documents. The format of the BASESET and
DESCSET sections is the same as that used in defining character sets (see Figure 4.3) but here it applies to
characters that may be used for syntax references. The FUNCTION section defines bit combinations for
characters that denote record start, record end, space, and tab functions. The NAMING section does not provide
for any additional name start characters (apart from the defined minimum set - lower and upper case letters),
but defines additional characters (“.”, “-”, “_”, and “ :”) that may occur elsewhere in names. Finally, the
DELIM section defines delimiters by deferring to the reference implementation with the only override, which
is defined for the HCRO role. (The Hex Character Reference Open (HCRO) role is a delimiter used to open
hex character references.)

106

Figure 4.4 SGML syntax specification for HTML 4.

Feature usage

SGML provides a lot of flexibility in defining markup minimization features. For example, the DATATAG
feature of the declaration allows the DTD to specify character strings, which cause an end tag to be implied.
In other words, it allows data to be treated both as data and as markup. This may arguably provide some
convenience but complicates parsing and can introduce ambiguities. Other examples include SHORTTAG,
which makes it possible to omit the tag’s closing delimiters, and OMIT-TAG, which allows the omission of
certain start or end tags. These features are the telling evidence of SGML’s lineage with library sciences,
which had priorities other than computational properties.

Later, we come back to these examples to illustrate differences in philosophy between SGML and XML.

107

4.1.2 Document Type Definition

The purpose of the Document Type Definition (DTD) is to define the syntax of markup constructs. It may
also include additional definitions (e.g., numeric and named character entities). In this section, we discuss how
to define elements, attributes and entities, and illustrate these discussions using HTML examples.

Entity definitions

The DTD for HTML 4 begins with entity definitions, which can be considered text macros. By now, we
already have the concrete syntax, so we are not defining SGML entities. Rather, we are defining macros that
may be expanded elsewhere in the DTD or in the target language (HTML 4). When macros are referenced,
they are expanded into the strings that appeared in the entity definition.

In Figure 4.5, the following parameter entities are defined:

• %head.misc expands to the partial enumeration of elements (SCRIPT|STYLE|META|LINK)
that may occur within the HEAD element.
• %heading expands to the enumeration of elements denoting section and block headings.
• %attrs expands to the sequence of other entities that are expanded recursively.

Notice the difference between the parameter entities, which are a matter of convenience for the DTD
specification itself, and general entities (defined in the last line of Figure 4.5). General entities become part of
the language that is being defined by a DTD and are referenced using the ampersand (e.g., &attrs;). General
entities are not important for HTML, but remember them when we get to XML.

Element definitions

An SGML DTD defines elements that represent structures or behaviors. It is important to make the
distinction between elements and tags. It is not uncommon for people to erroneously refer to elements as tags
(e.g., “the P tag”). An element typically consists of three parts: a start tag, content, and an end tag (e.g.,
test). It is possible for an element to have no content and it is for such empty
elements that notions of the element and the tag coincide (e.g., the HTML line break element,
).

An element definition has to specify its name, the structure of its content (if any), and whether the end tag
is optional or required. For example, the ordered list element is defined in Figure 4.6 to have the name OL, to
require both the start tag and the end tag (the first and second dashes), and to contain at least one LI element
as its content. The line break element is defined to have the name BR and it requires neither the end tag nor
content.

108

Figure 4.5 Entity definitions.

Figure 4.6 Element definitions.

The purpose of the DTD mechanism is to specify verifiable constraints on documents. To satisfy that
purpose, it has to express relatively sophisticated relationships between different elements. Such relationships
are expressed by defining content models. Very simple examples of such models are shown by the first three
examples in Figure 4.6: the body composed of one or more LI elements, the empty body, and the body that
can only contain document text (#PCDATA) but not other elements. More generally, content models make it
possible either to specify forbidden elements or to enumerate allowed elements or text, their order, and
number of occurrences.

An element definition uses quantifiers to determine how often an element must appear. The “?” quantifier
indicates that an element may appear exactly 0 or 1 times, the “*” quantifier indicates that an element may
appear any number of times or not at all, and the “+” quantifier requires that the element appears at least once.
The last example in Figure 4.6 defines the TABLE element. As you can see, no text is allowed directly within
TABLE, which is not to say that it cannot be specified within one of its contained elements; the CAPTION
element may or may not be present; the COL and COLGROUP elements may appear any number of times;
and there should be at least one TBODY element.

Another interesting observation relates to the grouping of COL* and COLGROUP* constructs using
parentheses. The | operator indicates that the constructs may appear in any order and one of them may not
appear at all. The & operator is similar except that both constructs have to appear. Of course, if the constructs
themselves are defined using quantifiers that allow 0 occurrences (i.e., “ ?” or “*”), there is no practical
difference between these operators (e.g., the COL*|COLGROUP* and COL*&COLGROUP* expressions
are equivalent). The “,” operator indicates a fixed order. In Figure 4.6, the CAPTION element may or may
not occur within a TABLE (due to the “?” quantifier) but if it does, it has to occur first because expressions
separated by the “,” operator impose a fixed order. Figure 4.7 shows two valid HTML tables that match the
TABLE definition in Figure 4.6 and Figure 4.8 shows an invalid table.

109

Figure 4.7 Valid HTML tables.

Figure 4.8 Invalid HTML table (TFOOT occurs after TBODY).

Both HTML tables in Figure 4.7 are valid because close tags for THEAD, TFOOT, and TBODY
elements are optional, and so is the entire TFOOT element. However, the table in Figure 4.8 is not valid
because the order imposed by the , operator in the HTML DTD (Figure 4.6) is violated - the TFOOT
element is present and occurs after the TBODY element.

The fact that the HTML fragment in Figure 4.8 is invalid does not necessarily mean that your browser will
not display it correctly - desktop browsers are designed to be tolerant of bad HTML. However, writing
invalid HTML is a bad habit that may cause problems when errors accumulate, or when your HTML is
served by non-desktop browsers. Moreover, even the absence of optional closing tags may cause erratic
rendering behavior with non-mainstream browsers. Such erratic behavior is becoming more common as newer
browsers are designed to comply with XHTML syntax (see Chapter 5).

Attribute definitions

An element may allow one or more attributes that provide additional information to processing agents. For
example, the src attribute of the HTML SCRIPT element instructs the browser to retrieve the script from the
specified URL instead of the element body.

A list of attribute definitions begins with the keyword ATTLIST and is followed by the element name
(e.g., TABLE and TH in the example in Figure 4.9) and the actual attribute definitions. An attribute

110

definition starts with the name of the attribute (e.g., width or cols), and specifies its type and default value.
Sample attribute types shown in Figure 4.9 include NUMBER, which represents integers, and CDATA,
which represents document text. Other frequently used types include NAME and ID - both representing
character sequences that start with a letter and may include letters, digits, hyphens, colons and periods; ID
represents document-wide unique identifiers.

Figure 4.9 Attribute definitions for the TABLE and TH elements.

Notice the use of a DTD entity - TAlign - in defining the align attribute. This entity expands to
(left|center|right); its use is simply a matter of convenience. Either way, the domain of the align attribute is
defined as the enumeration of left, center, and right.

When an attribute is defined as #IMPLIED, its value is supplied by the processing agent (e.g., the
browser). The keyword #REQUIRED indicates that the attribute should always be present with its element.
Alternatively, an attribute may be set to a fixed value, as in the rowspan and colspan attributes for the table
header element TH in Figure 4.9.

Making the Case

Notice that in our DTD and HTML examples, we use upper case characters for the element
names and lower case characters for the attributes. This is consistent with the HTML 4.01
specification. You have probably noticed that desktop browsers have historically been very
tolerant of pages that use lower case for element names or upper case for attribute names (even
more so than they are with incorrect tag nesting and sequencing). However, these seemingly
minor deviations from the specification accumulate very quickly and wreak havoc with the
process of HTML validation, making it difficult to sift through warnings and errors when
trying to clean up your documents in an effort to make them work consistently across different
browsers.

111

4.2 HTML

Our SGML discussion does not attempt to teach you all the details of designing SGML applications.
However, it is important that you understand the roots of HTML and its replacement, XHTML. In Chapter
5, we look back at SGML declarations and DTDs and think about how to make use of them in the XML
world. Understanding this connection between SGML and XML is a critical prerequisite to understanding
the relationship between HTML, XML, and XML applications.

For now, let us be concerned with HTML - both with the syntactic constraints imposed on HTML
documents by HTML declarations and DTDs and with the semantics of HTML. This is why we used
HTML examples throughout the SGML discussion. Speaking of which, you probably noticed that SGML
declarations and DTDs do not assign semantics to HTML tags - that is done in HTML specifications using
plain English. It is the responsibility of HTML agents (e.g., desktop or set-top box browsers) to read,
understand, and follow the specification. By now, there are quite a few versions of such specifications around;
we have to spend at least a little time sorting it all out. Once we do, we can discuss the more interesting
HTML constructs, paying special attention to the relationship between these constructs and the HTTP
protocol.

112

4.2.1 Evolution of HTML

As you should have noticed from our SGML discussion, HTML syntax is rather flexible. The syntax of
HTML tags is set in stone, but the structure of HTML documents is relatively unconstrained. For example,
many HTML elements have optional closing tags, which are commonly omitted. To make things worse, real
HTML documents often violate even the liberal constraints imposed by the HTML specification because
commercial browsers are tolerant of such violations. Nevertheless, bad HTML, even if it happens to be
rendered properly, is likely to cause all kinds of problems over the lifetime of the document. A simple
modification may add just enough insult to injury to break rendering through a forgiving browser. It is worse
if it becomes important to re-purpose the same markup for non-desktop devices - non-desktop browsers are
much less tolerant of bad HTML syntax.

Over the last ten years, the HTML specification has gone through a number of transformations. The
common theme for all of these transformations is the tightening of the syntax. The current revision, HTML
4.01, was released in December 1999. It soon became apparent that future developments would be hard to
achieve in the context of SGML. The major additional burden is the need to maintain backward
compatibility. HTML 4.01 partially addresses this problem by providing both “strict” and “transitional”
specifications. HTML 4.01 was supposed to be the final specification of the language, with all new
development centering on its successor - XHTML. This intent died in 2004 with the initiative to define
HTML 5, which would unify the HTML and XHTML specifications. The draft specification of HTML 5 is
already available.

Rendering modules of early HTML browsers associated fixed behavior with every HTML element. The
only way to modify such behavior was through settings global to the browser. Even at that time, the HTML 2
specification made early attempts at abstraction. For example, it was not recommended that designers use the
 element to indicate bold text; instead, the element was recommended, leaving it up to the
rendering engine to load a meaning for (which, by default, mapped to). Unfortunately, very
few web designers actually followed such recommendations.

By the time HTML 4 came out, this simple abstraction developed into a mechanism for style sheets that
make it possible to control rendering of HTML elements. HTML 4 also includes mechanisms for scripting,
frames and embedding objects. The new standard mechanism supports embedding generic media objects and
applications in HTML documents. The <OBJECT> element (together with its predecessors and
<APPLET>) supports the inclusion of images, video, sound, mathematical expressions, and other objects. It
finally provides document authors with a consistent way to define hierarchies of alternative renderings. This
problem has been around since Mosaic and Lynx (early graphical and command-line browsers) that needed
alternative ways to present images.

Another important development that was first introduced in HTML 4 is internationalization. With the
expansion of the web, it became increasingly important to support different languages. HTML 4 bases its
character set on the ISO/IEC:10646 standard (as you remember, SGML gives us the power to define the
character set). ISO/IEC:10646 is an inclusive standard that supports the representation of international

113

characters, text direction, and punctuation, which are all crucial in supporting the rich variety of world
languages.

114

4.2.2 Structure and syntax

As we have already mentioned a few times, it is important not to be misled by the high tolerance to HTML
syntax and structure violations that characterizes commercial desktop browsers. The HTML specification is
the only common denominator for diverse commercial tools, and compliance to this specification is the best
way to avoid problems over the lifetime of your documents.

Figure 4.10 Document compliant with HTML 4.01.

According to the specification, an HTML 4 document must contain a reference to an HTML version, a
header section containing document-wide declarations, and the body of the document. Figure 4.10 contains an
example of a compliant HTML document.

As you see, the version declaration names the DTD that should be used to validate the document. HTML
4.01 defines three DTDs - one that is designed for strict compliance, another that supports the set of
elements now considered deprecated, and a third that supports the same set of deprecated elements with the
exception of frames.

HTML header

The optional header section starts with the <HEAD> element and includes document-wide declarations. The
most commonly used header element is the <TITLE>, which dates back to early versions of HTML. Most
browsers display the value of this element outside the body of the document. In a way, it is an early attempt to
specify document metadata. It is widely used by search agents, which normally assign it greater weight than
the rest of the document.

The more recent <META> element provides a lot more flexibility in defining document properties and
providing input to browsers and other user agents. Figure 4.11 shows examples of defining the Author and
Publisher properties using the <META> element.

The <META> element may also be used to specify HTTP headers. The last two lines in Figure 4.11 tell
the browser to act as if the following two additional HTTP headers were present:

115

Figure 4.11 META elements.

You can use this syntax to define any HTTP header you want, but not all of them affect processing. No
surprise here: certain headers have to be processed by the browser before the HTML document is parsed, and
therefore those headers cannot be overridden using this method. For example, to start parsing the HTML
document, the browser must have already established from the Content-Type header that the type of the body
is text/html. Thus, the Content-Type cannot be modified using an instance of the <META> element in this
way. The browser does not even recognize the <META> element until it has determined that the Content-
Type is text/html. It follows that Content-Type headers defined through the HTML <META> tag, as well
as Content-Encoding and Transfer-Encoding headers, are ignored. In short, any header that has to be
interpreted and processed prior to parsing the HTML document is ignored if defined using this method.

There are advantages to embedding HTTP headers in HTML files. The main reason why we are
discussing it in such detail is that it illustrates an important link between different web technologies.
Embedding HTTP-based logic in HTML files may be invaluable in building applications that are very easy
to install and distribute across different hardware and software platforms. Whenever you desire to employ this
mechanism, you should consider the processing steps that occur prior to parsing the markup, to decide
whether your <META> element would have any effect. This decision may depend on your processing agent-
abrowser or a specialized intelligent proxy. For example, a proxy may use the value of the Content-Type
header defined in the <META> element to set the Content-Type of the response prior to forwarding it to the
browser.

Other elements that are defined in the HTML header section include <STYLE> and <SCRIPT>. The
<STYLE> element is designed to alter the default browser behavior when rendering the body of the markup.
In Figure 4.12, we override the default rendering of the <H1> element, telling the browser to center its value
in a box with a solid border.

The syntax of the style instructions complies with the Cascading Style Sheets (CSS) specification. It is not
necessary to include the style specification in the header section. In fact, it is far more common to reference a
standalone style document using the src attribute of the <STYLE> element. This way, it is possible to change
the look and feel of HTML documents simply by changing the src attribute. We return to the CSS
specification in Section 4.3.1 and again in Chapter 8.

116

Figure 4.12 STYLE element.

The <SCRIPT> element, in combination with event handlers that may be referenced from the body of the
document, is designed to provide access to browser objects that are created when processing HTTP responses.
Figure 4.13 illustrates using the <SCRIPT> element to define a sample JavaScript function (we discuss
JavaScript in Chapter 8), which takes a Form object as an argument, sets the HTTP method to GET for
Netscape 4.x and earlier browsers and to POST for other browsers, and submits the request.

Figure 4.13 SCRIPT element.

HTML body

The content of an HTML document is included within the <BODY> element. We refer you to the HTML
specification and a rich selection of HTML textbooks for descriptions of different formatting elements. The
most commonly used elements include <TABLE>, headings (<H1>, <H2>, etc.), ordered and unordered lists,
and other elements designed to control screen layout.

Other important elements include anchors that reference documents or locations within documents and
image elements (check out the and elements in Figure 4.14). The difference
between these two elements is very important - the anchor represents a hyperlink that is evaluated only on
request, while requests to load images are generated automatically when attempting to render the page,
assuming the rendering agent is configured to support images.

Content accessibility

An interesting observation about the element in Figure 4.14 has to do with the use of the ALT
attribute and element content. The value of the alt attribute is displayed by browsers that support up-to-date

117

HTML specifications but do not render images (for example, command-line browsers such as Lynx and
browsers for text-based mobile devices).

This example conveys an important point that is applicable to many HTML elements that control
rendering - it is important to design pages that render well in a wide variety of browsers, which differ in their
level of compliance with HTML specifications.

Figure 4.14 Simple HTML page.

Forbidden Tags

Note that we cannot close the tag because is forbidden in HTML 4.01. For
those of you who are familiar with the < ... /> syntax and wonder why we did not use it in our
examples, note that it is not well-formed HTML. It is XHTML syntax, which we discuss in
Chapter 5.

HTTP requests

Most browsers provide a number of options for initiating HTTP requests. The most obvious options are by
following a hyperlink or specifying a URL (by typing it in, selecting a bookmark or a history entry, etc.). A
less obvious option is initiating requests through HTTP headers or HTTP-EQUIV constructs. In those
cases, browsers use their own discretion in generating requests. We refer you to Chapter 7 for the gory details
of request generation.

Let us take a quick look at the request generation controls that are available in HTML. The most simple
and commonly used controls are available through HTML forms, which support selecting a URL and an
HTTP method, as well as defining some HTTP headers including Content-Type. The example in Figure
4.15 illustrates using an HTML form for file transfer. Notice the use of the enctype attribute to set the
Content-Type header of the request. This may not be necessary because major modern browsers default to

118

multipart/form-data when transmitting files. Even so, it is a good practice, which helps keep your applications
resilient as technologies change.

Figure 4.15 File submission form.

In the example, the first <INPUT> element references a file - most browsers present it as a file selector
dialog. The second and third <INPUT> elements represent attribute-value pairs for specifying the file name
and location on the target system. The final <INPUT> element represents the submission button that, when
pressed, initiates the request.

The browser uses multipart MIME messages to combine file content with information about the target
location. A sample file transfer request is shown in Figure 4.16. It is a multipart message, the first part of
which contains the body of the file, and the second part contains form information pertaining to the target
location of the submitted file. It is assumed that http://www.nobody.name/sendFileis a server-side executable
(e.g., a CGI script or servlet) that is capable of parsing the message to extract the file and its target location,
and to save it at that location relative the document root.

This example illustrates HTML elements that control the formation of HTTP requests submitted by the
browser. HTML provides many other controls, which are not discussed in this book - the important part is to
understand the idea of such controls and to know what to look for when searching for a solution.

Figure 4.16 Sample file transfer request.

119

http://www.nobody.name/sendFileis

120

4.3 HTML Rendering

As we mentioned in the previous section, the only way to modify rendering of HTML elements in older
browsers was through global settings of the browser. However, early HTML specifications attempted to put
stakes in the ground toward rendering abstractions to be achieved in the future (e.g., the distinction between
 and). Very few HTML designers made such distinctions, since they had no immediate
impact on the look and feel of their pages. Things changed when initial abstractions developed into style
sheets that made it possible to exhibit fine-grained control over the rendering of HTML documents.

121

4.3.1 Cascading Style Sheets

Cascading Style Sheets (CSS) is a mechanism for controlling the style (e.g. fonts, colors, and spacing) for
HTML rendering. A style sheet is made up of rules, each of which applies to an HTML element and controls
a certain aspect of its rendering. There are various ways of associating these style rules with HTML
documents, but the easiest is to use the HTML <STYLE> element, which is placed in the document header
and contains style rules for the page (see Section 4.2.2).

Figure 4.17 demonstrates sample rules for rendering default fonts within a paragraph (the <P> element). In
the first rule, font properties are defined through the font argument, while in the second and third rules they
are defined through the more specific font-size argument. The font-size argument is limited to a subset of
properties that could be defined through the font argument.

Another observation is that the same element property may be defined with a different level of abstraction.
In the first rule, size is defined in absolute units that are independent of the browser properties. Such a setting
means that you are willing to ignore the user’s personal preferences, which is rarely a good idea. In the second
rule, the font size is defined in terms that depend on browser properties but not the context of the element. In
other words, medium may mean 10 point or 14 point depending on browser settings, but within the same
page and the same browser window, the paragraph would always be rendered in exactly the same way.
Similarly, the font color may be defined either by using absolute RGB (Red-Green-Blue) units (e.g., #0000F0
in the first rule) or by using symbolic names that might map to different RGB combinations.

Finally, in the third rule, the font size is defined relative to the context - larger may translate into different
absolute sizes within the same page, depending on the default font size in the element context where the <P>
element is included.

Figure 4.17 CSS rules for the <P> element.

Figure 4.18 Sample box and classification properties.

As you can see from our example, CSS rules associate groups of properties with HTML elements.
Properties that may be defined using style-sheet rules include font, color and text groups. Font properties
include font family, weight, size, height, and style, while color properties describe fonts and backgrounds.

122

Text properties are a bit more complex and control word and letter indentation, text decoration (e.g.,
underline) and alignment, and even simple transformations (e.g., to all lowercase or all uppercase letters).

Other interesting groups include box and classification properties. The first three rules in Figure 4.18
demonstrate the box properties. The first rule serves to eliminate the top margin of a page, the second rule sets
the bottom margin of <DT> elements to two font heights, and the third describes the border for visited links.
The fourth rule defines a sample classification property. According to this rule, paragraphs would be shown
not only with preceding and trailing line breaks, but also with the list-item marker.

123

4.3.2 Associating styles with HTML documents

CSS makes it possible to achieve varying degrees of separation between markup and rendering. With this in
mind, we consider alternatives for associating full style sheets and style elements with HTML pages and their
fragments.

Linked style sheet

The approach that provides the highest degree of separation between HTML markup and style-based
rendering is based on linking HTML documents with external style sheets, which do not contain any HTML
markup, only style commands. The linking is accomplished through yet another HTML header element -
<LINK>. Figure 4.19 contains examples of using this element to define the associations. The rel attribute
defines the relationship with the associated file and the type attribute specifies the text/css MIME type for the
style sheet. The href attribute references the location of the style sheet file. Finally, the media attribute defines
the rendering media, which could be a regular desktop browser (screen), a speech synthesizer (aural), a printer
(print), or other devices.

The media attribute can be specific enough to apply to just one kind of device: Apple’s original iPhone
development guidelines, for example, recommended the use of an iPhone-specific CSS style sheet by
specifying the media attribute as “only screen and (max-device-width: 480px)”.

The optional title attribute is only present when it is necessary to support alternative style sheets. Its
absence, as in the first example, indicates that changing the style sheet is not supported. Style sheet alternation
may have different forms, but normally involves user interaction. The second and third examples represent a
default style sheet that is applied at rendering time and an alternative that can be explicitly selected by the
user. The last example in Figure 4.19 is very similar to the first example except that the rendering device is a
speech synthesizer.

Figure 4.19 Using the HTML <LINK> element to associate styles.

Embedded style sheet

Figure 4.20 demonstrates the use of a style sheet embedded in an HTML document. It is similar to the

124

example that we used to illustrate our discussion of HTML headers (Figure 4.12). One distinction is the use
of the HTML comment syntax, which does not hinder browsers that support <STYLE> elements but helps
older browsers to ignore the style instructions and avoid confusion. The second distinction is the use of the
import statement. Use of the <STYLE> element in combination with the@import instruction is equivalent to
the first example in Figure 4.19.

The embedded syntax makes it possible to override parts of imported styles with local definitions (e.g., the
local definition of the <H1> element in Figure 4.20). This approach does violate the principle of separating
markup and rendering but is borderline acceptable since the main style specification still comes from a
separate file.

Inline style

Yet another alternative is to use the style attribute that may be applied to most body elements (including
<BODY> but excluding <SCRIPT>, <PARAM>, and). It allows for the definition of style
attributes for a single instance of a tag within a page but it results in the mixing of style and markup (see
Figure 4.21).

If you think that you have valid reasons to use an inline style, you are supposed to define a single style
language for the entire document by including the proper header in the HTTP response (e.g., Content-Style-
Type: text/css), even though most browsers default to using CSS when processing style attributes within tags.
Alternatively, you can achieve the same result by using the HTML <META> element with the http-equiv
attribute (see Section 4.2.2).

Figure 4.20 Embedded style sheet.

Figure 4.21 Inline styles.

Figure 4.22 Associating styles with portions of HTML documents.

125

If you feel that there needs to be a middle ground between document-wide and inline styles, you are not
alone. Such a middle ground can be achieved by using inline styles with and <DIV> elements, which
were introduced for the express purpose of associating styles with arbitrarily delimited sections of HTML
documents. While is an inline element, which is used in a manner similar to and
, <DIV> may contain blocks that include paragraphs, tables, and, recursively, other <DIV> elements
(Figure 4.22).

126

4.4 Summary

We have discussed HTML and related technologies; we have also established the necessary foundation for the
upcoming discussion of XML in the next chapter. We discussed SGML, its DTD syntax, and using it to
define HTML as an SGML application. We further discussed the HTML markup language, concentrating
on the features that influence HTTP interactions, as well as features that enable the separation of presentation
and rendering.

We stress that it is important to distinguish between the separation of presentation and rendering, and the
separation of content and presentation. The former is accomplished through style sheets, while the latter is
the function of proper application design. The CSS language discussed in this chapter is only the first step in
style-sheet evolution. In Chapter 5, we refer to CSS as the starting point for our style-sheet discussion.

QUESTIONS AND EXERCISES

1. What is the relationship between HTML, XML, SGML, and XHTML?
Explain.
2. Which kinds of HTTP headers would be ignored when specified using the
HTTP-EQUIV mechanism? Which kinds of headers would not be ignored? Provide
examples of each and explain.
3. Describe options for using HTML to generate HTTP requests. Can you control
the Content-Type header for browser requests? What request settings can be
imposed by the browser and under what circumstances?
4. Put together a simple HTML form for submitting desktop files to the server using
POST requests. Remember to provide information about the target location of the
file after transmission. What is the format of the request?
5. What is the purpose of introducing CSS? What are the alternatives for associating
styles with HTML documents?
6. How difficult would it be to implement an HTML parser? Why? How would you
represent semantics of HTML elements?

127

4.5 Bibliography

Maler, Eve and Andaloussi, Jeanne El, 1995. Developing SGML DTDs. Prentice Hall PTR.

Meyer, Eric, 2006. Cascading Style Sheets: The Definitive Guide, 3rd Edition. O’Reilly & Associates.

Musciano, Chuck and Kennedy, Bill, 2006. HTML and XHTML: The Definitive Guide, 6th Edition. O’Reilly
& Associates.

128

CHAPTER 5

XML Languages and Applications

IN THIS CHAPTER

• Core XML
• XHTML
• Web services (SOAP and REST)
• Extensible Stylesheet Language (XSL)

OBJECTIVES

• Discuss core XML technologies setting the stage for the overview of XML
applications and derivative technologies.
• Discuss XML DTDs, their limitations, and the advantages of XML Schemas.
• Consider XHTML as an XML application, discussing the differences and
convergence between XHTML and HTML.
• Discuss XHTML Mobile Profile-a simplified version of XHTML for wireless
applications.
• Provide insights about the advantages and drawbacks associated with competing
web services strategies.
• Discuss XSL, showing how XSL Transformations and XSL Formatting Objects
can be used to transform XML content and produce printable documents.

For all its power, SGML has remained a niche language. It originated in the 1970s and enjoyed a very strong
following in the text representation community. However, the price for the power and flexibility of SGML
was its complexity. Just as the simplicity of HTTP gave birth to the web, something a lot simpler than SGML
was needed in the area of markup languages. The initial approach was to create a targeted SGML application,
HTML, which worked relatively well during the early years of the web. However, it was neither sufficiently

129

powerful and flexible, nor rigorous enough for the information-processing needs of sophisticated web
applications.

The solution was to define a relatively simple subset of SGML that would retain the most critical features
of the language. Such a subset, called the eXtensible Markup Language (XML), was designed to serve as the
foundation for the new generation of markup languages. By giving up some of the flexibility (e.g., SGML’s
character set and concrete syntax declarations) and imposing additional structural constraints, it became
possible to construct a language that is easy to learn and conducive to the creation of advanced authoring
tools.

XML was originally designed as a subset of SGML, but its simplicity lent itself to an evolution that took it
far beyond the confines of SGML. While XML document type definitions (DTDs) represent a subset of
SGML DTDs, XML Schema is a new and more robust language for defining application-specific constraints.
Moreover, entirely new mechanisms have emerged, such as XPath to address fragments of XML documents
and XSL to define document transformations. XML is much more than a replacement for SGML-derived
HTML. XML applications include specialized markup languages (e.g., MathML), communication protocols
(e.g., SOAP), and configuration instructions (e.g., configuration files for HTTP servers and Java EE
containers).

In this chapter, we discuss XML, covering both XML-related languages that stand on their own (e.g.,
XML DTD and XPath) and those that are defined as independent XML applications (e.g., XSL, XML
Schema, and SOAP). We also discuss the relationship between SGML and HTML, on the one hand, and
XML and XHTML on the other. Finally, we provide a brief overview of other specialized XML applications.

130

5.1 Core XML

As you may recall from Chapter 4, the first steps in defining SGML applications are to define the character
set and the concrete syntax. XML syntax is relatively rigid - the character set is fixed and there is a limited
number of tag delimiters (<, >, />, and </). Consequently, there is no need to define concrete syntax, since
XML targets a much narrower set of applications than SGML and there cannot be an XML application
without the familiar angle brackets.

The DTD that defines markup constructs is still required. However, XML DTD specifications have to be
less expressive than SGML DTDs, to make it impossible to define element structures that violate constraints
on element nesting.

XML Schemas are the next generation of DTDs: they provide more flexibility in defining document
constraints. Unlike XML DTDs, the XML Schema language is defined as an XML application, so that
developers do not have to use different syntaxes (and different tools) for creating documents and for defining
document constraints.

Another very important notion is that of a namespace, which makes it possible to use qualified names to
distinguish between elements that belong to different XML applications and may have different semantics.
Interestingly enough, there is a close relationship between namespaces and XML schemas.

131

5.1.1 XML documents

XML documents are composed of declarations, elements, tags, comments, character references, and
processing instructions. Every document has a single root element, for which neither its start tag nor its end
tag are in the context of another element; all other elements have to be properly nested within each other.
XML entities are syntactically very similar to HTML escape sequences; there are built-in entities (e.g., <,
>, &, ', and ") but it is also possible to define new entities using either a DTD or an
XML Schema. An XML document is well-formed if it includes a document declaration, satisfies element
nesting and other syntactic constraints, and does not include undefined entities. A well-formed XML
document is valid if it satisfies constraints specified in the associated DTD or a schema. Of course, only a
well-formed document is valid.

The XML document in Figure 5.1 starts with an XML declaration, which is followed by a comment, the
DTD reference, and a combination of tags and character sequences that satisfy constraints for well-formed
XML documents.

XML comment syntax is similar to HTML comments. Comments can only appear after the XML
declaration. They may not be placed within a tag, but may be used to surround and hide individual tags and
XML fragments that do not contain comments (e.g., the second <book> element).

Figure 5.1 Sample XML document.

In addition to comments, XML possesses an even stronger mechanism for hiding non-compliant fragments
- CDATA sections. CDATA sections exclude enclosed text from XML parsing - all text is interpreted as
character data. It is useful for hiding document fragments that contain comments, quotes, “&” characters, or

132

simply any blocks of text that are invalid when interpreted as XML. For example, the CDATA section in
Figure 5.1 hides the improperly formatted comment and two XML tags from the XML parser. The only
character sequence that may not occur in a CDATA section is]]>, which indicates the closing of the section.

As you can see from Figure 5.1, XML elements can be represented with two kinds of tags. Non-empty
elements use open and close tags that have the same syntax as HTML tags (e.g., <book>...</book> and
<summary>...</summary>). Empty elements are represented by single tags that end with the />sequence (e.g.,
<pages... /> and <price... />). An element may or may not have attributes, which, for non-empty elements,
have to be included in open tags (for empty elements, there is only one tag, so there is not much choice).

The document in Figure 5.1 contains entities in the body of the second <book> element. Both < and
> are references to built-in entities that are analogous to escape sequences in HTML. Since HTML is an
SGML application, it already has a DTD, and we cannot change existing escape sequences or add new ones.
XML is a subset of SGML, so it is possible to define new entities using an XML DTD. An example of a
reference to a newly defined entity is &jw; . Since jw is not a built-in entity, it should be defined in the books .
dtd file for the document to be considered well-formed. Note that the < character sequence that occurs
within the CDATA section is not an entity reference - as we discussed, CDATA sections exclude the
enclosed text from XML parsing.

Figure 5.2 is a graphic representation of the XML document in Figure 5.1. Here, internal nodes represent
elements, solid edges represent the containment relationship, dashed edges represent the attribute
relationship, and leaf nodes are either attributes or element content. For example, element <info> is
represented as the combination of elements <pages>, <price> and <publication>, while elements <title> and
<subtitle> are represented by their character content. Attribute names and values are shown in brackets, and
attribute value edges are indicated by equal signs (e.g., [firstName=“Leon”]).

Processing XML documents often involves traversing an element tree, which is commonly referred to as the
Document Object Model (DOM) tree There is a special specification for the traversal paths, which is
discussed in Section 5.4.1.

133

5.1.2 XML DTD

The meaning of XML tags is in the eye of the beholder. Even though you may be looking at the sample
document and telling yourself that it makes sense, it is only because of the implied semantics associated with
the English names of elements and attributes.

Language semantics are of course inaccessible to XML parsers. The immediate problem for XML parsers is
validation. A person would most likely guess that the value of the usd attribute of the <price> element is the
book price in dollars. It would come as a surprise if, for one of the books, the value of this attribute is the
number 1000 or the word “table.” Again, this surprise would be based on language semantics and not on any
formal specification that can be used to perform automated validation.

Figure 5.2 XML element tree for the document in Figure 5.1.

The second problem is even more complex. How do we make XML documents useful to target
applications? It is easy with HTML - every tag has a well-defined meaning that is hard-coded into browser
processing and rendering modules. XML elements do not have assigned meaning, though a particular XML
application (e.g., XHTML) may have a predefined meaning for individual elements.

The XML DTD syntax for element definitions in Figure 5.3 is simpler than similar SGML syntax (see the
SGML DTD fragment in Figure 5.4). If we were to add more element definitions to the example in Figure
5.4, all of them would have pairs of dashes indicating that both an open and a close tag are required. There is
no reason to keep this part of the SGML DTD syntax - all XML elements always require both open and close
tags.

Similarly to the SGML DTD examples in Chapter 4, the XML DTD specification in Figure 5.3 defines
the nesting and recurrence of individual elements. The root element is defined to contain at least one <book>,

134

which, in turn, contains exactly one <title>, at least one <author>, and may or may not contain <subtitle>,
<info>, and <summary> elements.

XML DTDs provide simple mechanisms for defining new entities, which are very similar to those of
SGML DTDs. In Figure 5.3, the entity jw, used in the sample document in Figure 5.1, is defined to expand
to “John Wiley and Sons, Ltd.”. An obvious reason for defining the name of a publisher as an entity is that it
applies to multiple book entries. Another example in Figure 5.3 is the entity JWCopyright, which is defined
as a reference to an HTTP resource.

Figure 5.3 XML DTD for the document in Figure 5.1.

Figure 5.4 Fragment of an SGML DTD for the document in Figure 5.1.

DTDs do not provide an easy way of defining constraints that go beyond element nesting and recurrence.
While it is easy to associate elements with attributes and to define basic constraints on attribute types (e.g.,
predefined tokens or enumeration), attempts to define more complex constraints are often an exercise in
futility. And of course, DTDs are no help in defining semantics.

135

136

5.1.3 XML Schema

XML Schema is a specification from the World Wide Web Consortium (W3C). It was developed after the
introduction of XML and does not have an analog in the SGML world. It was designed as an alternative to
the DTD mechanism, providing stronger typing and utilizing XML syntax. It contains additional constructs
that make it a lot easier to define sophisticated constraints.

XML Schema supports so-called “simple” and “complex” types. Simple types are defined by imposing
additional constraints on built-in types, while complex types are composed recursively from other simple and
complex types. Built-in types available in the XML Schema are much richer and more flexible than those
available in the DTD context. This is very important because it means that the XML Schema makes it
possible to express sophisticated constraints without resorting to application logic, which would need to be
coded using a procedural language (e.g., Java) and would be much more expensive to maintain.

XML syntax for referencing schemas is shown in Figure 5.5. An XML schema specification does not
provide for defining entities, so entity definitions have to use the DTD syntax.

In Figure 5.6, we demonstrate the brute force approach to defining an XML schema. This pattern is
sometimes called the “Russian doll design”, referring to the wooden dolls that are nested inside each other.
Here, every type is defined in place, there is no reuse, and the resulting schema is relatively difficult to read.
Nevertheless, it is a good starting point for our analysis.

We begin with defining the element <books> by associating it with the complex type that is defined using
the sequence compositor. Sequence compositors impose a sequential order; they are equivalent to commas
when defining constraints on element nesting in the DTD syntax. Other compositors include all, which does
not impose an order as long as every enumerated element (or group of elements) is present in accordance with
the occurrence constraints, and choice, which requires the presence of exactly one element or group of
elements.

Here, the complex type for the <books> element is defined as the sequence of <book> and <notes>
elements. In this design, types are defined in the depth-first manner, and it is often difficult to see all elements
of the sequence when reading the schema. The <book> element is, in turn, associated with a complex type
that is also defined as a sequence, etc.

The XML Schema syntax for defining element quantifiers (the number of occurrences of an element)
differs from the DTD syntax, but both implement the same concepts. For example, the number of
occurrences for the element <author> is defined to be at least one, which is the same as “+” in the DTD
syntax; the element <subtitle> is defined as optional (zero or one occurrences), which is the same as “?” in the
DTD syntax. Just as in DTDs, the number of occurrences, if unspecified, defaults to exactly one.

137

Figure 5.5 Schema-based validation for the XML document in Figure 5.1.

Figure 5.6 XML Schema for the sample document in Figure 5.1.

Attributes can be defined only for complex types. It is quite a relief that schemas, unlike DTDs, support the
same built-in types for attributes as they do for elements. By default, attributes are optional but they may be

138

made required, as in the case of the usd attribute for the <price> element.
We can improve on the design in Figure 5.6. The new schema in Figure 5.7 uses named types to make the

schema more readable and easy to maintain. Instead of defining complex types in place, as in Figure 5.6, we
start by defining complex types that can be composed from simple types and attribute definitions, and proceed
to define increasingly complex types.

For example, the complex types authorType and infoType are first defined and then referenced by name in
the definition of bookType. The result is an XML schema composed of simple reusable definitions.

The primary purpose of the schema is to support document validation. It remains to be seen whether we
can improve the validation by defining additional constraints. We have done our job in defining element
quantifiers and nesting constraints. However, it would be very useful to impose custom constraints on simple
types.

For example, we can assume that a name should not be longer than 32 characters, and that the price of a
book should be in the range of 0.01 to 999.99, whether we are using dollars, pounds, or euros. In Figure 5.8,
we define two new simple types - nameBaseType and priceBaseType - by imposing constraints on the base
string type. In the first case, the new constraint is a maximum length, while in the second it is the pattern -
one to three digits possibly followed by the decimal point and another two digits. Of course, we have to go
back to the schema in Figure 5.7 and make changes to the type references in order to take advantage of these
new constraints (see Figure 5.9).

XML schemas provide extensive capabilities for defining custom types and utilizing them in document
validation. Moreover, XML schemas are themselves XML documents and may be validated, which serves as a
good foundation for building advanced tools. However, advanced validation is not a solution for associating
semantics with XML elements, which remains a very difficult problem. A partial solution to this problem is
provided by XSL, which we discuss in Section 5.4.

139

Figure 5.7 Improved schema design for the sample document in Figure 5.1.

Figure 5.8 Defining constraints on simple types.

140

Figure 5.9 Using defined simple types in the XML schema from Figure 5.7.

141

5.2 XHTML

As we discussed in Chapter 4, the structure of HTML documents is defined rather loosely and is relatively
unconstrained when compared to XML. For example, closing tags for many HTML elements are optional
and are often omitted. Real-world HTML documents violate even the liberal constraints imposed by the
HTML specification because commercial browsers are implemented to be tolerant of such violations.
However, this is changing as it becomes more critical for newly authored HTML documents to comply with
stricter XHTML constraints (e.g., closing tags and proper nesting).

XHTML 1.0 is a reformulation of HTML 4.01 (originally intended as the last HTML specification) as an
XML application. Migration to XHTML makes it possible not only to impose strict structural constraints,
but also to dispose of the legacy support for bad syntax. Even commercial browsers do not have to exhibit
tolerance when validating documents that claim to implement the XHTML specification.

Figure 5.10 XHTML document.

Differences between the sample HTML document in Figure 4.10 and the sample XHTML document in
Figure 5.10 include the use of lower-case element names and the presence of the </p> tag. Apart from the
document declaration, the document in Figure 5.10 is both valid XHTML and valid HTML. Many
XHTML constraints, including the requirement to close tags and enclose attribute values within quotes, do
not break HTML validation. Unfortunately, this is not true for all XHTML constructs that occur in real
documents.

For example, adding the
 tag after the words “I do have to close” would not affect HTML validation
but would constitute a syntactic violation for XHTML. Replacing the
 tag with the
 tag would
produce the reverse effect. However, using the
</br> construct would not break either HTML or
XHTML validation (Figure 5.11).

On the surface, there is no difference between HTML escape sequences and the XHTML use of references
to pre-defined entities, but the real story is more complicated. The nature of XML processing is to recognize
and process entity references in #PCDATA content. Elements that are defined to have #PCDATA content
(e.g., <style> and <script>) are vulnerable to the presence of entity references. For example, < would be
resolved to the < sign and considered the start of markup. To avoid this problem, in XHTML, bodies of

142

<script> and <style> elements have to be included in CDATA sections (see Figure 5.12). Of course, the
CDATA syntax breaks HTML validation and the only solution is to use external script and style documents
(on those occasions when this problem arises).

As we already mentioned, XHTML is the reformulation of HTML as an XML application. XHTML
elements have the same well-defined semantics as corresponding HTML elements. Element semantics is an
integral part of the XHTML specification and is hard-coded into presentation modules of browsers that
support XHTML.

Figure 5.11 Examples of valid HTML and XHTML.

Figure 5.12 XHTML script syntax.

143

5.2.1 HTML 5

HTML 4.01 is a deprecated specification that was supposed to be the last version of HTML. With the
release of new versions of XHTML, differences between HTML and XHTML were likely to accumulate. At
some point, it would have become impossible to generate valid XHTML that is also valid according to the last
HTML specification. With XHTML 2 failing to catch on, it became apparent that backward compatibility
with HTML is far too important. This unhappy state of affairs gave rise to the HTML 5 effort, which aims
to unify the HTML and XHTML specifications.

The HTML 5 specification aims to support both HTML and XHTML syntax. While both HTML and
XHTML variations of HTML 5 documents are supposed to be well-formed XML documents, the error
handling is quite different. XHTML error handling remains draconian but HTML error handling, while
remaining pragmatic, is well-defined. This makes it possible to have consistent rendering of “tag soup”
documents.

Historically, different browsers applied their own proprietary logic to infer DOM trees for ill-formed
documents, resulting in inconsistent rendering across browsers. With HTML 5, ill-formed HTML
documents still fail compliance tests, alerting users to problematic authoring tools. However, browsers can use
the same well-defined logic to translate “tag soup” into compliant documents and use those compliant
documents as the basis for rendering.

HTML 5 also defines incremental changes to HTML 4.01 and XHTML 1.0, including changes to
existing elements and the introduction of new elements. Some of the new elements represent a significant step
in evolving browser support from rendering documents to streaming applications. An example is the <canvas>
element, which enables rendering of dynamic graphics on the fly.

It is very difficult to predict the future of any standard, particularly in the web space. Still, the very
pragmatic nature of the HTML 5 specification makes its wide adoption very likely. Although it is often
argued that silent error correction rewards bad coding practices, backward compatibility and consistent error
correction go a long way toward achieving a better user experience.

144

5.2.2 XHTML MP

XHTML Mobile Profile (XHTML MP) is a simplified version of XHTML that was defined to support
wireless applications. It is a replacement for WML, which was the previous markup language for mobile
devices specified by the WAP Forum. WML contained page structures that were quite different from
XHTML (e.g., “cards” which enabled traversal between different screens within the same WML file).

Devices that make use of XHTML MP are constrained by their limited memory, display size, and lower
transmission bandwidth. It would be wasteful to require the device to make multiple requests for small chunks
of data. Without special constructs, which were available in WML, XHTML MP developers have to use in-
document anchor links to reference individual smaller screens within a single document. XHTML MP
complies with the DTD maintained by the WAP Forum (see the DOCTYPE definition in Figure 5.13).

Figure 5.13 XHTML MP document.

145

Figure 5.14 Screen captures for the XHTML MP document in Figure 5.13.

The sample XHTML MP document in Figure 5.13 contains three anchors, identified as subjects, webarch,
and xmlcore, respectively. The first anchor references the list of subjects, the second points to books on web
architecture, and the third to books on core XML technology (see Figure 5.14). Notice that the anchor id
serves as the address within the document (e.g.,). Traversals within the document are
executed by following links that reference in-document locations - either by selecting the links or by using key
shortcuts if they are defined (e.g.,).

Figure 5.14(a) shows the screen that is displayed when opening the sample document and selecting the first
subject. The result of following the selection is shown in Figure 5.14(b). The screen in Figure 5.14(c) is
displayed as the result of the user pressing the “2” key, which is defined as the shortcut for the second subject.
Figure 5.14(d) is the result of scrolling down to the bottom of the document and selecting the link back to the
subject list. It is not necessary to select this link to activate it - the alternative is to use the shortcut “5” key.

XHTML MP is a big departure from WML. There are no wireless-specific constructs - just a subset of the
XHTML specification. WAP CSS (a simplified version of CSS) is the companion specification. The goal of
XHTML MP is to bring together the technologies for mobile and for desktop Internet browsing, which is the
traditional way of accessing the web.

146

5.3 Web Services

Web services are distributed web applications that provide discrete functionality and expose it in a well-
defined manner over standard Internet protocols to other web applications. In other words, they are web
applications that fit into the client-server paradigm, except that the clients are not people but other web
applications.

In this section, we discuss SOAP and REST, which represent two implementation strategies for web
services. SOAP is a highly formalized approach and is defined as an XML application. REST should be
considered a design pattern rather than a formal specification. REST applications do not have to use XML
but most of them do. It is good practice to provide web applications that support both SOAP and REST
services. Such applications would naturally share the same XML schema for resource representations.

147

5.3.1 SOAP

The Simple Object Access Protocol (better known by the acronym SOAP) is an XML application that is different
from the XML applications we have discussed so far. SOAP documents are not for rendering content - they
invoke and pass information to and from web applications. SOAP is best described as an XML-based,
application-layer protocol for constructing and processing web service requests and responses. It can use
HTTP, SMTP, and a variety of other protocols (e.g., messaging protocols such as JMS and MQ/MSMQ) to
transport requests and responses.

Figure 5.15 shows an example of a simple SOAP request with multiple parameters. In the example, the web
service returns local weather information. The intent of the request is to retrieve information about New York.
For that, you must provide the longitude and latitude of the region, as well as locale information (e.g., en/us),
which determines not only the language but also the format for the temperature (Celsius or Fahrenheit) and
wind velocity (mph or km/h).

Note the different namespaces, which provide the semantic context and the syntactic mechanism for
separating elements. The namespaces are used to disambiguate elements of the SOAP envelope, references to
XML data types, and service-specific elements. The SOAP envelope contains the Body element, which in
turn contains a single element defining a remote procedure call, by specifying a method (getWeather) and its
arguments (degreeslong, degreeslat, and locale).

Figure 5.15 A SOAP request with multiple parameters.

148

Figure 5.16 The SOAP request from Figure 5.15 transmitted over HTTP.

The envelope is transported to a SOAP server over a protocol such as HTTP or SMTP. In the case of
HTTP, the envelope comprises the body of the HTTP request, which follows the request line (i.e., “POST
/services HTTP/1.1”) and associated headers, as shown in Figure 5.16.

After receiving the request, the SOAP server invokes the specified method with the provided arguments
and generates a response for transmission back to the requesting application. In Figure 5.17, the response
contains values for pre-defined response elements, which inform the requestor that the temperature in New
York is 25◦ (Fahrenheit), the conditions are partly cloudy, and the wind is from the southeast at 5 mph. Since
the response is transmitted back to the requestor over HTTP, it includes the appropriate HTTP headers.

A SOAP client can translate this response into a human-readable format by using one of the available
SOAP APIs or toolkits (e.g., Microsoft SOAP Toolkit, JAXM/SAAJ) or by transforming the body of the
response using XSLT into XHTML, XHTML MP, or VoiceXML, as described in Section 5.4.

Web Services Definition Language (WSDL)

Defining a SOAP-based web service is only a partial step toward true interoperability. Constructing a SOAP
request requires knowledge about the service - the name of the method to be invoked, its arguments, and their
datatypes, as well as the response semantics. This knowledge could be available through human-readable
documentation, but this falls short of the goal of true interoperability. Since web services are meant to be
machine-understandable, their semantics (and even their existence) should be exposed to web applications, so
that they can discover and make use of them without human intervention.

Web Services Definition Language (WSDL) and Universal Description, Discovery, and Integration (UDDI) are
designed to close the interoperability gap. WSDL provides a common language for defining a web service and
communication semantics. UDDI serves as a mechanism for registering and publishing web services.

Let us examine the web service definition in Figure 5.18 from the bottom up. The <service> element
contains a <documentation> element (to give the service a human-readable description) and a <port> element.

The <port> element is linked to the <binding> element above it by the name WeatherServiceBinding,
which, in turn, references the <portType> element with the name WeatherServicePortType. The <port>

149

element also contains <soap:address> whose location attribute defines the URL that can be used to invoke the
service.

The <binding> element defines the transport mechanism (SOAP over HTTP) and the names of operations
that may be performed using the service. In this case, there is just one <operation> element, getWeather.
Specifications for the encoding format for the input and output bodies are included here.

The <portType> element also lists the names of operations as <operation> elements. The sole <operation>
element here contains <input> and <output> elements, which in turn refer to <message > elements
(getWeatherInput and getWeatherOutput). The <message> elements specify references to complex data
types, weatherRequest and weatherResponse. The definitions of complex types (which also make use of the
XML schema data types that were covered in Section 5.1.3) specify components for both input messages
(requests) and output messages (responses).

This may seem like overkill for a simple web service and, indeed, it is. There are a number of ways to
simplify this definition. Our example avoids shortcuts to mention some of the more complex aspects of
WSDL and demonstrate the available options.

Figure 5.17 The response to the SOAP request in Figure 5.16.

150

Figure 5.18 A WSDL definition for the weather service in Figure 5.15.

Universal Description, Discovery, and Integration (UDDI)

151

While WSDL provides a common standard for defining web service semantics, UDDI provides the last piece
of the interoperability puzzle through its mechanisms for registering and advertising web services.

UDDI servers provide two functions: inquiry and publishing. Inquiry allows users to look for web services
that fit into specific categories (e.g., business name, service name, service type) and match specified search
criteria. The inquiry request in Figure 5.19 is a query for businesses whose names contain the word “weather”.
You can see that this UDDI request is also a SOAP request (albeit somewhat simpler than the one found in
our original web service example).

The results from such inquiries are (naturally) SOAP responses (as shown in Figure 5.20). SOAP clients
can parse these responses to derive information about available web services that match the provided search
criteria. The clients can choose a web service (from those located by the inquiry), access its WSDL definition,
and invoke it. Note that, for simplicity, we have omitted the businessKey and serviceKey attributes. These are
identifying keys assigned by a UDDI registrar when adding a business or service to the registry.

Figure 5.19 A UDDI request from a SOAP client.

Figure 5.20 A UDDI response to the request in Figure 5.19.

The publishing component of UDDI lets a web-service provider register their service in a UDDI registry

152

(Figure 5.21). The publishing component accepts SOAP requests to add an entry to the registry, allowing the
service provider to specify the service name, description, access point (i.e., the URL), and a reference to the
service type (the tModel) associated with this service. Note that we have omitted various key attributes:
businessKey, serviceKey, bindingKey, and tModelKey.

The importance of SOAP, WSDL and UDDI specifications is in providing formalized and rigorous
definitions of web services, and methods for locating, accessing and utilizing them. This makes them
structured, modular, and reusable for a wide variety of applications. Web services functionality provides a
platform that promotes interoperability and helps many emerging technologies to flourish.

153

5.3.2 Representational State Transfer (REST)

For a time, the notion of web services was synonymous with SOAP. In the minds of developers, web services
came to be identified with a well-defined but rather tedious mechanism. The overhead associated with
processing messages made SOAP impractical for use with high-traffic web sites. There was an expressed need
for a more lightweight way to expose discrete application functionality on the Internet.

Figure 5.21 A request to publish a web service in a UDDI registry.

Representational State Transfer (REST) is an architectural pattern that gained popularity as an alternative to
SOAP. It is based on considering items of interest on the web (identified by their URLs) as resources. An
item is considered REST-compliant if it is uniquely identified by a URL that does not contain either a
parameter string or a query string. REST is not tightly bound to XML, but XML is the common format for
REST representations.

REST resources are not static pages, but calls to web applications. In Figure 5.22, a REST-compliant URL
passes longitude and latitude information to the weather monitoring application. When accessed, such
resources return their representation. A representation can be thought of as the browser state. Within this
formalism, following a link would result in retrieving a different representation and can be considered a state
transition. Note that all state information must be transmitted with the request, since REST service requests
cannot take advantage of server-side context.

Figure 5.22 A REST-compliant URL.

154

Figure 5.23 A representation of a REST resource.

A critical aspect of SOAP was that requests should provide enough explicit information to receive a specific
and detailed response. The SOAP request for a weather update in Figure 5.15 includes all information
(longitude, latitude, and locale) needed to produce a weather report. The SOAP response contains detailed
information in US English (the specified locale) about weather at the selected location. An equivalent REST
representation may require multiple requests and state transitions. In contrast, the sample REST request
shown in Figure 5.22 includes information about longitude and latitude but not the locale.

The response shown in Figure 5.23 is the representation of the requested resource. This representation
contains links to more specific resources that correspond to the US English and French locales.

Selecting US English results in the state transition to the representation of the following resource:

The representation of this resource in Figure 5.24 contains details, in English, about the weather at the
selected location. It is verifiably equivalent to the weather report contained in the SOAP response in Figure
5.17.

About XLink

The XLink specification1 from W3C defines an XML markup language used for creating
hyperlinks in XML documents. It defines methods for linking internal and external resources
to XML documents. We have used XLink in Figure 5.23 to represent simple links pointing to
a single resource. The specification also supports extended links for connecting multiple
resources. So far, such extended links have limited use and do not enjoy consistent support by
web agents.

The various HTTP request methods have different roles in the REST pattern, roughly analogous to create
-read - update -delete (CRUD) functionality. We’ve already seen how the GET method is used to retrieve the
REST representation of a resource. (Note that GET requests in this context should not produce side effects.)
Similarly, the POST method is generally used to create new resources, the PUT method to modify existing
resources, and the DELETE method to remove existing resources. For POST and PUT, the body of the
request should contain a representation of a resource having the same format as a representation retrieved via a

155

GET request.

Figure 5.24 Representation of the weather report.

It is not uncommon for applications to support both SOAP and REST services. Amazon.com, for example,
provides both SOAP and REST versions of their web services API. SOAP services have a well-established
infrastructure, provide greater flexibility in specifying parameters, and do not require multiple requests and
state transitions. On the other hand, REST services avoid the processing overhead associated with parsing
SOAP messages. Their simplicity and efficiency provides a major attraction for the users of these services.
The nature of REST requests makes it easy to insert caching and authorization proxies to provide
performance and security.

Just as WSDL provides a robust mechanism for defining SOAP services, WADL, which stands for Web
Application Description Language, provides an XML vocabulary for describing REST-based Web Services.
There is currently no real REST analog to the UDDI registry, which aids in the search and discovery of
SOAP-based web services, but as the number of REST-based web services grows, something along the lines
of UDDI is likely to emerge.

156

http://Amazon.com

5.4 XSL

XHTML is an XML-based reformulation of an existing SGML application (HTML) with well-defined
semantics. XHTML MP is, in turn, a reformulation of XHTML for mobile devices, also with well-defined
semantics. What about other XML applications? DTDs and XML Schemas are great for document
validation, but neither can bring meaning to XML elements. This is why there are so many different XML
application standards. When related applications use the same XML elements, it becomes possible to encode
element semantics in shared application libraries. This is similar to hard-coding XHTML semantics in
browser-rendering modules.

It is not an attractive prospect having to change application logic every time we add, change, or delete XML
elements. We need an abstraction to enable transformations between XML documents that comply with
different schemas. This way, having implemented application logic for one set of elements, we can use the
transformations and avoid having to re-implement the application logic for other related schemas.

The Extensible Stylesheet Language (XSL) serves the dual purpose of transforming XML documents and
of exhibiting control over document rendering. Like XML schemas, XSL programs are well-formed and valid
XML documents.

157

5.4.1 XSLT

The transformation component of XSL, called XSLT, makes it possible to select fragments of XML
documents based on path patterns in the element hierarchy and to apply transformation operations to these
fragments.

The sample XSLT style sheet in Figure 5.25 presents a particular view of the XML document in Figure
5.1. This view contains a simple table of book entries with only some of the properties defined in the original
XML document (see Figure 5.26).

Figure 5.25 XSLT style sheet.

158

Figure 5.26 Result of applying the transformation in Figure 5.25 to the document in Figure 5.1.

You can see that the style sheet in Figure 5.25 is composed of three <template> elements. An XSL template
is analogous to a function, though the invocation mechanism is quite different. The mechanism used in the
example is based on matching patterns against elements in the document hierarchy. The first template is
invoked when the XSL processor encounters the <books> element in the XML document in Figure 5.1.
When applied, the template retains all elements except for those with the “xsl :” prefix. The latter are XSLT
directives defined in the XSL schema.

XSL processing always occurs in the context of the current element node. On entering the first template,
the current element node is books, so <xsl:value-of select=“@status”/> returns the value of the status attribute
of the books node. The <xsl : apply-templates select= “book” /> directive instructs the XSL interpreter to
locate the template defined to match the book pattern (the second template in Figure 5.25) and evaluate it
repeatedly for every child <book> element. Since the XML document only contains one <book> element, the
interpreter evaluates the second template only once.

The <xsl:value-of select=“title”/> instruction in the second template is evaluated to the content of the <title>
element of the XML document, which is the direct descendant of <book>. The evaluation of <xsl:value-of
select=“info/publication/@source”/> and <xsl:value-of select=“info/publication/@year”/> is performed by
traversing the element tree from the current element <book> down to <info>, then further down to
<publication>, and, through attribute edges, to the attributes source and year.

Similarly, the <xsl:apply-templates select=“author”/> directive instructs the interpreter to locate the
template defined to match author (the third template in Figure 5.25) and evaluate it for every <author>
element reachable via the child edge from the then-current <book> element. Since there are two occurrences
of <author>, the interpreter evaluates the third template twice and generates output for both authors (Figure
5.26).

Traversal expressions used in XSLT instructions (e.g., title, info/publication/@year) comply with the XPath
specification - yet another XML-related standard. XPath is a simple query and traversal language for XML
element trees. As you can infer from our examples, every “/” represents an edge (the first “/” is implied). By
default, an edge leads to a child element with the specified name, but it may lead to other kinds of nodes. For

159

example, the “@” sign in “... /@year” denotes the year attribute of the element node reached by traversing the
preceding part of the XPath expression.

160

5.4.2 XSL Formatting Objects

XSL Formatting Objects (XSL-FO) is a markup language that describes the rendering vocabulary designed to
support pagination. The XSL-FO specification is the descendant of the Cascading Style Sheets used by web
browsers to control rendering. It defines generic rendering objects associated with elements of the XSL-FO
vocabulary, including <block>, <inline>, <page-sequence>, and <footnote>, as well as style objects (e.g.,
). XSL-FO style sheets tie the generic rendering objects to pagination and formatting.

XSL transformations are unique to XML and serve the purpose of transforming XML documents to an
alternative representation. The common approach to rendering XML documents is to transform them to a
target with well-defined presentation semantics (e.g., XHTML). The target XHTML document may contain
a reference to a CSS style sheet to control browser rendering (Figure 5.27).

XSL-FO provides a superset of CSS functionality but, while the purpose of CSS is to support browser
rendering, XSL-FO is designed to support print layouts. Semantically, controls for rendering individual
components are very similar, but the variation in syntax is significant. As we discussed in the previous chapter,
CSS has its own syntax:

while XSL-FO is an XML application:

Figure 5.27 Using a CSS style sheet to render HTML and XHTML documents.

Figure 5.28 One way of using an XSL style sheet to print an XML document.

161

Figure 5.29 Another way of using XSL style sheets to print XML documents.

Apart from producing an alternative XML representation, XSLT processors can take advantage of styling
and pagination information provided by the formatting objects to generate PDF, Postscript, or another form
of print-oriented output. Figures 5.28 and 5.29 illustrate two different paths for creating print-friendly
representations. Gray circles denote the XSLT processor and black circles denote the XSL-FO processor.
Given that the target of the XSL transformation is the XSL-FO vocabulary, the output of the XSLT
processor may serve as input to the XSL-FO processor.

The obvious solution for creating a printer-friendly presentation is to implement an XSL transformation
from the desired XML format to the one based on the XSL-FO vocabulary. It is necessary to define
formatting objects for the desired pagination, layout, and rendering (Figure 5.28). That it is quite a bit of
work and we may already have a rich XSLT library for transforming our documents to XHTML. Since
XHTML is ubiquitous, there already exist libraries of easy-to-parameterize XSL transformations from
XHTML to PDF, which means that we can render to print with very little work (Figure 5.29).

Figure 5.30 is a variation on the XSL style sheet from Figure 5.25. It implements the direct transformation
to the XSL-FO vocabulary and looks a lot more complicated than the original. The complexity is due to the
use of XSL-FO as the target format. The template structure and the transformation instructions in the two
style sheets are virtually identical, but fo : elements are used instead of XHTML constructs. Sometimes
replacements are trivial (e.g., <fo:table> instead of <table>), but when it comes to table elements, the structure
of the target markup is quite different - table columns are defined up front, so the XHTML’s <td> is replaced
with <fo:table-cell> and not with <fo:table-column>.

162

Figure 5.30 XSL-FO version of the XSL style sheet from Figure 5.25. (

163

Figure 5.31 The pagelayout.xsl file referenced from the style sheet in Figure 5.30.

Notice that all textual components are encapsulated within <fo:block> elements. The XSL-FO block is one
of the most basic constructs that controls text positioning - lines, fonts, etc.

You have probably noticed that we glossed over two very important constructs that are evident in the
example - the <xsl:include> elements and xsl:use-attribute-sets attributes. The included elements are the
pagination control file (shown in Figure 5.31) and the attribute set definitions (Figure 5.32) that parameterize
document rendering. The xsl:use-attribute-sets attributes refer to attribute sets defined in the attributes.xsl
file. This simple design pattern helps to separate the presentation and rendering logic. In fact, you may
accumulate a rich library of attribute definitions and page layouts, reusable in different contexts.

164

http://pagelayout.xsl
http://attributes.xsl

Figure 5.32 The attributes. xsl file referenced from the XSL style sheet in Figure 5.30.

In combination with the approach shown in Figure 5.29, which assumes the conversion of original XML
files to XHTML, this pattern is even more useful, making it possible to reduce XSL-FO programming to a
configuration exercise in a properly organized development environment. Note however, that no solution is
good for all cases, and conversion to XHTML may result in losing semantics, which are important, for
example, for exhibiting control over pagination. Nevertheless, even if the intermediate format ends up being
some XHTML+, the idea remains the same - define a simple intermediate format that allows for the best
reuse of existing transformation and formatting libraries.

Getting back to our XSL-FO example, the pagination controls in Figure 5.31 define a single master page
that is referenced by name (testMaster) in <fo:page-sequence>. Real applications are likely to require multiple
different master pages used in different contexts. To further promote reuse, master pages may be defined in
separate style sheets and included in page layout style sheets using <xsl:include>. The <fo:flow> element
encapsulates rendering components that are generated by XSLT instructions in Figure 5.30 and invoked when
the XSLT processor evaluates <xsl : apply-templates name= “books” /> in Figure 5.31.

Target XSL-FO elements in Figure 5.30 make extensive use of the xsl:use-attribute-sets attribute. Named
attribute sets are defined in the attributes.xsl file (Figure 5.32), to make it easier to parameterize the XSL style
sheet in Figure 5.30. It is relatively easy to provide tools for editing simple style sheets, similar to
attributes.xsl, for use by graphic designers with little or no knowledge of XSL.

As we showed in Figures 5.28 and 5.29, applying an XSL style sheet containing XSLT instructions and
designed to target the XSL-FO vocabulary is a two-step process. The first step is performing the XSLT
transformations. The output of the XSLT engine when applying the transformations in Figure 5.30 to the

165

http://attributes.xsl
http://attributes.xsl

XML document in Figure 5.1 is shown in Figure 5.33. It is an XML document satisfying the XSL-FO
schema. It contains XSL-FO elements, including pagination elements defined in the pagelayout.xsl file in
Figure 5.31. As you can see, the style parameters originate in the attributes.xsl file.

The document in Figure 5.33 serves as input to the XSL-FO processor, which can produce a variety of
outputs, including Postscript and PDF (Figure 5.34). It is not required to generate the intermediate
representation in Figure 5.31. Most XSL-FO processors accept either the file in Figure 5.33 or the files in
Figure 5.1 and Figure 5.30 as their input. In the latter case, the XSL-FO processor first invokes the XSLT
engine and then processes the output to produce the final result (see Figure 5.34).

166

http://pagelayout.xsl
http://attributes.xsl

5.4.3 What is so important about XSL?

The XSL specification has had many twists and turns in its relatively short but eventful history. At this time,
it is a combination of two well-defined components - XSLT and XSL-FO. The former is the transformation
language that enables translations between XML documents that satisfy different schemas, and the latter is
the style language that supports page layouts. There is a plethora of style languages compatible with XHTML
(e.g., CSS and CSS2) but they are not integral parts of XSL even though XHTML is an XML application.

More twists and turns may still be ahead of us. It would be great for browsers to provide integrated support
for XSL-FO, which may be sufficient to deprecate other style languages. Once it is practical to express
XHTML semantics using the XSL-FO vocabulary, the former would become no more than a shortcut
notation. Such a development can be very conducive to building advanced tools and simplifying presentation
components.

Figure 5.33 Output of the XSLT processor.

167

Figure 5.34 PDF output of the XSL-FO processor.

XSLT is now the technology of choice for building applications that target multiple end-user devices and
presentation formats. It allows for a “raw” XML representation of a document that can be personalized and
transformed into various target formats (e.g., XHTML, WML, SMIL).

Historically, it was common for application developers to jump through many proprietary hoops to create
print versions of legal documents, financial statements, etc. XSL-FO extends the list of devices and formats to
include those that require pagination. This extension has the potential of streamlining application architecture
and simplifying both the development and maintenance. XSL-FO continues to gain momentum since its
initial release as a W3C recommendation in 2002.

168

5.5 Summary

In its speed of adoption and ever-growing momentum, XML rivals both the HTTP protocol and HTML.
This is not surprising since XML applications transcend the world of desktop computers and even mobile
devices. XML advanced from a markup language to an implementation platform. Not only do XML and XSL
provide the basis for advanced browser applications, they are critical in large-scale application integration,
including messaging and web services.

Core XML consists of a number of related technologies, including XML Schema, XSL, APIs for accessing
XML parse trees, and a rich library of XML applications. Other critical technologies include the XML
Linking Language (XLink) for linking resources and XML Query Language (XQuery) for querying XML
documents. This chapter has barely scratched the surface - there is a lot more to these technologies. XML
applications are as varied as the myriad tasks performed by architects, designers, developers, and users.

XML has become important at all stages of the application lifecycle. It is used at the application design
stage as the representation medium for Universal Modeling Language (UML) diagrams, at implementation
time to control and coordinate development, testing, and versioning tools, and at run time as the universal
“glue” for application components.

XML is used to define presentation languages for a variety of target formats. In addition to XHTML and
XHTML MP, there is also MathML for describing mathematics, Scalable Vector Graphics (SVG) for
describing two-dimensional graphics, Synchronized Multimedia Integration Language (SMIL) used to
control the sequencing and layout of multimedia presentations, and many other specialized languages.

You can find a large selection of XML books that cover the details of all aspects of XML and related
technologies. The key to making the right choices and to understanding the details when you need them is the
knowledge of underlying principles. The main objective of this chapter was to discuss the core technologies
and to provide you with the understanding you need to choose and understand other resources.

QUESTIONS AND EXERCISES

1. What makes an XML document well-formed? Is every well-formed document
valid? Why? Is every valid document well-formed? Why?
2. Are there documents that are both HTML and XHTML documents? Is every
HTML document also an XHTML document? Is every XHTML document also an
HTML document? Explain.
3. Are there constraints that can be expressed using XML Schema but not DTD?
Provide examples.
4. What is XSL-FO? What is the relationship between XSL-FO and CSS? What is
the relationship between XSL-FO and XSLT?
5. Name all XML applications that were mentioned in this chapter. Separately, name
all XML specifications that were mentioned in this chapter.
6. Let us design our own CarML language. Define XML tags for describing your car

169

and your friends’ cars using these tags. Think about what properties should be
defined as attributes and what properties are best described as elements. Make sure
your documents are well-formed.
7. Define an XML DTD for CarML. You may want to revisit XML documents you
defined in the previous exercise and rethink the element and attribute structure as
you are defining the DTD. In the end, all your car specifications should be valid
XML documents.
8. Define an XML Schema equivalent to the XML DTD from the previous exercise.
Compare the two.
9. Strengthen the XML Schema to apply additional constraints. Discuss new simple
types that would be introduced in this context. Are there any changes to the complex
types as well? Why or why not?
10. What is SOAP? If SOAP is a protocol, what does it mean that SOAP is an
XML application? What is the relationship between SOAP and HTTP? Is it
possible to use SOAP with SMTP? Explain.
11. What is a web service? What specification is used to define formal web service
semantics?
12. What is the role of WSDL and UDDI? Why do we need both specifications?
How do WSDL, UDDI, and SOAP work together to support web services?
13. What is REST? What is the difference between a REST service and a SOAP
service? What are the advantages and disadvantages of each kind of service?
14. Can you have the same application supporting SOAP and REST service
paradigms? Why or why not? What are the challenges?
15. Implement an XSLT transformation to convert CarML documents to XHTML.
Can your XHTML documents qualify as valid HTML documents as well? If not,
can you make changes to your XSLT transformation to ensure that the output
qualifies as both valid XHTML and valid HTML? Explain.
16. Implement an XSLT transformation to convert CarXML documents to WML.
Re-factor your XSLT implementation from the previous exercise to share as many
components as possible with the WML transformation.
17. Extend your XSLT implementation to support conversions of CarXML
documents to WML, XHTML, or PDF documents.

170

5.6 Bibliography

Fielding, Roy Thomas, 2000. Architectural Styles and the Design of Network-based Software Architectures.
Doctoral dissertation. Irvine: University of California.

Glass, Graham, 2001. Web Services: Building Blocks for Distributed Systems. Upper Saddle River (NJ): Prentice-
Hall.

Harold, Elliott Rusty, 2004. XML 1.1 Bible, 3rd Edition. New York: John Wiley and Sons, Inc.

Lovell, Doug, 2002. XSL Formatting Objects Developer’s Handbook. Indianapolis (IN): SAMS Publishing.

Mangano, Sal, 2005. XSLT Cookbook , 2nd Edition. Sebastopol, CA: O’Reilly Media.

Musciano, Chuck and Kennedy, Bill, 2006. HTML and XHTML: The Definitive Guide, 6th Edition.
Sebastopol (CA): O’Reilly & Associates.

Richardson, Leonard and Ruby, Sam, 2007. RESTful Web Services. Sebastopol (CA): O’Reilly & Associates.

Tennison, Jeni, 2001. XSLT and XPath: On The Edge. New York: John Wiley and Sons, Inc.

Walmsley, Priscilla, 2001. Definitive XML Schema. Upper Saddle River (NJ): Prentice-Hall.

171

5.7 Web Links

W3C, 2001. XML Linking Language (XLink), Version 1.0. Available at http://www.w3.org/TR/xlink/.

172

http://www.w3.org/TR/xlink/

5.8 Endnotes

1 http://www.w3.org/TR/xlink/

173

http://www.w3.org/TR/xlink/

CHAPTER 6

Web Servers

IN THIS CHAPTER

• Basic operation
• Mechanisms for dynamic content delivery
• Advanced functionality
• Server configuration
• Server security

OBJECTIVES

• Establish the set of tasks that a web server must perform.
• Break down server architecture into component modules, establishing the
responsibilities of these modules and their interactions.
• Provide an in-depth analysis of the processing flow in a web server.
• Examine how servers receive and interpret HTTP requests and create and transmit
HTTP responses.
• Discuss built-in mechanisms for serving dynamic content.
• Discuss server configuration using Apache as a case study.
• Provide an overview of common practices to ensure server security.

Web servers enable HTTP access to a collection of documents and other information organized into a tree
structure, much like a computer’s file system. In addition to providing access to static documents, modern web
servers implement a variety of protocols for passing requests to custom software applications that provide
access to dynamic content. This chapter begins by describing the process of serving static documents and goes
on to explore the mechanisms used to serve dynamic data.

Dynamic content can come from a variety of sources. Search engines and databases can be queried to
retrieve and present data that satisfies the selection criteria specified by a user. Measuring instruments can be
probed to present their current readings (e.g., temperature or humidity). News feeds and wire services can

174

provide access to up-to-the-minute headlines, stock quotes, and sports scores.
There are many methodologies for accessing dynamic data. There are approaches based on open standards,

the most prominent of which is the Common Gateway Interface (CGI). While CGI is in widespread use
throughout the web, it has significant limitations, which we discuss in Section 6.1.3. As a result, many
alternatives to CGI have arisen. These include a number of open source and proprietary mechanisms, some of
which have gained enough following to become de-facto standards. Among the more prominent alternatives
are PHP, Cold Fusion, Microsoft’s Active Server Pages (ASP), Sun’s Java Server Pages (JSP) and Servlet API,
and Ruby on Rails. We provide an overview of these and other mechanisms in Chapter 9.

In the final part of this chapter, we discuss how web servers process HTTP requests and how that
processing is affected by server configuration. We also discuss methods for providing robust server security.

175

6.1 Basic Operation

Web servers, browsers, and proxies communicate by exchanging HTTP messages. Servers receive and
interpret HTTP requests, locate and access requested resources, and generate responses, which they send back
to the originators of the requests. The process of interpreting incoming requests and generating outgoing
responses is the main subject of this section.

Figure 6.1 illustrates how a web server processes incoming requests, generates outgoing responses, and
transmits those responses back to the appropriate requestors. The Networking module is responsible both for
receiving requests and for transmitting responses over the network. When it receives a request, it must first
pass it to the Address Resolution module, which is responsible for analyzing and “pre-processing” the request.
This pre-processing includes:

• Virtual Hosting: If the web server is providing service for multiple domains, determine the target
domain for this request and use the detected domain to select configuration parameters.
• Address Mapping: Determine whether this is a request for static or dynamic content, based on the
URL path and selected server configuration parameters, and resolve the address into an actual
location within the server’s file system.
• Authentication: If the requested resource is protected, examine authorization credentials to see if
the request is coming from an authorized user.

Once the pre-processing is complete, the request is passed to the Request Processing module, which
invokes sub-modules to serve static or dynamic content as appropriate. When the selected sub-module
completes its processing, it passes the results to the Response Generation module, which builds the response
and directs it to the Networking module for transmission.

It is important to remember that, since the HTTP protocol is stateless, the only information available to
the server about a request is contained within that request. State may be maintained in the form of session
information by server-side applications and application environments (e.g., servlet containers), but reference
to this information must be contained within the request.

176

Figure 6.1 Server operation.

177

6.1.1 HTTP request processing

Let us take a step back and recollect what has to happen for an HTTP request to arrive at the server. For the
purposes of this example, we examine a series of transactions in which an end user is visiting a friend’s
personal web site found at http://mysite.org/.

The process begins when the end user tells the browser to access the page found at the URL
http://mysite.org/pages/simple-page.html. When the browser successfully receives and renders the page
(Figure 6.2 and Figure 6.3), the user sees that it has links to two other pages, school.html and home.html.
Suppose now that the end user follows the link to school.html.

Figure 6.2 Browser request to load the page.

Figure 6.3 Simple HTML page returned to browser.

You Say You Want a Resolution ...

If the links found on a page are relative links (incomplete URLs meant to be interpreted
relative to the URL of the current page), then they must be resolved so that the browser knows
the complete URL referenced by the link. In Chapter 7, we discuss the steps that browsers take
to resolve a relative link into an absolute URL in order to construct and submit the request.

Notice that the request in Figure 6.2 does not contain the Connection: close header. This means that, if
possible, the connection to the server should be left open so that it may be used to transmit further requests
and receive responses. However, there is no guarantee that the connection is still open at the time the user
requests school.html. By that time, the server, a proxy, or even the browser itself might have broken it.
Persistent connections are designed to improve performance but should never be relied upon in application
logic.

If the connection is still open, the browser uses it to submit the request for the school links page (Figure

178

http://mysite.org/
http://mysite.org/pages/simple-page.html

6.4). Otherwise, the browser must first re-establish the connection. Depending on the browser configuration,
it may attempt either to establish a direct connection to the server or to connect via a proxy. Consequently, the
server receives the request either directly from the browser or from the proxy.

For persistent connections, the server is responsible for maintaining a queue of requests and responses for
each client. HTTP/1.1 specifies that, within the context of a single continuously open connection, a series of
requests may be transmitted. It also specifies that responses to these requests must be sent back in the order of
request arrival (FIFO).

Figure 6.4 Browser request to load the school.html page.

One common solution is for the server to maintain both an input and an output queue of requests. When a
request is submitted for processing, it is removed from the input queue and inserted into the output queue.
Once the processing is complete, the request is marked for release, but it remains on the output queue while at
least one of its predecessors is still there. When all of its predecessors are gone from the output queue, it is
released and its associated response is sent back to the browser either directly or through a proxy.

Once the server picks the request from the queue, it resolves the request URL to the physical file location
and checks whether the requested resource requires authentication (Figure 6.1). If the authentication fails, the
server aborts further processing and generates the response indicating an error condition (see Section 3.4.3). If
authentication is not necessary or is successful, the server decides on the kind of processing required.

179

6.1.2 Delivery of static content

Web servers present both static content and dynamic content. Static content falls into two categories:

• static content page: static files containing HTML pages, XML pages, plain text, images, etc., for
which HTTP responses (including headers) must be constructed;
• as-is page: static files containing complete HTTP responses (including headers).

For dynamic content, the server must take an explicit programmatic action to generate a response, such as
the execution of an application program, the inclusion of information from an auxiliary file, or the
interpretation of a template. This mode of processing includes Common Gateway Interface (CGI) programs,
Server-Side Includes (SSI) pages, Java Server Pages (JSP), Active Server Pages (ASP), and Java servlets, among
others.

We do not attempt to describe details of these and other server mechanisms (refer to Chapter 9 for a more
detailed overview). Here, we concentrate on describing the common underlying principles that make it easier
to learn new mechanisms and develop better mechanisms in the future.

Web servers use a combination of filename suffixes (extensions) and URL prefixes to determine which
processing mechanism should be used to generate a response. By default, it is assumed that a URL should be
processed as a request for a static content page. However, this is only one of a number of possibilities. A URL
path beginning with /servlet/ might indicate that the target is a Java servlet. A URL path beginning with /cgi-
bin/ and a URL where the target filename ends in .cgi might indicate that the target is a CGI script. A URL
where the target filename ends in .php or .cfm might indicate that a template processing mechanism (e.g.,
PHP or Cold Fusion) should be invoked. We discuss address resolution in more detail in Section 6.4.

Static content pages

For a static content page, the server maps the URL to a file location relative to the server document root. In our
example, the user visited a page on a personal web site found at http://mysite.org/pages/school.html. The path
portion of this URL, /pages/school.html, is mapped to a specific filename within the server’s local file system.
For example, if the web server is configured so that the document root is /www/doc, then this URL is mapped
to /www/doc/pages/school.html in the server file system.

180

http://mysite.org/pages/school.html

Figure 6.5 Response to the request in Figure 6.4.

For static pages, the server must retrieve the file, construct the response, and transmit it back to the
browser. For persistent connections, the response is placed in the output queue before transmission. Figure 6.5
shows a response generated for the HTTP request in Figure 6.4. As we discussed in Chapter 5, the first line
of the response contains the status code that summarizes the result of the operation. The server controls
browser-side rendering of the response content through the Content-Type header, set to a MIME type.
Setting MIME types for static files is controlled through server configuration. In the simplest case, it is based
on the mapping between file extensions and MIME types.

Even though desktop browsers have their own mappings between MIME types and file extensions, it is the
server-side mapping that determines the Content-Type header of the response. This header - not the filename
suffix or a browser heuristic based on content analysis - determines how the browser should render the body of
the response.

An Experiment

If you have access to your own web server (and if not, you should install one), you can try
experimenting with your browser and server to see how browser rendering is determined.
Within the browser, map the file extension .html to text/plain instead of text/html, then visit
an HTML page. You will notice that HTML pages are still rendered as hypertext.

Try changing the same mapping on the server: map the file extension .html to text/plain.
Reload the page in your browser and you will see the HTML markup tags as plain text.

With all this in mind, it is important that the server sets the Content-Type header to the appropriate
MIME type so that the browser can render the content properly. The server may also set the Content-Length
header. This header is optional and may be missing for dynamic content because it is difficult to determine
the size of the response before its generation is complete. Still, if it is possible to predict the size of the
response, it is a good idea to include the Content-Length header. This allows the browser to report correctly
on the content download progress.

We have already discussed HTTP support for caching. In Section 6.3.3, we come back to this example to
discuss the Last-Modified header and its use by the browser logic in forming requests and reusing locally

181

cached content. Even though Last-Modified is not a required header, the server is expected to make its best
effort to determine the most recent modification date of requested content and use it to set the header.

As-is pages

Suppose that you do not want server logic to be involved in forming response headers and the status code.
Maybe you are testing your browser or proxy, or maybe you want a quick and dirty fix by setting a special
Content-Type for some pages. Then again, maybe you want an easy and convenient way to regularly change
redirection targets for certain pages. It turns out there is a way to address all these situations - use as-is pages.
The idea is that such pages contain a complete response and the server is supposed to send them back “as is”,
without adding status codes or headers. If we were to store a detailed response in a file that is recognized by
the server as an as-is file, it should be guaranteed that, when the file is requested, the server returns its
contents unchanged as the response.

The mechanism for recognizing as-is files is very similar to the mechanism for mapping static content to
MIME types. It is common to configure the server to map the .asis file extension to as-is processing. The
difference from static content is that, instead of generating the Content-Type header, the server defers to the
Content-Type setting found in an as-is file.

Using the as-is mechanism, we can control server output by manually creating and modifying response
messages. The word “manually” is of course the key here - whenever you want to change the response, you
have to go in and edit it. This is convenient for very simple scenarios but does not provide an opportunity to
implement even very basic processing logic.

182

6.1.3 Delivery of dynamic content

The original mechanisms for serving up dynamic content are CGI and SSI. Today’s web servers use more
sophisticated and more efficient mechanisms for serving up dynamic content, but CGI and SSI date back to
the very beginnings of the web and it behooves us to understand these mechanisms before delving into the
workings of the newer approaches.

CGI

CGI was the first consistent server-independent mechanism, dating back to the very early days of the web.
The original CGI specification can be found at http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.

The CGI mechanism assumes that, when a request to execute a CGI script arrives at the server, a new
“process” is “spawned” to execute a particular application program, supplying that program with a set of
parameters. (The terminology of “processes” and “spawning” is Unix-specific, but the analog of this
functionality is available for non-Unix operating systems.)

The heart of the CGI specification is the designation of a fixed set of environment variables that all CGI
applications know about and can access. The server is supposed to use request information to populate the
variables (see Table 6.1). Information used to populate these variables comes from the request line, connection
parameters, URL, and other sources, but not from the HTTP headers.

Table 6.1 CGI environment variables

The server is responsible for always setting the SERVER_SOFTWARE, SERVER_NAME, and
GATEWAY _INTERFACE environment variables, independent of information contained in the request.
Other pre-defined variable names include CONTENT_TYPE and CONTENT_LENGTH, which are
populated from the Content-Type and Content-Length headers. Additionally, every HTTP header is
mapped to an environment variable by converting all letters in the name of the header to upper case, replacing

183

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

the hyphen with an underscore, and pre-pending the “HTTP_” prefix. For example, the value of the User-
Agent header is stored in the HTTP_USER_AGENT environment variable, and the value of the Content-
Type header is stored in both the CONTENT_TYPE and HTTP_CONTENT_TYPE environment
variables.

It is important to remember that while names of HTTP headers do not depend on the mechanism (CGI,
servlets, etc.), names of the environment variables are specific to the CGI mechanism. Some early servlet
containers expected the CGI environment variables to retrieve header values because their implementers were
CGI programmers and did not make the distinction. These servlet containers performed internal name
transformations according to the rules defined for the CGI mechanism (e.g., Content-Type to
CONTENT_TYPE), which was the wrong thing to do. These problems are long gone and you would be
hard pressed to find a servlet container that does it now, but it is important to remember that the names of
CGI environment variables have no meaning outside of the CGI context.

The CGI mechanism was defined as a set of rules, so that programs that abide by these rules would run the
same way on different types of HTTP servers and operating systems. That works as long as these servers
support the CGI specification, which evolved to a suite of related specifications for different operating
systems.

CGI was originally introduced for servers running on Unix, where a CGI program always executes as a
process with the body of the request available as standard input, and with HTTP headers, URL parameters,
and the HTTP method available as environment variables. For Windows servers, the CGI program runs as an
application process. With these systems, there is no such thing as “standard input” (as there is in a Unix
environment), so standard input is simulated using temporary files. Windows environment variables are
similar to Unix environment variables. Information-passing details are different for other operating systems.
For example, Macintosh computers pass system information through Apple Events. For simplicity, we refer to
the CGI specification as it applies to Unix servers in the rest of this section. You would do well to consult
your web server documentation for information-passing details.

Since the CGI mechanism assumes spawning a new process per request and terminating this process when
the request processing is complete, the lifetime of a CGI process is always a single request. This means that
even processing that is common for all requests has to be repeated every time. CGI applications may
sometimes make use of persistent storage that survives individual requests but persistence is a non-standard
additional service that is out of the scope of what is provided by HTTP servers.

Perl Before Swine

You have probably noticed that CGI programs are frequently called “CGI scripts.” This is
because they are often implemented using a scripting language, and most frequently this
language is Perl. It is very common to see texts describing the mechanisms of “Perl/CGI
programming.”

While Perl is extremely popular, it is not the only language available for implementing CGI
programs. There is no reason why you cannot use C or any other programming language, as
long as that language provides access to the message body, headers, and other request
information in a manner that conforms to the CGI specification. Nevertheless, Perl’s

184

popularity makes it the prime candidate for our examples.
The advantage of using Perl is that it is portable: scripts written in Perl can execute on any

system with a Perl interpreter. Unfortunately, you pay the price in performance - Perl scripts
run more slowly than programs written in a compiled language such as C.

Figure 6.6 shows a simple HTML page containing a form that lets users specify their names and zip codes.
The action parameter of a <FORM> tag references the server application that can process form information.
(It does not make sense to use forms if the action references a static page!)

Figure 6.6 Form for submitting user name and zip code.

Figure 6.7 HTTP request submitted by the browser for the form in Figure 6.6.

Figure 6.7 shows the HTTP request that is submitted to the server when the user fills out the form and
clicks on the “submit” button. Notice that the entered information is URL-encoded: spaces are converted to
plus signs, while other punctuation characters (e.g., equal signs and ampersands) are transformed to a percent
sign (%) followed by the two-digit hexadecimal equivalent in the ASCII character set.

Also, notice that the Content-Type header is set to application/www-form-urlencoded, telling the server
and server applications to expect form data. Do not confuse the Content-Type of the response that caused the
browser to render this page (in this case, text/html) with the Content-Type of the form submission request.
Form data submitted from an HTML page, WML page, or an applet would all have the same Content-Type:
application/www-form-urlencoded.

The server, having received the request, performs the following steps:

1. Determines that /cgi-bin/zip.cgi is a CGI program. This decision may be based on a
configuration parameter declaring /cgi-bin to be a CGI directory or on the .cgi file extension being
mapped to the CGI processing module.

185

http://cgi-bin/zip.cgi

2. Translates /cgi-bin/zip.cgi, based on the server configuration, to a server file system location (e.g.,
/www/cgi-bin/zip.cgi).
3. Verifies that the computed file system location (/www/cgi-bin/) is legal for CGI executables.
4. Verifies that zip.cgi has execute permissions for the user id that is used to run the server. (This
issue is relevant for Unix systems, where processes run under the auspices of a designated user id. It
may not apply to non-Unix systems.)
5. Sets environment variables based on the request information.
6. Creates a child process responsible for executing the CGI program, passes it the body of the
request in the standard input stream, and directs the standard output stream to the server module
responsible for processing the response and sending it back to the browser.
7. On termination of the CGI program, the response processor parses the response and, if missing,
adds the default status code, default Content-Type, and headers that identify the server and server
software.

To avoid errors in processing request parameters that may be present either in the query string of the
request URL (for GET requests) or in the body of the request (for POST requests), CGI applications must
decompose the ampersand-separated parameter string into URL-encoded name-value pairs prior to decoding
them. Figure 6.8 shows a function found in a Perl script, which takes a reference to an associative array and
populates it with name-value pairs either from the request URL’s query string (for a GET request) or from
the body of the HTTP request (for a POST request).

Figure 6.8 Form and query string processing in CGI code.

For forms found in HTML pages, the choice of request method (GET or POST) is determined by the
method parameter in the <FORM> tag. In either case, the request parameters consist of ampersand-

186

http://cgi-bin/zip.cgi
http://www/cgi-bin/zip.cgi
http://zip.cgi

separated, URL-encoded name - value pairs. In our example, the browser composed the body of the request
from information populated in the form in Figure 6.6: zip=08540&name=Leon+Shklar. The CGI script that
invokes the ReadFormFields function would pass it the reference to an associative array. The read command
is used to read the number of bytes defined by the Content-Length header from the body of the request. Note
that read would be blocked when attempting to read more bytes than available from the body of the request,
which will not happen if the Content-Length header is set properly. Real applications should take precautions
to ensure proper timeouts, etc.

Having read the body of the request into the $buf_tmp variable, the next step is to split it into parts using
the ampersand as the separator and using the foreach loop to split parts into keys and values at the = signs.
Every value has to be URL-decoded which means that + signs need to be turned back into spaces and three-
character control sequences (e.g., %27) need to be translated back into the original characters. It is very
important that keys and values are separated prior to URL-decoding to avoid confusing the splitting
operations with & and = signs that may be contained in the values. (For example, a parameter value may itself
contain an encoded equal sign or ampersand, and URL-decoding before separation could cause a
misinterpretation of the parameters.)

Figure 6.9 contains a sample CGI program that uses the ReadFormFields function to retrieve key-value
pairs from the bodies of requests. The PrintFormFields function simply prints the Content-Type header and
the HTML document with key-value pairs. The empty associative array, fields, is populated by
ReadFormFields and then passed to the PrintFormFields function.

CGI programs may output status codes and HTTP headers but the HTTP server is responsible for
augmenting the output to make them legitimate HTTP responses. In the example, the server has to add the
status line and may include additional HTTP headers including Date and Server.

There are many commercial and open-source Perl packages that insulate CGI programmers from the
HTTP protocol. There is nothing wrong with using convenience functions but it is important to understand
the underlying data structures and protocols. Without that, finding and fixing problems may turn out to be
very difficult. Moreover, understanding HTTP and mappings between the HTTP and CGI specifications
simplifies learning other protocols and APIs for building Internet applications.

As we mentioned, Perl is not the only option. The CGI specification makes no assumptions about the
implementation language and, as long as you access environment variables and standard input (or their
equivalents for non-Unix operating systems), you can use any language you want. Nevertheless, the majority
of CGI applications are implemented in Perl. It is no surprise since developers use the CGI mechanism for its
simplicity, not for its performance characteristics. The additional overhead of interpreting a Perl program
should not matter that much when balanced against the convenience of using an interpreted scripting
language.

187

Figure 6.9 Printing parameters in CGI code.

As a server implementer, you are responsible for detecting CGI requests, starting a new child process for
each CGI request, passing request information to the newly initiated process using environment variables and
the input stream, and post-processing the response.

SSI

The Server Side Includes specification (SSI) dates back almost as far as the CGI specification. It provides
mechanisms for including auxiliary files (or the results of the execution of CGI scripts) into an HTML page.
The original specification for SSI still can be found at
http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html.

Let us take another look at the sample CGI script in Figure 6.9. The PrintFormFields function outputs
HTML tags; if you want to change the HTML, you have to go back and change the code. This is not at all
desirable since it complicates maintenance. The most obvious solution is to create partially populated HTML
pages, or templates, and fill in the blanks with the output of CGI scripts and, perhaps, other server-side
operations. SSI is not a replacement for CGI, but it is an easy way to add dynamic content to pages without a
lot of work.

SSI macros must have the following format:

The syntax is designed to place SSI commands within HTML comments ensuring that unprocessed
commands are ignored when the page is sent to the browser. Valid commands include config for controlling
the parsing, echo for outputting values of environment variables, include for inserting additional files, fsize for
outputting file size information, and - the most dangerous - exec for executing server-side programs. The

188

http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html

popular use of the exec command is to invoke CGI scripts as in exec cgi http://mysite.org/cgi-bin/zip.cgi but
it may be used also to run other server-side programs.

Using the SSI mechanism to invoke the CGI script in Figure 6.9, we can simplify the script because we no
longer need to print out the Content-Type header and the static part of the page. In the SSI example in
Figure 6.10 and Figure 6.11, the shorter CGI script is invoked to fill blanks in the page, and the server uses
the file extension of the page to set Content-Type. You can refer to the URL of an SSI page in the action
attribute of the form tag (e.g., instead of the CGI URL in Figure 6.6), but only if you change the request
method to GET. The server produces an error if you try to use POST - not at all surprising, since the CGI
specification requires that bodies of POST requests be passed to CGI scripts as standard input. It is not clear
what it means to pass the standard input stream to an SSI page. Making it a requirement for the server to pass
bodies of POST requests to CGI scripts referenced in SSI pages would have complicated the implementation
of the SSI mechanism. Moreover, SSI pages may include multiple exec cgi instructions, and it is unclear what
it means to pass the same input stream to multiple CGI scripts.

Figure 6.10 Using SSI instead of the CGI program from Figure 6.9.

Figure 6.11 Companion CGI program for the SSI instruction in Figure 6.10.

As you no doubt remember, servers do not parse static pages - browsers are responsible for parsing pages
and submitting additional requests for images and other embedded objects. This has to be different for SSI -
the server cannot discover and execute SSI macros without parsing pages. Pages containing SSI macros are
assigned different file extensions (e.g., .shtml) to indicate that special processing is required. In Section 6.4,
we look at how different file extensions may be associated with different server-side processing modules.

189

http://mysite.org/cgi-bin/zip.cgi

CGI scripts that are invoked within SSI pages have access to additional context information that is not
available in standalone mode. The context information is passed through environment variables;
DOCUMENT_NAME, DOCUMENT_URI, and LAST_MODIFIED describe the SSI page and other
environment variables (QUERY_STRING_UNESCAPED, DATE_LOCAL, DATE_GMT) are primarily
the matter of convenience. The output of a standalone CGI script is sent to the browser after the server makes
its final say in filling up the gaps - default values for required HTTP headers and the status code. When the
CGI script is invoked from an SSI page, the server does not perform any error checking on the output.
Responses that include the Location header are transformed into HTML anchors, but other response bodies
are included in the page irrespective of the Content-Type of the response. You have to be careful or you can
end up with GIF binaries mixed up with your HTML tags.

The SSI mechanism provides a simple and convenient way to add dynamic content to existing pages
without having to generate the entire page. Nothing comes free, and the price of convenience in using SSI is
both the additional load on the server and security worries since fully enabling SSI means allowing page
owners to execute server-side programs. The security concerns lead server administrators to impose very
serious limitations on the SSI mechanism, which limits the portability of SSI pages. Still, when used in a
limited fashion (e.g., restricted to file includes), SSI may be a convenient and efficient way to implement
applications that assemble pages dynamically from asynchronously modified static components.

190

6.2 Mechanisms for Dynamic Content Delivery

Even after you have built a web server that performs the basic tasks discussed in Section 6.1, there is still
much to do. In this section, we discuss alternative mechanisms for building server-side applications. In the
remaining sections, we discuss virtual hosting, other advanced server functionality, server configuration, and
security.

191

6.2.1 Beyond CGI and SSI

CGI is a simple mechanism for implementing portable server-side applications. It is employed widely
throughout the web. However, there are a number of problems associated with CGI processing. Its main
deficiency is performance. Processing a request that invokes a CGI script requires the spawning of a child
process to execute that script (plus another process if the script is written in an interpreted language such as
Perl). Moreover, any initialization and other processing that might be common to all requests must be
repeated for every single request.

SSI has similar deficiencies when its command processing employs CGI under the hood. It adds an
additional performance penalty by requiring servers to parse SSI pages. Most importantly, SSI may represent a
serious security risk, especially when not configured carefully by the server administrator. The SSI mechanism
is not scalable and provides only limited opportunities for reuse.

With this in mind, a number of other approaches to dynamic content processing have arisen in the web
server environment.

192

6.2.2 Native APIs (ISAPI and Apache Server API)

Efficiency concerns are sometimes addressed by using native server APIs. A native server API is a mechanism
providing direct “hooks” into web server modules. Use of a native API implies the use of compiled code that is
optimized for a specific web server environment. The Apache Server API and ISAPI are two approaches,
employed by the Apache Web Server and Microsoft’s IIS, respectively.

Unfortunately, there is no commonality or consistency amongst these native APIs. They are different from
each other, and it is impossible to reuse code written for one API in another. This makes it impossible to
implement portable applications. Additionally, applications that use native APIs are very intrusive and require
extensive testing. For these reasons, the usage of native APIs remains limited.

193

6.2.3 FastCGI

FastCGI is an attempt to combine the portability of CGI applications with the efficiency of non-portable
applications based on server APIs. The idea is simple: instead of requiring the spawning of a new process
every time a CGI script is to be executed, FastCGI allows processes associated with CGI scripts to “stay alive”
after a request has been satisfied. This means that new processes do not have to be spawned again and again,
since the same process can be reused by multiple requests. These processes may be initialized once, rather than
endlessly re-executing initialization code.

Server modules that enable FastCGI functionality talk to HTTP servers via their own APIs. These APIs
attempt to hide the implementation and configuration details from FastCGI applications, but developers still
need to be aware of the FastCGI implementation, as the various modules are not compatible with each other.
Therein lies the problem: to ensure true portability, FastCGI functionality has to be supported across different
HTTP servers in a consistent and compatible fashion.

The initial failure of FastCGI modules to proliferate to the main HTTP servers was the main cause for its
temporary disappearance from the server-side application scene when servlets came along. Ironically, FastCGI
has undergone a revival with the appearance of Ruby on Rails-anew and credible challenger for the Servlet
API.

194

6.2.4 Template processing

Another approach used to serve dynamic content involves the use of template processors. Templates are
essentially HTML files with additional “tags” that prescribe methods for inserting dynamically generated
content from external sources. The template file contains HTML that provides general page layout
parameters, with the additional tags placed so that content appears appropriately on the rendered page.
Among the most popular template approaches are PHP (an open-source product), Cold Fusion (from Adobe),
and Active Server Pages (ASP, from Microsoft).

SSI can be considered an early and rather trivial template-processing approach. While SSI directives can
perform simple tasks, such as embedding external files and the output of CGI programs within a page,
advanced template processors provide functionality that is more sophisticated. This functionality, which is
available in most programming and scripting languages, includes:

• submitting database queries;
• iterative processing (analogous to repetitive “for-each” looping);
• conditional processing (analogous to “if” statements).

Figure 6.12 employs one of the popular template approaches, Adobe’s Cold Fusion, and demonstrates each
of these functions. (Note that Cold Fusion’s special tags look like HTML tags, but begin with CF.) The
<CFQUERY> block tag defines a database query. The <CFIF> block tag delimits a section that should only
be included in the resulting page if the result set returned from the query is not empty (recordcount greater
than zero). Within that block, the <CFOUTPUT> block tag specifies the contents of an HTML table row
that should be repeated (with proper value substitution) for each row in the query’s result set. (Note that text
within Cold Fusion block tags that is delimited by # indicates a substitution parameter, e.g., #text#.)

The advantage of this approach is that templates can be created and maintained by page designers, who have
background in HTML and web graphics but not in programming. Special tags that are “extensions” to
HTML are considered similar enough to SSI tags to put their usage within the grasp of an average page
designer. Employing these tags requires less expertise than writing code.

The problem is that the more sophisticated these template approaches get, the more they begin to resemble
programming languages, and the more likely it becomes that this perceived advantage of simplicity will not be
realized. Some template approaches provide advanced functionality by allowing scripting within the template,
but this only blurs the line between scripts and templates. It also means that, in all likelihood, two sets of
people need to be responsible for building (and maintaining) the template: people with web design skills and
people with programming skills.

195

Figure 6.12 Template for Cold Fusion.

196

6.2.5 Servlets

A better approach to serving dynamic content is the Servlet API - Java technology for implementing
applications that are portable not only across different servers but also across different hardware platforms and
operating systems. Like FastCGI, the Servlet API uses server application modules that remain resident and
reusable, rather than requiring the spawning of a new process for every request. Unlike FastCGI, the Servlet
API is portable across servers, operating systems, and hardware platforms. Servlets execute the same way in
any environment that provides a compliant servlet container. The Servlet API has generated a very strong
following; it is widely used in a variety of web server environments.

Implementers of Java servlets do not need to have any knowledge of the underlying servers and their APIs.
Interfacing with server APIs is the responsibility of servlet containers, which include a Java Virtual Machine
and are designed to communicate with host HTTP servers. Servlet containers do this by talking directly to
server APIs through the Java Native Interface (JNI) or by running in a standalone mode and listening on an
internal port for servlet requests that are redirected from general-purpose HTTP servers.

Servlets are Java programs that have access to information in HTTP requests. They generate HTTP
responses that are sent back to browsers and proxies. Remember the CGI program in Figure 6.8 and Figure
6.9? Figure 6.13 shows what it looks like if implemented as a servlet.

As you see, methods defined on the HttpServletRequest class take care of extracting and decoding
parameters and setting response headers. Notice that the HttpServlet class has different methods for different
HTTP methods (doGet () and doPost ()). In this example, we want to retrieve parameters passed in both
GET and POST requests. We have the luxury of using exactly the same code in both cases - the
getParameterNames and getParameter methods adjust their behavior depending on the type of request and
protect programmers from having to know whether to retrieve parameters from the query string or the body of
the request.

197

Figure 6.13 Parameter processing in servlets.

We revisit servlets in Chapters 9 and 10. It is worth noting that, unlike CGI scripts, servlets are capable of
handling multiple requests concurrently. Servlets may forward requests to other servers and servlets. Of
course, forwarding a request to another server results in an HTTP request even if programmers stick to
method calls that are defined in the Servlet API.

198

6.2.6 Java Server Pages

The Java Server Pages (JSP) mechanism came about as Sun’s response to Microsoft’s template-processing
approach, Active Server Pages. Originally, JSP was intended to relieve servlet programmers from the tedium
of having to generate static HTML or XML markup through Java code. Today’s JSP processors take static
markup pages with embedded JSP instructions and translate them into servlets, which are then compiled into
Java byte code. More specifically, JSP processors generate Java classes, which extend the HttpJspBase class
that implements the Servlet interface. What this means is that JSP serves as a pre-processor for servlet
programmers. The resulting classes are compiled modules that execute faster than a processor that interprets
templates at request time.

Figure 6.14 Parameter processing in JSP.

In contrast with earlier template approaches, most of which used proprietary tags, JSP instructions use
XML syntax. Combined with Java code fragments, JSP tags express the logic for transforming JSP pages into
the markup used to present the desired content.

It is not necessary for all application logic to be included in the page - the embedded code may reference
other server-based resources. JSP’s ability to reference server-based components is similar to SSI support for
referencing CGI scripts. It helps to separate the page logic from its look and feel and supports a reusable
component-based design.

Figure 6.14 illustrates that the task of displaying the parameters of an HTTP request is much simpler
(compare with the servlet example in Figure 6.13). Notice, that we do not have to separately override the
doGet and doPost methods since the HttpJspBase class is designed to override the service method (from
which doGet and doPost are invoked).

Unlike servlets, the JSP technology is designed for a much wider audience since it does not require the same
level of programming expertise. Even better, we do not have to pay as high a price as we did when using SSI
technology instead of CGI scripts. As you remember, using SSI meant additional parsing overheads and issues
with security. This is not a problem with JSP pages that are translated into servlets, which, in turn, are
compiled into Java bytecode.

199

200

6.2.7 Future directions

The combination of servlets with JSPs does not, in itself, enforce or even encourage a truly modular approach
to writing server-side applications. The example described in the previous section does not decouple data
access logic from presentation logic, in fact it intermixes them excessively.

Still, this combination can be used effectively to implement the Model-View-Controller design pattern,
which enforces the separation of content from presentation in a methodical modular way. Sun refers to this
approach as JSP Model 2. It involves the use of a controlling “action” servlet (the Controller component), which
interfaces with JavaBeans that encapsulate access to data (the Model component), presenting the results of this
processing through one or more Java Server Pages (the View component).

Strict application of this design pattern ensures that there is true separation of content and presentation.
The controlling action servlet routes the request to ensure the execution of appropriate tasks. The JavaBeans
(referred to in JSP “usebean” tags) encapsulate access to underlying data. JSPs refer to discrete data elements
exposed in Java beans, presenting those data elements as desired.

Part of the elegance of this approach is the flexibility of the presentation. The same application can serve
data to a wide variety of target devices, including desktop computers and handheld devices. Multiple view
components for the same target platform could be used to enable personalized or customized presentations.

The Struts Application Framework (developed by the Apache Group as part of its Jakarta Project) provides a
set of mechanisms to enable the development of web applications using this paradigm. Through a
combination of Java classes, JSP tag libraries, and specifications for action mappings as XML configuration
files, Struts provides a way to achieve the goal of truly modular and maintainable web applications.

The ultimate goal is a truly declarative framework, where it is enough to reference and configure necessary
components and no coding is required. Although we are not there yet, existing mechanisms such as JSP
Model 2 and Struts are moving us further along the path to that goal.

201

6.3 Advanced Functionality

Historically, server evolution went hand-in-hand with the evolution of the HTTP protocol. Some of the
changes in the HTTP/1.1 specification were attempts to unify and legitimize proprietary extensions that were
implemented in HTTP/1.0 servers, while others were genuinely new features that filled the need for extended
functionality. For example, some HTTP/1.0 servers supported the Connection: keep-alive header even
though it was never a part of the HTTP/1.0 specification. Unfortunately, for it to work properly it was
necessary for every proxy between the server and the browser, and of course the browser itself, to support it as
well. As we discussed in Chapter 3, servers, browsers, and proxies compliant with HTTP/1.1 have to assume
that connections are persistent unless told otherwise via the Connection: close header. Examples of new
features include virtual hosting, chunked transfers, and informational status codes.

202

6.3.1 Virtual hosting

As we covered in Section 3.5, virtual hosting is the ability to map multiple server and domain names to a
single IP address. The lack of support for such a feature in HTTP/1.0 was a glaring problem for Internet
Service Providers (ISPs). After all, you want your ISP to support your newly registered domain names!

HTTP/1.1 servers have a number of responsibilities with regard to virtual hosting:

• They use information in the Host header to identify the virtual host.
• They generate error responses with the proper status code (400 Bad Request) in the absence of the
Host header.
• They support absolute URLs in requests, even though there is no requirement that the server
identified in the absolute URL matches the Host header.
• They support isolation and independent configuration of document trees and server-side
applications between different virtual hosts within the same server installation.

Most widely used HTTP/1.1 servers support virtual hosting. They make the important distinction between
physical and logical configuration parameters. Physical configuration parameters are common for all virtual
hosts: they control listening ports, server processes, limits on the number of simultaneously processed requests
and the number of persistent connections, and other physical resources. Logical parameters may differ
between virtual hosts: they include the location and configuration of the document tree and server-side
applications, directory access options, and MIME type mappings.

203

6.3.2 Chunked transfers

You have probably experienced a number of occasions when you have spent long minutes sitting in front of
your browser waiting for a particularly slow page. It could be because of a slow connection or it could be that
the server application is slow. Either way you have to wait, even though all you need may be to take a quick
peek at the content before you move on. The HTTP/1.1 specification introduced the notion of transfer
encoding and an initial type of transfer encoding - chunked - that is designed to enable the processing of
partially transmitted messages.

According to the HTTP/1.1 specification, servers must decode HTTP requests containing the Transfer-
Encoding: chunked header prior to further processing. Similarly, browsers must decode HTTP responses
containing this header (see Chapter 7). Chunked encoding is recommended for slow connections. It is most
useful when servers (or browsers) can process individual chunks upon their decoding, without waiting for the
entire content to arrive.

Figure 6.15 demonstrates a sample HTTP response - note the Transfer-Encoding: chunked header
indicating the encoding of the body. The first line of the body starts with the hexadecimal number indicating
the length of the first chunk (hexadecimal 1b or decimal 27) and is followed by an optional comment
preceded by a semicolon. The next line contains exactly 27 bytes and is followed by another line containing
the length of the second chunk (hexadecimal 10 or decimal 16). The second chunk is followed by the line
containing 0 as the length of the next chunk, which indicates the end of the body. The body may be followed
by additional headers (called footers, since they follow the body). Their role is to provide information about the
body that is impossible to obtain until the body generation is complete.

Figure 6.15 HTTP response for a chunked transfer.

It may seem counter-intuitive that a browser request would be so huge as to merit separating it into chunks,
but think about file transfer using PUT or POST requests. It gets a bit interesting with POST requests - try
defining an HTML form with different input tags at least one of which refers to a file; upon submitting the
form the browser creates the request with the Content-Type header set to multipart/form-data. Chunked
encoding is not applicable across different body parts of a multipart message but the browser may apply it to
any body part separately, e.g. the one containing the file.

Chunked encoding is a powerful feature but it is easy to misuse it without achieving any benefit. For

204

example, suppose you are implementing a server application that generates a very large image file and zips it
up. Even after being zipped up it is still huge, so you think that sending it in chunks may be helpful. Well, let
us think about it - the browser receives the first chunk and retrieves the chunk content only to realize that it
needs the rest of the chunks to unzip the file prior to attempting to render it. We just wasted all the time to
encode and decode the body without obtaining any benefit.

205

6.3.3 Caching support

Caching is one of the most important mechanisms in building scalable applications. Server applications may
cache intermediate results to increase efficiency when serving dynamic content, but such functionality is
beyond the responsibility of HTTP servers. In this section, we concentrate our discussion on server
obligations in support of browser caching as well as server controls with regard to browser caching behaviors.

Prior to HTTP/1.1, the majority of browsers implemented very simplistic caching policies - they cached
only pages they recognized as static (e.g., only pages received in response to submitting requests initiated
through anchor tags, as opposed to forms, and only those with certain file extensions). Once stored, the
browser did not verify these cache entries for a fixed period (short of an explicit reload request).

There were, of course, problems with implementing more advanced caching strategies:

• On-request verification of cache entries meant doubling the number of requests for modified pages
using HEAD requests. As you remember, HEAD requests result in response messages with empty
bodies. On failed validation, such responses require follow-up GET requests.
• HTTP/1.0 servers, as a rule, did not include the Last-Modified header in response messages,
making it much harder to check whether cache entries remained current. Verification had to rely on
heuristics (e.g., changes in content length).
• There was no strict requirement for HTTP/1.0 servers to include the Date header in their
responses (even though most did), making it harder to assign proper timestamps to cache entries.

HTTP/1.1 requires servers to comply with the following requirements in support of caching policies:

• Cache entries must be validated when receiving requests that include If-Modified-Since and If-
Unmodified-Since headers set to a date in the GMT format (e.g., Date: Sun, 16 Sep 2007, 2
2:15:51 GMT). Invalid and future dates must be ignored. If the condition is satisfied (content has
been modified, in the case of the If-Modified-Since header, or has not been modified, in the case of
the If-Unmodified-Since header), the server should generate the same response as it would without
cache validation. Servers are also responsible for generating proper status codes for failed conditions
(304 Unmodified and 412 Precondition Failed, respectively).
• The Last-Modified header should be included in response messages whenever possible. Browsers
use this value to compare against dates stored with cache entries.
• The Date header must be included with every response, which makes it possible to avoid errors
that may happen when browsers rely on their own clocks.

It is not reasonable to expect servers to implement caching policies for dynamic content - this remains the
responsibility of server applications. HTTP/1.1 provides applications with much finer controls than
HTTP/1.0 (see Section 3.4.2). Depending on the processing mechanism (e.g. CGI or Servlet API), cache
control headers may be generated directly by applications or by the enabling mechanism, but the headers are
still the same. The key to understanding APIs is to examine the HTTP headers that are generated when you
call a particular method and how these headers affect browser behavior. Such understanding is invaluable in

206

designing good applications and troubleshooting problems.

207

6.3.4 Extensibility

Real HTTP servers vary in the availability of optional built-in components that support the execution of
server-side applications. They also differ in the implementation of optional HTTP methods (all methods
except GET and HEAD). Fortunately, servers provide system administrators with ways to extend the default
functionality. As we discuss in Section 6.4.5, there are multiple ways to extend server functionality - from
implementing optional HTTP methods to adding custom support mechanisms for building server
applications.

208

6.4 Server Configuration

A web server’s behavior is determined by its configuration. While the details of configuring a web server differ
greatly between implementations, there are important common concepts that transcend these differences. For
example, any HTTP server must map file extensions to MIME types, and any server must resolve URLs to
addresses in the local file system. In this section, we use Apache configuration examples as a case study. We
do not attempt to provide an Apache configuration manual, which is freely available from the Apache site;
instead, we concentrate on the concepts, leaving it to our readers to utilize those concepts in the practical task
of configuring their servers.

209

6.4.1 Directory structure

An HTTP server installation directory is commonly referred to as the server root. Most often, other directories
(such as the document root, configuration directory, log directory, CGI and servlet root directories) are
defined as subdirectories of the server root. An initial configuration file is normally loaded when the server
comes up; it contains execution parameters, information about the location of other configuration files, and
the location of the most important directories. Configuration file formats vary for different servers - from
traditional attribute - value pairs to XML applications.

There exist situations when it is desirable to depart from the convention that calls for the most important
directories to be defined as subdirectories of the server root. For example, you may have reasons to run
different servers interchangeably on the same machine, which is particularly common in a development
environment. In this case, you may want to use the same independently located document root for different
servers. Similarly, you may need to be able to execute the same CGI scripts and servlets independent of which
server is currently running. It is important to be particularly careful when sharing directories between different
processes. If one of the processes is insecure, the integrity of your directory structure is in jeopardy.

210

6.4.2 Execution

An HTTP server is a set of processes or threads (for uniformity, we refer to them as threads), some of which
listen on designated ports while others are dedicated to processing incoming requests. Depending on the load,
it may be reasonable to keep a number of threads running at all times so that they do not have to be started
and initialized with every request. Figure 6.16 contains a fragment of a sample configuration file for an
Apache installation on a Windows machine.

The server type of standalone indicates that the server process is always running and, as follows from the
value of the Port parameter, is listening on port 80. The server is configured to support persistent connections
and every such connection is configured to persist for up to 100 requests. The keep-alive timeout setting
dictates that the server should break the connection if 15 seconds go by without a new request. Many servers
make it possible to impose a limit on the number of requests processed without restarting a child process. This
limit was introduced for very pragmatic reasons - to avoid prolonged use that results in leaking memory or
other resources. The nature of the HTTP protocol, with its independent requests and responses, makes it
possible to avoid the problem simply by restarting the process. Finally, the timeout limits processing time for
individual requests.

HTTP/1.1 is designed to support virtual hosting - the ability of a single server to accept requests targeted
to different domains (which, of course, requires DNS aliases). This is useful when your favorite internet
service provider hosts your site and is the reason for requiring the Host header in every request. Every virtual
host may be configured separately. This does not apply to the operational parameters that have been
discussed: different virtual hosts still share the same physical resources.

Figure 6.16 Fragment of a configuration file.

211

6.4.3 Address resolution

An HTTP request is an instruction to the server to perform specified actions. In fact, you may think of
HTTP as a language, an HTTP request as a program, and the server as a language interpreter. Requests are
interpreted largely by specialized server modules and by server applications. For example, the servlet container
is responsible for interpreting session identifiers in Cookie headers and mapping them to server-side session
information. Application logic is responsible for interpreting URL parameters, request bodies, and additional
header information (e.g., Referer).

The core server logic is responsible for the initial processing and routing of requests. The first and most
important steps are to select the correct virtual host, to resolve aliases, to analyze the URL, and to choose the
proper processing module. In Figure 6.17, www.neurozen.com is a virtual host. When a user accesses a URL
containing this virtual host, the server has to locate configuration statements for it and use them to perform
address translation.

Consider the following URL:

In Figure 6.17, /test is defined to be an alias for /servlet/test. The server would first resolve the alias and
then use module mappings to pass the URL to the servlet container which, in turn, invokes the test servlet.

Consider the following URL:

In Figure 6.17, /images is an alias for /static/images, which is not mapped to a module and is assumed to be
a static file. Consequently, the server translates /static/images to the path starting at the document root and
looks up the image with the path /www/docs/neurozen/static/images/news.gif.

The syntax of the configuration fragments in our examples is that of the Apache distribution. Do not get
misled by the presence of angle brackets - this syntax only resembles XML. It may evolve to proper XML
syntax in future versions. Note that almost all configuration instructions may occur within the VirtualHost
tags. The exception is configuration instructions that control execution parameters (see Section 6.4.2).
Instructions defined within the VirtualHost tag take precedence for respective host names over global
instructions.

212

http://www.neurozen.com
http://www/docs/neurozen/static/images/news.gif

Figure 6.17 A configuration fragment.

213

6.4.4 MIME support

Successful HTTP responses (returning the code 200 OK) are supposed to contain the Content-Type header
instructing browsers how to render enclosed bodies. For dynamic processing, responsibility for setting the
Content-Type header to a proper MIME type is deferred to the server application that produces the response.

For static processing, it remains the responsibility of the server. Servers set MIME types for static files
based on file extensions. A server distribution normally contains a MIME configuration file that stores
mappings between MIME types and file extensions.

In Figure 6.18, text/html is mapped to two file extensions (.html and .htm), text/xml is mapped to a single
file extension (.xml), and video/mpeg is mapped to three extensions (.mpeg, .mpg, and .mpe).

There may be reasons for a particular installation to change or extend default mappings. Most servers
provide for a way to do this without modifying the main MIME configuration file. For example, Apache
supports special add and update directives that may be included with other global and virtual host-specific
configuration instructions. The reason is to make it easy to replace default MIME mappings with newer
versions without having to edit every new distribution. Such distributions are relatively frequent and are based
on the work of standardization committees that are responsible for defining MIME types.

It is important to understand that MIME type mappings are not used exclusively for setting response
headers. Another purpose is to aid the server in selecting an appropriate processing module. This is an
alternative to path-based selections (see Section 6.4.3). For example, a mapping may be defined to associate
the .cgi extension with CGI scripts; this means that the server would use the .cgi extension of the file name
defined in the URL to select CGI as the processing module. This does not change server behavior in
performing path-based selections when MIME-based preferences do not apply. Choosing CGI as the
processing module for the incoming request is entirely independent from setting the Content-Type header in
the response, which remains the responsibility of the CGI script.

214

6.4.5 Server extensions

HTTP servers are packaged to support the most common processing modules: As-Is, CGI, SSI, and servlet
containers. Apache refers to these modules as handlers, and makes it possible not only to map built-in handlers
to file extensions but also to define new handlers. In Figure 6.19, the AddHandler directive is used to
associate file instructions with handlers. The AddType directive defines MIME types for the responses
produced by these handlers through associating both types and handlers with the same file extension. Further,
the Action directive is designed to support new handlers. In the example, the add-footer handler is defined as
a Perl script that is to be invoked for all .html files.

Figure 6.18 Fragment of the Apache MIME configuration file.

Figure 6.19 Defining server extensions in Apache.

According to the HTTP 1.0 and 1.1 specifications, the only required server methods are GET and HEAD.
You would be hard pressed to find a widely used server that does not implement POST, but many of them do
not implement other optional methods: PUT, DELETE, OPTIONS, TRACE, and CONNECT. The set
of optional methods for a server may be extended, but custom methods are bound to have proprietary
semantics. The Script directive in Figure 6.19 extends the server to support the PUT method by invoking the
CGI program my-put.

215

6.5 Server Security

The history of the human race has too many examples of the struggle between fear and greed. In Internet
programming, this tug of war takes the form of the struggle between server security and the amount of
inconvenience to server administrators and application developers. Server security is about 80:20 compromises
- attempts to achieve 80% of the desired security for your servers at the cost of giving up 20% of the
convenience in building and maintaining applications. Of course, there are always the degenerate cases when
no security is enough, but that is a separate discussion.

This section is not intended as a security manual, but rather as an overview of the most common security
problems in setting up and configuring HTTP servers. We do not attempt to provide all the answers, only to
help you start looking for them. Where security is concerned, being aware of a problem takes you more than
half way to finding a solution.

216

6.5.1 Securing the installation

HTTP servers are designed to respond to external requests. Some of the requests may be malicious and
jeopardize the integrity not only of the server but of the entire network. Before we consider the steps necessary
to minimize the effect of such malicious requests, we need to make sure that it is not possible to jeopardize the
integrity of the server machine and corrupt the HTTP server installation.

The obvious precaution is to minimize remote login access to the server machine, up to and including
disabling it entirely. (On Unix/Linux systems, this would mean disabling the telnet and login daemons.) If
this is too drastic a precaution for what you need, at least make sure that all attempts to access the system are
monitored and logged and all passwords are crack-resilient.

Every additional process running on a machine that serves outside requests adds to the risk - for example
FTP and TFTP. In other words, it is better not to run any additional processes; if you have to, at least make
sure that they are secure. Most problems are caused by a simple oversight. Do not neglect to check for obvious
and trivial problems, such as file permissions on configuration and password files. There are free and
commercial packages that can aid you in auditing the file system and checking for file corruption-a clear
indication of danger. After all, if the machine itself can be compromised, it does not matter how secure is the
HTTP server that is running on that machine.

The HTTP server itself is definitely a source of danger. Back in the early days, when the URL string was
limited to a hundred characters, everyone’s favorite way of getting through web server defenses was to specify
a long URL and either achieve some sort of corruption or force the server to execute instructions hidden in
the trailing portion of the URL. This is not likely to happen with newer HTTP servers but there are still
gaping security holes that are occasionally exposed if server administrators are not careful.

As we discussed in Section 6.1.3, SSI is fraught with dangers. Primarily, this is due to its support for the
execution of server-side programs. Commercial servers that allow the use of SSI commonly are configured to
disable the invocation of server-side programs from SSI pages. Even so, subtler security holes occasionally are
exposed because of buggy parsing mechanisms that get confused when encountering illegal syntax-a variation
on the ancient problem with very long URLs, which caused buffer overflows. You may be asking for trouble if
your server is configured to support SSI pages in user directories (particularly if the invocation of server-side
programs is enabled). Similar precautions go for CGI scripts - enabling them in user directories is very
dangerous. At the risk of repeating ourselves - it is simple security oversights that cause most problems.

217

6.5.2 Dangerous practices

Speaking of oversights, there are a few that seem obvious but are repeated over and over again. Quite a
number of them have to do with the file system. We mentioned file permissions, but another problem has to
do with symbolic links between files and directories. Following a symbolic link may take the server outside the
intended directory structure, often with unexpected results. Fortunately, HTTP servers may be configured to
ignore symbolic links when processing HTTP requests.

Of all the problems caused by lack of care in configuring the server, the one that stands out has to do with
sharing the same file system between different processes. How often do you see people providing both FTP
and HTTP access to the same files? You can spend as much effort as you want securing your HTTP server
but it will not help if it is possible to establish an anonymous FTP connection to the host machine and post an
executable in a CGI directory.

Now think of all the dangers of file and program corruption that may let outsiders execute their own
programs on the server. It is bad enough that outside programs can be executed, but it is even worse if they
can access critical system files. It stands to reason that an HTTP server should execute with permissions that
don’t give it access to files outside of the server directory structure. This is why, if you look at server
configuration files, you may notice that the user id defaults to “nobody” - the name traditionally reserved for
user ids assigned to HTTP servers. Unfortunately, not every operating system supports setting user ids when
starting the server. Even less fortunately, system administrators, who log in with permissions that give them
full access to system resources, are the ones to start servers. As a result, the server process (and programs
started through the server process), may have full access to system resources. You know the consequences.

218

6.5.3 Secure HTTP

Let us assume for the time being that the server is safe. This is still not enough to guard sensitive applications
(e.g., credit card purchases). Even if the server is safe, HTTP messages containing sensitive information are
still vulnerable. The most obvious solution for guarding this information is, of course, encryption. HTTPS is
the secure version of the HTTP protocol. All HTTPS and HTTP messages are the same except that the
former are transmitted over a Secure Sockets Layer (SSL) connection - messages are encrypted before the
transmission and decrypted after being received by the server.

The SSL protocol supports the use of a variety of cryptographic algorithms to authenticate the server and
the browser to each other, transmit certificates, and establish session encryption keys. The SSL handshake
protocol determines how the server and the browser negotiate the encryption algorithm to use. Normally, the
server and the browser select the strongest possible algorithm supported by both parties. Very secure servers
may disable weaker algorithms (e.g., those based on 64-bit encryption). This can be a problem when a user
tries to access a bank account and the server refuses the connection asking the user to install a browser that
supports 128-bit encryption.

As always, you may spend a lot of effort and get bitten by a simple oversight. Even now, after so many years
of Internet commerce, you can find applications that have the same problem - they secure the connection after
authenticating a user but the authentication is not performed over a secure connection, which exposes user
names and passwords. Next time, before you fill out a form to log in to a site that makes use of your sensitive
information, check that the action attribute on the form references an HTTPS URL. If it does not, you
should leave and never come back.

219

6.5.4 Firewall configurations

Today, more than a third of all Internet sites are protected by firewalls. The idea is to isolate machines on a
Local Area Network (LAN) and expose them to the outside world via a specialized gateway that screens
network traffic. This gateway is customarily referred to as a firewall. There are many different firewall
configurations and they fall into two major categories: dual-homed gateways and screened-host gateways.

A dual-homed firewall is a computer with two interface cards, one of which is connected to the LAN and
one to the outside world. With this architecture, there is no direct contact between the LAN and the world,
so it is necessary to run a firewall proxy on the gateway machine and make this proxy responsible for filtering
network packets and passing them between the interface cards. Passing every packet requires an explicit effort
and no information is passed if the firewall proxy is down. Such a configuration is very restrictive and is used
only in very secure installations.

Screened-host gateways are network routers that have the responsibility of filtering traffic between the
LAN and the outside world. They may be configured to screen network packets based on source and
destination addresses, ports, and other criteria. Normally, the router is configured to pass through only
network packets that are bound for the firewall host and to stop packets that are bound for other machines on
the LAN. The firewall host is responsible for running a configurable filtering proxy that selectively passes
through the network traffic. The screened-host configuration is very flexible - it is easy to open temporary
paths to selected ports and hosts. This comes in handy when you need to show a demonstration running on an
internal machine.

220

6.5.5 HTTP proxies

It is all well and good to install a firewall but what do you do if you need to make your HTTP server visible to
the outside world? The seemingly obvious answer - running it on the firewall machine - is not a good one.
First, any serious load on the HTTP server that is running on the firewall machine may bring the LAN
connection to the outside world to its knees. After all, the HTTP server and network traffic filters would
share the same resources. Secondly, any security breach that exposes the HTTP server could also expose the
firewall machine and, consequently, the entire LAN. Running the HTTP server on the firewall machine is a
very bad idea altogether. Unfortunately, many installations do this anyway.

A better alternative is to take advantage of the flexibility of a screened-host gateway and allow network
traffic to an internal machine when directed to a certain port (e.g., 80). It is much less dangerous than running
the server on the firewall machine but still fraught with problems, since you are exposing an unprotected
machine albeit in a very limited way. Additionally, this approach has functional limitations - how would you
redirect the request to another server running on a different port or on a different machine?

It turns out there is another solution. Let us go back and think about the reasons why it is not a good idea
to run an HTTP server on the firewall machine. The first reason is processing load and the second reason is
security. What if we limited the functionality of the HTTP server that is running on the firewall machine and
made it to defer processing to machines inside the firewall? This would solve the problem with processing
load. How about security? Well, if the HTTP server is not performing any processing on the firewall machine
and passes requests along to an internal machine on the LAN, it is hard to break into this server. The simpler
the functionality, the harder it is for malicious outsiders to break in.

This sounds good, but what we are doing is simply passing requests along to another machine that still has
to process these requests. Can malicious outsiders break into that machine? Well, it is not so easy - even if
they manage to wreak havoc on the HTTP server machine, they cannot access that machine directly and use it
as a staging ground for further penetration.

Our recommended solution is not to run a fully fledged HTTP server on the firewall machine but to
replace it with an HTTP proxy that may be configured to screen HTTP requests and forward them to the
proper internal hosts. Different proxy configurations may be selected depending on a wide range of
circumstances but what is important is that no processing is performed on the firewall host and the internal
machines are not exposed directly to the outside world.

221

6.6 Summary

By now, you should have enough information to build your own HTTP server or extend an existing open-
source system. We attempted to make a clear distinction between the responsibilities of servers and those of
server applications. Even if you do not implement your own server or server components, understanding server
operation is invaluable when architecting, building, and debugging complex Internet applications.
Understanding server operation is also very important in making decisions about configuring a server and
securing the server installation.

Implementing server applications was not the focus of this chapter. Instead, we concentrated on the
comparative analysis of different application mechanisms and on passing request and response information to
and from server applications. Chapters 9, 10, and 11 give an in-depth discussion of server-side applications.

QUESTIONS AND EXERCISES

1. Describe server processing of a POST request. In the case of CGI processing, how
does the server pass information to a CGI program (request headers, body, URL
parameters, etc.)?
2. What are the advantages and disadvantages of using the SSI mechanism?
3. What are the advantages of a Servlet API over the CGI mechanism?
4. How does the relationship between CGI and SSI mechanisms differ from the
relationship between Servlets and JSP?
5. What was the reason for introducing Transfer-Encoding: chunked in HTTP/1.1?
6. Is it possible to use chunked transfer encoding with multipart HTTP messages?
Explain.
7. Why was it necessary to introduce the Host header in HTTP/1.1? How is it used
to support virtual hosting? Why was it not enough to require that request lines
always contain a full URL (as in GET http://www.cs.rutgers.edu/~shklar/
HTTP/1.1)?
8. When (if ever) does it make sense to include HTTP/1.0 headers in HTTP/1.1
responses directed at HTTP/1.1 browsers?
9. HTTP/1.1 servers default to the keep-alive setting of the Connection header.
Why then do most browsers include Connection: keep-alive in their requests even
when they know that the target server supports HTTP/1.1?
10. Is it possible for an HTTP/1.1 server not to support persistent connections and
still be HTTP-compliant?
11. Name three headers that, if present in an HTTP response, always have to be
processed in a particular order. State the order and explain. Why did we ask you to
name two headers in Chapter 3 but three headers in this exercise?
12. What is the difference between dual-homed gateways and screened-host

222

http://www.cs.rutgers.edu/~shklar/HTTP/1.1

gateways? Which is safer? Which is more flexible?
13. What functionality would be lost if servers did not know how to associate file
extensions with MIME types?
14. Is it a good idea to run an HTTP server on a firewall machine? Explain.
15. Does your answer to question 14 depend on whether the HTTP server is running
as a proxy?
16. Implement a mini-server that generates legal HTTP 1.0 responses to GET,
HEAD and POST requests. Your program should be able to take the port number
as its command-line parameter and listen on this port for incoming HTTP/1.0
requests (remember that a requirement for backward compatibility is part of
HTTP/1.0 - this means support for HTTP/0.9). Upon receiving a request, the
program should fork a thread to process the request and keep listening on the same
port. The forked thread should generate the proper HTTP response, send it back to
the browser, and terminate. The server should be capable of processing multiple
requests in parallel. Pay attention to escape sequences and separators between the
key-value pairs in the bodies of POST requests and query strings of GET requests.
Make sure that the necessary request headers are included in incoming requests (e.g.,
Content-Type and Content-Length in POST requests).
17. Your program has to generate legal HTTP headers according to HTTP 1.0
(including Content-Type). It should use a configuration file (mime-config) that will
store mappings between file extensions and MIME types. It should use these
mappings to determine the desired Content-Type, which is referenced by the URL
(in your case, a file path) specified in the GET or POST request. You must support
basic path translation - all static URLs will have to be defined relative to the
document root. This also means that your server needs at least a basic general
configuration file (see the Apache documentation). At a minimum, it should be
possible to specify the server root, and the document root and the cgi-bin directory
path relative to the server root.
18. Implement HTTP 1.1 support for the mini-server from Exercise 16. Your
program should be able to take the port number as its command-line parameter and
listen on this port for incoming HTTP/1.1 requests (remember that backward
compatibility requirement is part of HTTP/1.1 - this means support for HTTP/1.0
and HTTP/0.9). Your server should support parallel processing of multiple requests.
Upon receiving a request, your server should start a new thread to process that
request and keep listening on the same port. The new thread should generate a
proper HTTP response, send it back to the browser, and terminate. The server
should be able to initiate processing of new requests while old requests are being
processed.

You have to send HTTP/1.1 responses for HTTP/1.1 requests, HTTP/1.0

223

responses for HTTP/1.0 requests, and HTTP/0.9 responses for HTTP/0.9
requests. A minimal level of compliance is acceptable, which implies the
following:

• HTTP/1.0 and HTTP/0.9 requests are processed as before.
• The server must check for presence of the Host header in
HTTP/1.1 requests, and return 400 Bad Request if the header is
not present; the server must accept both absolute and relative
URL syntax.
• The server must either maintain a persistent connection or
include Connection : close in every response.
• The server must include the Date header (with the date in
GMT) in every response.
• The server must support the If-Modified-Since and If-
Unmodified-Since headers.
• The following methods are defined in HTTP/1.1: GET,
HEAD, POST, PUT, DELETE, OPTIONS, and TRACE.
You must support GET, HEAD, and POST; return 501 Not
Implemented for other defined methods; and return 400 Bad
Request for undefined methods.

The result of this exercise should be a program that receives legal HTTP/1.1
requests and sends legal HTTP/1.1 responses back. It should function as an
HTTP/1.0 server in response to HTTP/1.0 requests.

224

6.7 Bibliography

Castro, Elizabeth, 2001. Perl and CGI for the Web. Peachpit Press.

Hall, Marty, 2002. More Servlets and Java Server Pages. Prentice Hall.

Kopparapu, Chandra, 2002. Load Balancing Servers, Firewalls and Caches. John Wiley and Sons, Inc.

Luotonen, Ari, 1997. Web Proxy Servers. Prentice Hall.

Rajagopalan, Suresh et al., 2002. Java Servlet Programming Bible. John Wiley and Sons, Inc.

Thomas, Stephen, 2000. SSL and TLS Essentials: Securing the Web. John Wiley and Sons, Inc.

Yeager, Nancy and McGrath, Robert, 1996. Web Server Technology. Morgan Kaufmann.

225

CHAPTER 7

Web Browsers

IN THIS CHAPTER

• Overview of browser functionality
• Architectural considerations
• Processing HTTP requests and responses
• Cookies, privacy, and P3P
• Complex HTTP interactions

OBJECTIVES

• Establish the set of tasks that web browsers must perform.
• Break down browser architecture into component modules, establishing the
responsibilities of these modules and their interactions.
• Provide an in-depth analysis of the processing flow in a web browser.
• Examine how browsers create and transmit HTTP requests, receive and interpret
HTTP responses, and interact with the user.
• Focus on browser support for cookies, caching, and authorization.
• Examine the page-rendering process, including generating requests for supporting
data items and using plug-ins and helper applications to render multimedia content.

In this chapter, we go over the fundamental considerations in designing and building a web browser, and
other sophisticated web clients. When discussing web browsers, our focus is not on the graphical aspects of
browser functionality (i.e., the layout of pages or the rendering of images). Instead, we concentrate on the
issues associated with the processing of HTTP requests and responses. The value of this knowledge will
become apparent as we proceed to a discussion of sophisticated web applications in the following chapters.

It is not uncommon for the wisdom of studying web browser design to be questioned. After all, the task of
designing a browser is a fait accompli, a known problem that already has a solution. Given the sophistication
and proliferation of today’s browsers, including Mozilla Firefox, Safari, Opera, and Internet Explorer, it may

226

seem like a futile endeavor to “reinvent the wheel” by building a new browser application.
In reality, there is much benefit in learning the inner workings of modern web browsers:

• The browser is the most common example of a web client, but it is far from the only one. Other
types of web clients include agents, which are responsible for submitting requests on behalf of a user
to perform an automated function, and proxies, which act as gateways for passing requests and
responses between servers and clients to enhance security and performance. These clients need to
replicate much of the functionality found in browsers.
• Today’s sophisticated mobile devices - including PDAs, smart phones, and wireless Internet
appliances - offer web access and require browsers that are designed to work on devices with limited
memory and screen space. The Opera Mini browser is a program that provides substantial
functionality yet works well on a variety of mobile devices and understands the interface limitations
associated with them. We should expect the introduction of many new devices in the years to come
and they will need browsers customized and optimized to support their capabilities.
• Finally, today’s browsers continue to evolve, and at least two of them are open-source efforts to
which interested developers can contribute. While it would be difficult to develop and market a new
desktop browser at this stage of the game, there are ample opportunities to enhance and augment
the functionality of existing desktop browsers.

227

7.1 Overview of Browser Functionality

The main responsibilities of a browser are as follows:

• To generate and submit requests to web servers on the user’s behalf, as a result of following
hyperlinks, explicit typing of URLs, submitting forms, and parsing HTML pages that require
auxiliary resources (e.g., images, applets).
• To accept responses from web servers and interpret them to produce a visual representation for the
user. At a bare minimum, this would involve examination of certain response headers such as
Content-Type to determine what action needs to be taken and what sort of rendering is required.
• To render the results in the browser window or through a third-party tool, depending on the
content type of the response.

This, of course, is an oversimplification of the complex tasks that real browsers perform. Depending on the
status code and headers in the response, browsers have to perform other tasks, including:

• Caching: The browser must determine whether it needs to request data from the server. It may
have a cached copy of the required data item. If so, and if this cached copy has not “expired,” the
browser can eliminate a superfluous request for the resource. In other cases, the server can be
queried to determine if the resource has been modified since it was originally retrieved and placed in
the cache. Caching can provide significant performance benefits.
• Authentication and authorization: A web server may require authorization for resources it has
designated as secure. The browser must react to server requests for credentials by prompting the user
for authentication credentials or by utilizing validated credentials from previous requests.
• State maintenance: In order to record and maintain state across requests and responses, web
servers may request that the browser accept cookies, which are sets of name - value pairs included in
response headers. The browser must store the transmitted cookie information and make it available
to be included in appropriate requests. In addition, the browser should provide configuration
options to let users choose whether or not to accept cookies.
• Requesting supporting data items: The typical web page contains images, Java applets, sounds,
and a variety of other ancillary objects. The proper rendering of the page is dependent upon the
browser retrieving those supporting data items for inclusion in the rendering process. This normally
occurs without user intervention.
• Taking actions in response to other headers and status codes: The HTTP headers and the status
code may provide additional processing instructions, which extend or supersede rendering
information found elsewhere in the response. These instructions may indicate a problem in
accessing the resource or may instruct the browser to redirect the request to another location. They
may also indicate that the connection should be kept open, so that further requests can be sent over
the same connection. Many of these functions are associated with advanced functionality that was
introduced in HTTP/1.1.
• Rendering complex objects: Most web browsers inherently support content types such as

228

text/html, text/plain, image/gif, and image/jpeg. This means that the browser provides native
functionality to render objects with these contents within the browser window and without having
to install additional software. To render or play back other more complex objects (e.g., audio, video,
and multimedia), a browser must provide support for these content types. Mechanisms must exist
for invoking external helper applications or internal plug-ins that are required to display and play back
these objects.
• Dealing with error conditions: The browser must be equipped to deal with connection failures,
invalid server responses, and other similar situations.

229

7.2 Architectural Considerations

Let us engage in an intellectual exercise: putting together requirements for the architecture of a web browser.
What are those requirements? What functions must a web browser perform? And how should different
functional components interact with each other?

The following list delineates the core functions of a web browser. Each function can be thought of as a
distinct module within the browser. These modules must communicate with each other in order to allow the
browser to function, but they should each be designed atomically. This module organization scheme is
conceptual, for purposes of illustration, and may not be reflected literally in the codebase for a real-world

browser (e.g., Mozilla’s Firefox1).

• User Interface: This module is responsible for providing the interface through which users interact
with the application. This includes presenting, displaying, and rendering the end result of the
browser’s processing of the response transmitted by the server.
• Request Generation: This module bears responsibility for the task of building HTTP requests to
be submitted to HTTP servers. When asked by the User Interface module or the Content
Interpretation module to construct requests based on relative links, it must first resolve those links
into absolute URLs.
• Response Processing: This module must parse the response, interpret it, and pass the result to the
User Interface module.
• Networking: This module is responsible for network communications. It takes requests passed to
it by the Request Generation module and transmits them over the network to the appropriate web
server or proxy. It also accepts responses that arrive over the network and passes them to the
Response Processing module. In the course of performing these tasks, it takes responsibility for
establishing network connections and dealing with proxy servers that may have been specified in the
user’s network configuration options.
• Content Interpretation: Having received the response, the Response Processing module needs
help in parsing and deciphering the content. The content may be encoded; this module is
responsible for decoding it. Initial responses often have their content types set to text/html but their
bodies may contain references to images, multimedia objects, JavaScript code, applets, and style
sheet information. The Content Interpretation module performs the additional processing necessary
for browser applications to understand and process these references by telling the Request
Generation module to construct additional requests for the retrieval of the auxiliary objects.
• Caching: Web browsers need a way to minimize the unnecessary retrieval of resources that are
already available to them, “cached” away in local storage. Browsers can ask web servers whether a
desired resource has changed since the last time that the browser retrieved it and stored it in the
cache. This module must provide facilities for storing copies of retrieved resources for later use, for
accessing those copies when viable, and for managing dedicated space (both memory and disk)
allocated according to the browser’s configuration parameters.

230

• State Maintenance: Since HTTP is a stateless protocol, some mechanism must be in place to
maintain the browser state between related requests and responses. Cookies are the mechanism of
choice for performing this task, and support for cookies is the responsibility of this module.
• Authentication/Authorization: This module takes care of providing authorization information
when requested by the server. It must process response headers demanding authentication
credentials by prompting the user to enter them (usually via a dialog). It also must store those
credentials in case a request is made for another secured resource in the same security “realm”. This
absolves the user of the need to re-enter the credentials each time a request for such resources is
made.
• Configuration: Finally, there are a number of configuration options that a browser application
needs to support. Some of these are fixed, while others are user-defined. This module maintains the
fixed and variable configuration options for the browser, and provides an interface for users to
modify those options under their control.

Simplified diagrams providing a high-level illustration of different stages of request generation and response
processing are presented in the next section. In addition, Section 7.9 provides a summary of the functionality
associated with the browser modules.

Certain aspects of the browser’s “state” should not be preserved beyond the end of the browser session. (A
browser session is simply the series of interactions between a browser and the HTTP servers it communicates
with, commencing with the first such interaction after the browser program starts and ending when the
browser program terminates.) For example, cookies not designated as “persistent” should be preserved for the
duration of the browser session, but not beyond it. Persistent cookies, on the other hand, should be stored on
disk so that they can be accessed during subsequent browser sessions. Likewise, authentication credentials
collected by the browser from user input should be retained for the duration of the browser session. This
means that subsequent requests submitted to URLs within the same authentication realm reuse the credentials
without re-prompting the user. These authentication credentials should be discarded when the browser
program terminates.

Browser Sessions vs HTTP Sessions

Although browser sessions are often confused with HTTP sessions, they are not the same
thing. HTTP sessions are maintained by the server, not by the browser. The browser, however,
does maintain the HTTP session identifier as a cookie, providing a link between the browser
session and the HTTP session. Because this cookie is not persistent, the HTTP session
identifier is not available to subsequent browser sessions. This means that the browser cannot
access information associated with previous HTTP sessions, even though those sessions may
still exist on the server. Also, a browser session lasts for as long as the browser program is
running, while HTTP sessions normally “time out” after a period of inactivity as configured on
the server.

231

232

7.3 Overview of Processing Flow in a Browser

7.3.1 Transmitting a request

Figure 7.1 provides a high-level view of the processing flow for the creation and transmission of a request in a
browser. It begins with a link that is followed by a user. Users can click on hyperlinks presented in the browser
display window, choose links from lists of previously visited links (history or bookmarks), or enter a URL
manually.

In each case, processing begins with the User Interface module, which is responsible for presenting the
display window and providing the user with access to browser functions (e.g., through menus and shortcut
keys). In general, an application using a Graphical User Interface (GUI) operates using an event model. User
actions - such as clicking on a highlighted hyperlink - are considered events that must be interpreted properly
by the User Interface module. Although this book does not concentrate on the user interfaces of HTTP
browsers, it is important to note the events that are important for the User Interface module:

• Entering URLs manually: Usually, this is accomplished by providing a text entry box in which the
user can enter a URL, as well as through a menu option that opens a dialog box for similar manual
entry. The second option often interfaces with the operating system to support interactive selection
of local files.
• Selecting previously visited links: This means that the User Interface module provides a mechanism
for maintaining a history of visited links. The maximum amount of time that such links are
maintained in this list, as well as the maximum size to which this list can grow, can be established as
a user-definable parameter in the Configuration module. The Location or Address text area in the
browser window can double as a dropdown field that allows users to select from recently visited links.
The Back button allows users to go back to a previously visited page. In addition, users should be
able to save links as “bookmarks” and access these links through the user interface at a later date.

Figure 7.1 Browser request generation flow.

233

• Selecting displayed hyperlinks: There are a number of ways for users to select links displayed on the
current page. In a desktop computer browser, the mouse click is the most common mechanism for
users to select a link, but there are other mechanisms as well. Accessibility guidelines dictate that
alternative mechanisms should be provided for those unable to use a mouse or keyboard (e.g., using
speech synthesis and recognition mechanisms for visually-impaired users). The User Interface
module is responsible for rendering HTML pages according to the specification, which dictates the
rendering not only of text but also of link highlighting. Most desktop browsers change the cursor
shape when the mouse is “over” a hyperlink, indicating that this is a valid place for the user to click.
Highlighting mechanisms vary for other platforms, but they always have to be present in some form.

Once the selected or entered link is passed on to the Request Generation module, it must be resolved. Links
found on a displayed page can be either absolute or relative. Absolute URLs contain all the required URL
components, i.e., <protocol>://<host>/<path> and do not need to be resolved; they can be processed without
further intervention. The resolution of a relative URL is dependent on its href attribute (see Table 7.1):

• If it is set to a path that does not begin with a slash (e.g. <A href=some_directory/just_a_
file_name.html>), the relative URL specifies a location relative to the current location (i.e., the
entire URL, up to and including the directory in which the current page resides).

Table 7.1 Resolution of Relative URLs

• If it is set to a path that does begin with a slash (e.g. <A href=/root_level_directory/
another_file_name.html>), the relative URL specifies a location relative to the host portion of the
current URL.

The process of resolution changes if the optional <BASE href=...> tag is present in the HEAD section of
the page. The URL specified in this tag replaces the current location as the “base” from which URL resolution
occurs (see the last example in Table 7.1).

Having resolved the URL, the Request Generation module builds the request, which is passed to the
Networking module for transmission. To accomplish this task, the Request Generation module has to

234

communicate with other browser components:

• It asks the Caching module “Do I already have a copy of this resource?” If so, it needs to determine
whether it can simply use this copy or whether it needs to check with the server to see if a newer
version of this resource is available.
• It asks the Authorization module “Do I need to include authentication credentials in this request?” If
the credentials are required and the browser has not already stored them for the appropriate domain
and path, it may need to contact the User Interface module to prompt the user for credentials.
• It asks the State Mechanism module “Do I need to include Cookie headers in this request?” to
determine whether the requested URL matches domain and path patterns for saved cookies that
have not yet expired.

The constructed request is passed to the Networking module so it can be transmitted over the network.

235

7.3.2 Receiving a response

Once a request is transmitted, the browser waits for a response. It may keep submitting requests while
waiting. Requests may have to be resubmitted if the connection is closed before corresponding responses are
received. It is the server’s responsibility to transmit responses in the same order as the requests were received.
However, the browser is responsible for dealing with servers that do not properly maintain this order, by
delaying the processing of responses that arrive out of sequence. Figure 7.2 provides a high-level view of this
processing flow.

Figure 7.2 Browser response processing flow.

A response is received by the Networking module, which passes it to the Response Processing module. This
module must also cooperate and communicate with other modules to do its job. It examines response headers
to determine the required actions:

• If the status code of the response is 401 Not Authorized, the request lacked necessary
authorization credentials. The Authorization module marks the response as requiring authorization
credentials from the user. The User Interface module then prompts the user to enter their user name
and password. Once they have been entered, the browser attempts to resubmit the original request -
this time with the Authorization header containing the newly entered credentials.
• If the response contains Set-Cookie or Set-Cookie2 headers, the State Maintenance module stores
the cookie information using the browser’s persistence mechanism.

The Content Interpretation module needs to decode the body of the response if the response contains
Content-Transfer-Encoding or Content-Encoding headers. The Content Interpretation module also

236

examines the Cache-Control, Expires, or Pragma headers (depending on the HTTP version of the response)
to determine whether the browser needs to cache the decoded content of the response. If so, the Caching
module is contacted, either to create a new cache entry and set its timestamp from the Last-Modified header
or to update the existing entry and its timestamp.

The Content-Type header determines the MIME type of the body of the response. Different MIME
types, naturally, require different kinds of content processing. Modern browsers support a variety of content
types natively, including HTML (text/html), graphical images (image/gif and image/jpeg), and sounds
(audio/wav and audio/mpeg). Native support means that processing of these content types is performed by
built-in browser components. The Content Interpretation module must support such processing. Leading
browsers provide support for additional content types, including vector graphics and XSL style sheets.

For MIME types that are not processed natively, browsers usually provide support mechanisms to associate
MIME types with helper applications and plug-ins . Helper applications render content by invoking an external
program that executes independently of the browser, while plug-ins render content within the browser
window. The Content Interpretation module must communicate with the Configuration module to
determine which plug-ins are installed and which helper application associations have been established, in
order to take appropriate action when receiving content that is not natively supported by the browser.

Browsers also need a way to determine the MIME types associated with local files. A file’s MIME type can
be inferred from the local operating system’s associations between filename extensions and MIME types.
Alternatively, browsers can override (or even completely ignore) these settings, managing their own sets of
associations through the Configuration module. These associations between filename extensions and MIME
types may also be used when receiving responses that do not contain valid Content-type headers.

HTML pages support embedded references to additional resources, such as images, CSS style sheets, and
JavaScript components. The Content Interpretation module must parse the content prior to passing it on to
the User Interface module, determining if additional requests for embedded references are required. URLs
associated with these requests are resolved when they are passed to the Request Generation module.

As each of the requested resources arrives, it is passed to the User Interface module so that it may be
incorporated in the final presentation. The Networking module maintains its queue of requests and responses
(per connection), ensuring that all requests have been satisfied and resubmitting any outstanding requests.

Along the way, various subordinate modules are asked questions to determine the course of processing
(including whether or not particular tasks need to be performed at all). For example, the Content
Interpretation module may say “This page has IMG tags, so we must send HTTP requests to retrieve the associated
images,” but the Caching module may respond by saying “We already have a usable copy of that resource, so don’t
bother sending a request to the network for it.” (Alternatively, it may say “We have a copy of that resource, but let’s
ask the server if its copy of the resource is more recent; if it’s not, it doesn’t need to send it back to us.”) Or the
Configuration module may say “No, don’t send a request for the images on this page, this user has elected not to see
images.” Finally, the State Maintenance mechanism may jump in and say “Wait, we’ve been to this site before, so
send along this identifying cookie information with our requests.”

The rest of this chapter is devoted to a more detailed explanation of the role each of these modules plays in
the generation of requests and the processing of responses. As mentioned previously, we do not focus on the
User Interface module’s responsibility in rendering graphics, as this is an extensive subject, worthy of its own

237

book. We concentrate on the interplay between browser modules and on how to design them to fulfill their
obligations.

We begin by going over the basics of request generation and response processing, following that with
details on the more sophisticated aspects of caching, authentication, and support for the advanced features of
the HTTP protocol.

Not Just HTTP

Browsers should do more than just communicate via HTTP. They should provide support for
Secure HTTP (over the Secure Sockets Layer). They should be able to send requests to FTP
servers. And they should be able to access local files. These three types of requests correspond
to URLs using the https, ftp, and file protocol schemes, respectively. Although we do not cover
these protocols here, it is important to note that HTTP requests and responses are not the only
kinds of transaction performed by browsers.

238

7.4 Processing HTTP Requests

The act of sending an HTTP request to a web server consists of three basic steps: constructing the HTTP
request (Request Generation module), establishing a connection (Networking module) across the Internet to
the target server or an intermediate proxy, and transmitting the request (Networking module) over the
established connection.

Before the Request Generation module begins the process of building the request, it needs to ask a series of
questions of the other modules:

1. Do I already have a cached copy of this resource? (Caching Support module)

If an unexpired entry associated with the requested URL exists in the cache, no request is
required. If the entry has expired, then the transmitted request should include an If-Modified-
Since header, containing the last modification time associated with the stored cache entry. If
the resource found on the server has not been modified since that time, the response will come
back with a 304 Not Modified status code and the cache entry can be passed directly to the
User Interface module.

2. Is there any additional information I need to send as part of this request? (State Maintenance module)

If this request is part of a series of requests made to a particular web server, or if the target web
server has been visited previously, it may have sent “state” information (in the form of Set-
Cookie headers) to the browser. The browser must set and maintain cookies according to the
server instructions: either for a specified period of time or for the duration of the current
session. Saved cookies must be examined prior to submitting a request to determine whether
cookie information needs to be included in that request.

3. Is there any other additional information I need to include as part of this request? (Authentication
/Authorization module)

If this resource is part of an authorization realm for which the user has already supplied
authentication credentials, those credentials should be stored by the browser for the duration of
a session and should be supplied with requests for other resources within the same realm.

User preferences may modify the nature of the request, possibly even eliminating the need for one entirely.
For example, users may set a preference via the Configuration module telling the browser not to request
images found within an HTML page. They can turn off support for Java applets or JavaScript, meaning that
requests for applets and scripts need not be created. They can also instruct the browser to reject cookies,
meaning that the browser does not need to worry about including Cookie headers in generated requests.

In Chapter 3, we described the general structure of HTTP requests and provided some examples. To
refresh our memories, here is the format of an HTTP request:

239

An HTTP request contains a request line, followed by a series of headers (one per line) and a blank line that
may serve as a separator, delimiting the headers from the optional body portion of the request. A typical
example of an HTTP request might look something like this:

The process of constructing an HTTP request may begin when a web site visitor sees a link on a page and
clicks on it, telling the browser to present the content associated with that link. There are other possibilities,
such as entering a URL manually, or a browser connecting to a default home page when starting up, but this
example is convenient for us to describe typical browser activity.

240

7.4.1 Constructing the request line

When a link is selected, the browser’s User Interface module reacts to that event. The User Interface module
determines and resolves the URL associated with that link and passes it to the Request Generation module,
which begins to construct the request.

Filling Out a Form

In the case of a form, where the user has entered data into form fields and clicked a Submit
button, it is more than just the URL that is passed to the Request Generation module. The
entered data must be included as well. As we mentioned in Chapter 3, the data is converted
into name-value pairs that are URL-encoded. The GET method includes the encoded data in
the URL as a query string, while the POST method places the encoded data in the body of the
request.

The first portion of the request that needs to be created is the request line, which contains a request method
(e.g., GET, POST, or HEAD), a path to the resource (representing the path portion of the requested URL),
and the version number of HTTP associated with the request.

Let us examine these in reverse order. The version number should be HTTP/1.1 or HTTP/1.0. A modern
up-to-date client program should always seek to use the latest version of its chosen transmission protocol,
unless the recipient of the request is not sophisticated enough to make use of that version. A contemporary
browser should seek to communicate with a server using HTTP/1.1 and should only “fall back” to HTTP/1.0
if the server with which it is communicating does not support HTTP/1.1.

The path-to-resource parameter is a little more complicated. It depends on which version of HTTP is
employed in the request.

• HTTP/1.0 requires the inclusion of the full URL for requests directed at proxy servers, but forbids
the inclusion of domain information for requests that are sent directly to their target servers. This is
because HTTP/1.0 servers do not understand requests where the full URL is specified in the request
line. In contrast, HTTP/1.0 proxies expect that incoming requests contain the full URL. They have
to, in order to identify target servers. When HTTP/1.0 proxies forward requests to their target
servers, they remove the server portion of the request URL. When the requests are forwarded to
other proxies, they remain unchanged.
• HTTP/1.1 is more flexible: it makes the inclusion of the entire URL on the request line acceptable
in all situations, irrespective of whether a proxy is involved. To facilitate this flexibility, HTTP/1.1
requires that submitted requests include the Host header, specifying the name of the target server.
This header was originally introduced to support virtual hosting, a feature that allows a web server
to service more than one domain: a web server program could run on a single server machine,
accepting requests associated with many different domains. The Host header identifies the domain,
which may be associated with its own web server settings (location of the document root, redirect
rules, etc.). This header also provides sufficient information to HTTP/1.1 proxies so that they can

241

properly forward incoming requests. However, HTTP/1.1 still requires the inclusion of full URLs
for requests that do not go directly to their target servers - to allow for the possible presence of
HTTP/1.0 proxies.

In summary, HTTP/1.1 requests should contain the full URL in the request line as well as the required
Host header. For HTTP/1.0, the presence or absence of the domain name in the request URL should depend
on whether the request is being directed to an intermediate proxy.

The method portion of the request line is dependent on which request method is specified, implicitly or
explicitly. When users follow a hyperlink (textual or image), they implicitly select the GET method. In the
case of an HTML form, a particular request method may be specified in the <FORM> tag:

As we mentioned in Chapter 3, the GET method represents the simplest format for HTTP requests: a
request line, followed by headers, and no body. Other request methods (e.g., POST and PUT) use a request
body, which follows the request line, the headers, and a blank line (the separator delimiting the headers from
the body). The request body may contain parameters associated with an HTML form, a file to be uploaded,
or a combination of both. Remember that in GET requests, parameters would be included in the query string
or the path component of the URL.

The method defaults to GET for hyperlinks and for forms that do not explicitly specify a method. If a form
does explicitly specify a method, that method is used instead.

242

7.4.2 Constructing the headers

Next, we come to the headers. Some of them are required and some are optional, but their inclusion has
become common practice.

• Host is a required header, which was introduced in HTTP 1.1:

It enables web servers to service more than one domain. Without this header, web servers
would not know which of their domains a request was intended for. In addition, this header
provides information to proxies to facilitate proper routing of requests.

• User-Agent identifies the software (e.g., a web browser) responsible for making the request:

It is accepted practice for a browser (or for that matter any web client) to identify itself. The
convention is to produce a header containing the name of the product, the version number, the
language this particular copy of the software uses, and the platform it runs on.

• Referer should be set to the URL of the page containing the link that the user clicked:

• Date specifies the time and date that this message was created. All request and response messages
should include this header:

• The Accept headers list the MIME types, character sets, languages, and encoding schemes that
the client can accept in a response from the server:

The client’s preferences with respect to these items can be prioritized by adding “quality”
rankings in the form of q=qvalue, where qvalue can range from 0 to 1 (and defaults to 1). The
quality value is a relative measure of the browser’s ability to display different types of content.

243

In the example above, the client states that it would do a fine job displaying text/html but
would render text/plain with a 50% degradation in quality.

• The entity headers (see Section 3.4) provide information about the message body:

They are required for POST and PUT requests, because the server needs to know the MIME
type of the content found in the body of the request, as well as the length of the body.

• Cookie contains cookie information that the browser has found in responses previously received
from web servers.

This information needs to be sent back to those same servers in subsequent requests,
maintaining state by providing name-value combinations tied to server URLs. Interactions
with the State Maintenance module determine the name-value combinations that need to be
included.

• Authorization provides authentication credentials to the server in response to an authorization
challenge received in an earlier response:

The scheme (usually basic) is followed by a string composed of the user ID and password

(separated by a colon), encoded using the Base-64 format.2 Interaction with the Authorization
module determines what the content of this header should be.

244

7.4.3 Constructing the request body

This step of the request construction process applies only for methods, such as POST and PUT, that attach a
message body to a request. The simplest example is that of including form parameters in the message body
when using the POST method. They are URL-encoded to enable proper parsing by the server and the
Content-Type header in the request is set to application/www-form-urlencoded.

There are more complex uses for the request body. File uploads can be performed through forms employing
the POST method (using multipart MIME messages). It is possible to create or modify web resources using
the PUT method (provided the server has been properly configured to support this). With the PUT method,
the Content-Type of the request should be set to the MIME type of the content that is being uploaded. With
the POST method, the Content-Type of the request should be set to multipart/form-data, while the
Content-Type of the individual parts should be set to the MIME types of those parts.

With multipart requests, the Content-Type header requires the “boundary” parameter, which specifies a
string of text that separates different parts of the body:

Note that each part specifies its own Content-Type and Content-Transfer-Encoding. This means that one
part can be textual, with no encoding, while another part can be binary (e.g., an image), encoded using the
Base-64 format, as in the following example:

245

246

7.4.4 Transmitting the request

Once the request construction is complete, it is passed to the Networking module. This module must first
determine the target of the request. The name of the target server is available in the Host header, which was
originally constructed by parsing the URL. However, the Networking module must first contact the
Configuration module to see whether the browser should use a proxy, which then becomes the immediate
target of the request. Once this is done, the Networking module establishes a connection (unless one is
already available) and transmits the request.

247

7.5 Processing HTTP Responses

In the request-response paradigm, the transmission of a request anticipates the receipt of a response. Hence,
browsers and other web clients must be prepared to process HTTP responses. This task is the responsibility of
the Response Processing module.

As we know, HTTP responses have the following format:

An HTTP response message consists of a status line (containing the HTTP version, a three-digit status
code, and a brief human-readable explanation of the status code), a series of headers (one per line), a blank line,
and finally the body of the response. The following is a sample HTTP response message:

Here, we have a successful response: the server was able to satisfy the client’s request and sent back the
requested data. Now the requesting client must decide what to do with this data.

When the Networking module receives a response, it passes it to the Response Processing module. First,
this module must examine the status code found in the first line of the response (the status line). In Chapter 3,
we delineated the different classes of status code:

• informational status codes (1xx);
• successful-response status codes (2xx);
• redirection status codes (3xx);
• client-request error status codes (4xx);
• server error status codes (5xx).

Web clients have to take different actions depending on the status code. Since the successful response
represents the simplest and most common case, we begin with status code 200.

248

249

7.5.1 Processing successful responses

The status code 200 represents a successful response, as illustrated by its associated message, OK. This status
code indicates that the web client should process the associated content in accordance with the information in
the headers:

• The Content-Transfer-Encoding and Content-Encoding headers indicate that the response
content has been encoded and that, prior to doing anything with this content, it must be de-coded:

• Content-Type tells the browser the MIME type of the content in the body of the response:

• Content-Length defines the length of the message body in bytes:

Although it is optional, when it is provided a client may use it to impart information about the
progress of a request (the browser can display the percentage of the total size of the message
body received to date).

• Set-Cookie is included along with identifying information (name-value pairs) if the server wishes
to establish and maintain state with the user’s browser:

The browser is responsible for sending back this information in any follow-up requests it
makes for resources within the same domain and path, using Cookie headers. The State
Maintenance module stores cookie information found in the response’s Set-Cookie and Set-
Cookie2 headers (see Chapter 3), so that the browser can later retrieve the information to build
the Cookie headers. A response can contain multiple Set-Cookie headers.

• The following headers influence caching behavior:

Depending on their presence or absence (and on the values they contain), the Caching Support

250

module decides whether the content should be cached and, if so, for how long (e.g., for a
specified period of time or only for the duration of the current browser session).

Once the content of a successful response has been decoded and cached, the cookie information stored, and
the content type determined, then the response content is passed on to the Content Interpretation module.
This module uses the content type to delegate processing to an appropriate component. For instance, images
(Content-Type: image/*) are processed by code devoted to rendering images. HTML content (Content-Type:
text/html) is passed to the HTML-rendering component, which in turn passes off processing to other
components as it encounters embedded objects.

For instance, JavaScript - contained within <SCRIPT> block tags or requested via references to URLs in
<SCRIPT src= ... > tags - requires a dedicated processing component. CSS instructions embedded in the page
must also be processed. (Style sheet and HTML processing are likely to be closely integrated.) After all this
processing is complete, the resulting page is passed to the User Interface module to be displayed in the
browser window. (Auxiliary requests for additional resources are discussed in Section 7.8.4.)

There are other status codes, in addition to “200 OK”, that fit into the “successful response” category
(“2xx”) including:

• 201 Created: A new resource was created in response to the request and the Location header
contains the URL of the new resource.
• 202 Accepted: The request was accepted but may or may not be processed by the server.
• 204 No Content: No body was included with the response so there is no content to present. This
tells the browser not to refresh or update its current presentation as a result of processing this
request.
• 205 Reset Content: This is usually a response to a form processed for data entry. It indicates that
the server has processed the request, and that the browser should retain the current presentation, but
that it should clear all form fields.

Although these status codes are used less often than the popular 200 OK, browsers should be capable of
interpreting and processing them correctly.

251

7.5.2 Processing responses with other status codes

Aside from the successful status code of 200, the most common status codes are the ones associated with
redirection (3xx) and client-request errors (4xx).

Client-request errors are usually relatively easy to process: either the browser has somehow provided an
invalid request (400 Bad Request) or the URL the browser requested does not exist on the server (404 Not
Found). In either of these cases, the browser simply presents a message indicating this state of affairs to the
user.

Authorization challenges that are caused by the browser attempting to access protected resources (e.g., 401
Not Authorized) are also classified as “client error” conditions. Servers send responses with the 401 status
code when authentication credentials required to access the requested resource are not available, causing the
browser to prompt the user for those credentials. Responses with the 403 Forbidden status code are sent when
the server will not provide access to the requestor at all. The latter situation may occur when the browser
exceeds the server limit for unsuccessful authorization challenges. The methods for dealing with authorization
challenges are discussed in Section 7.8.2).

Some web servers may be configured to provide custom HTML presentations when one of these conditions
occurs. In those situations, the browser should render the HTML body included in the response instead of a
built-in message:

Redirection status codes are also relatively easy to process. They come in two varieties: 301 Moved
Permanently and 302 Moved Temporarily. For responses associated with each of these status codes, there
would be a Location header. The browser needs to submit a further request to the URL specified in this
header to perform the desired redirection.

Some web servers may be configured to include custom HTML bodies when one of these conditions arises.
This is for the benefit of browsers that do not support automatic redirection and default to rendering the body
when they either do not recognize or do not support the status code. Browsers that support redirection can
ignore this content and simply perform the redirection as specified in the header:

252

This response should cause the browser to generate the following request:

The difference between the 301 and 302 status codes is the notion of “moved permanently” versus “moved
temporarily.” The 301 status code informs the browser that the data at the requested URL is now permanently
located at the new URL and thus the browser should always automatically go to the new location. In order to
make this happen, browsers need to provide their own persistence mechanism for storing relocation URLs.

301 Forever: A True Tale of Mis-Redirection

A well-known subscription-based web site routinely used a status code of 301 for most of its
redirects, including redirecting users to the login page when protected resources were accessed.
If users tried to access a page restricted to subscribers, they were redirected to the login page.
Once authenticated, users were taken to the original page they were attempting to access.

All was well until one day an ISP implemented a new proxy configuration that cached 301
redirects (which is allowed according to the HTTP specification). Consequently, users who
received their Internet access services from that ISP started complaining that they could not log
in. When attempting to view a protected page, they would be asked to log in, but instead of
being sent to the original page after logging in, they would be redirected back to the login page
again. Why was this happening? The redirect that took them from the page they wanted to
view to the login page used a 301 status. It was cached by a proxy and subsequent requests for
the original target page were automatically redirected back to the login page as a consequence
of the cached redirect.

This problem affected only some users (those using this particular ISP) and thus was very
difficult to diagnose. It was fixed by changing redirects to the login page so that they used 302
(“moved temporarily”) instead of 301 (“moved permanently”). The ISP’s proxies, appropriately,
did not cache 302 redirects.

The moral is that response status codes must be understood and used with great care.
Because of problems like this one, many browsers and proxies do not cache 301 redirects at all.
Still, many do, and it is important to make sure that your applications work correctly with
them. Using only 302 redirects would sacrifice efficiency because no redirects would be cached.

253

Developers need to differentiate between 301 and 302 status codes and use them appropriately.

254

7.6 Cookie Coordination

As we have already mentioned many times, HTTP is a stateless protocol. Despite HTTP’s stateless nature, it
is meaningful (and quite useful) to consider the notion of a session, during which the state of the user’s
interactions with the server is preserved across multiple requests and responses.

Cookies are a mechanism for maintaining state within the browser across multiple HTTP interactions. The
principle is simple: servers can include name-value pairs (cookies) in their responses and clients are responsible
for remembering these name-value pairs. Every time the client sends a request back to a server for which it has
received a cookie, it must include that cookie in the request (subject to additional conditions such as matching
path and security constraints). This helps servers to identify specific browser instances, allowing them to
associate sets of otherwise disjointed requests with user sessions. These requests, taken together, do not
comprise an actual session in the traditional network connectivity sense, but rather a logical session.

Servers transmit cookies to browsers via the Set-Cookie response header. This header is set to name-value
combinations that represent the cookies. In addition, this header contains information about the server
domain and the URL path prefix with which the cookie is to be associated. It can also contain the secure
keyword, which instructs the browser to limit the transmission of accompanied cookies to secure connections
(e.g., by using HTTPS, which is no more than HTTP over SSL).

The domain parameter of the Set-Cookie header can be a fully qualified host name, such as ecommerce.
mysite.com, or a pattern, such as .mysite.com, which corresponds to any fully qualified host name that tail-
matches this string (e.g., for domain=.mysite.com, ecommerce.mysite.com and toys.ecommerce.mysite.com
match, but mysite.com does not). The value of this parameter must match the domain that the server sending
the cookie belongs to. In other words, ecommerce. mysite.com could set a cookie with a domain parameter set
to ecommerce.mysite.com, or .mysite.com, but not to .yahoo.com.

The path parameter designates the highest level of a URL path for which the cookie applies. For instance, if
a server includes the path parameter with a value of / in the Set-Cookie header, the browser should include
the value of that cookie in the follow-up requests for all resources on the server. If the path parameter is set to
/cgi-bin/, then the cookie need only be sent by the browser in requests for URLs with the /cgi-bin/ prefix.

Browsers send identifying cookies back to appropriate servers by including the Cookie header in requests.
The content of the Cookie header is a set of name-value pairs originally sent by the server, which the browser
has stored for future reference:

The advent of the Set-Cookie2 response header added a new layer of complexity. This header, as we
mentioned in Chapter 3, is a slightly modified version of the Set-Cookie header, providing additional control
over cookie processing. Browsers that support cookies sent via Set-Cookie2 response headers must indicate
this to the server by supplying a Cookie2 request header that indicates the highest version of the cookie
protocol supported by the browser.

255

http://mysite.com
http://mysite.com
http://domain=.mysite.com
http://ecommerce.mysite.com
http://toys.ecommerce.mysite.com
http://mysite.com
http://mysite.com
http://ecommerce.mysite.com
http://mysite.com
http://yahoo.com

Details of what browsers must do to provide support for this feature are described in RFC 2965.

256

7.7 Privacy and P3P

Between the HTML forms you fill out and the cookies used to record your movements, web sites have access
to a lot of your personal information. So-called third-party cookies are particularly dangerous in the way they
can track user behavior. Third-party cookies are set in HTTP responses returning supporting data items
served by third-party domains (i.e., any domain different from the one serving the page’s primary content).
Examples of supporting data items can include images, style sheets, and JavaScript fragments. (We discuss
browser - server communication when requesting primary and supporting data items in Section 7.8.4.)

What servers do with collected information may be benign: they may use cookies solely for statistical
purposes and never associate tracking data with personally identifiable information. On the other hand, they
could tie that information together, associating your name and address with your web browsing behavior, and
either sell that information or take advantage of it directly, in a number of legal and not-so-legal ways.

The Platform for Privacy Preferences (P3P) is a W3C effort to provide web users with a degree of control
over which web sites are allowed to collect and use information about them. P3P is a way for companies and
organizations with web presence to declare what they would and would not do with your information. This
declaration is in the form of a “privacy policy”, which is provided in both human-readable and machine-
readable formats. User agents can examine the machine-readable version of the site’s policy (or policies) to see
whether these policies are in conflict with users’ personal privacy preferences (set locally in the browser
through the Configuration module). A site’s policy is considered “weak” if it does not make any
representations about use of collected user information. On the other hand, it is considered “strong” if it
guarantees no usage or distribution of collected user-identifiable information.

Based on local settings, the user agent may block cookies or demote them (i.e., make them non-persistent)
when they do not meet certain policy requirements (e.g., the policy is either not declared in the response
containing the Set-Cookie header or is not sufficiently strong). It also may leash third-party cookies. Leashing
is a mild form of blocking, in which the browser includes third-party cookies only when requesting supporting
documents from a third party through the original first party. In other words, the cookie would only be
included in requests for supporting data items from a third party if the page referencing those third-party data
items comes from the same domain as the original page.

In a superficial sense, P3P relies on the honor system - an organization can say they follow a particular
guideline in their privacy policy, while violating that guideline in practice. There is no easy way for a user
agent to tell whether a web site is violating its presented policy. Nonetheless, disparities between the human-
readable policy and the machine-readable policy - or between the human-readable policy and actual practice -
are grounds for litigation, and investigation of web sites that appear to have such disparities between policy
and practice has become a lucrative on-line business.

When a user first visits a web site, the browser must find the privacy policy on the site. There are several
ways a site can supply browsers with privacy policy information:

• It can include a <LINK> tag containing a URL referencing the policy file within the <HEAD>
portion of the returned HTML document.

257

• It can include a P3P response header that contains either a URL referencing the policy file or
(more typically) a compact policy declaration.
• It can use the default location in the web site directory tree: /w3c/p3p.xml.

Organizations have the ability to provide different policy statements for different areas of their site. To
make this work, the web application generating the response needs to supply different values in either the P3P
response header or the <LINK> tag, depending on which privacy policy applies to each area on the web site.
To be P3P-compliant, browsers need to interpret this information with each response they receive and take
appropriate action (accept, leash, or block cookies).

Internet Explorer 7 provides native support for P3P. An optional extension exists to provide P3P support in
the Mozilla family of browsers.

258

7.8 Complex HTTP Interactions

Now that we have covered the basics of request and response processing, let us move on to situations where
the interplay of requests and responses yields more sophisticated functionality.

259

7.8.1 Caching

When we speak of caching, we are referring to persistence of generated and retrieved server resources to
improve the performance of the response-generation process.

Server-side caching relieves the server of the responsibility for regenerating a response from scratch in
appropriate situations. When resources (such as HTML responses or dynamically generated images) are
stored in a server-side cache, the server does not need to go through the process of building these responses
from the ground up. This can yield an enormous performance benefit, provided the stored response is still
deemed usable (i.e., it has not expired). Such caching is application-specific and goes beyond the scope of
HTTP specifications. (This is discussed further in Chapter 8.)

Client-side caching is more relevant to our concerns in designing a browser. Client-side caching can relieve
the client of the responsibility for requesting a response from the server and can relieve the server of the
responsibility for sending a response containing an unchanged resource. This can yield enormous savings in
data transmission time. To support client-side caching, web clients must store retrieved resources in a local
cache. Subsequent requests for the same resource (i.e., the response generated by a request to the same URL
with the same parameters) should examine the cache to see if that resource is available in the cache and is still
valid (i.e., has not expired). If it has expired, the client should ask the server to send back a copy of the
resource only if it has changed since the last time it was requested.

Support for browser caching requires:

• a component for including appropriate headers in requests to support validation of existing cache
entries (part of the Request Generation module);
• a component for examining response headers for directives regarding the caching of the response
(part of the Response Generation module);
• a component for saving resources, as well as timestamps indicating their modification dates, in
some persistent storage (in memory or on disk). This is carried out by the Caching module, which
does the bulk of the decision making regarding how to construct requests to support caching and
how to deal with potentially cacheable content found in the response.

Before an HTTP request is generated, the Request Generation module should query the Caching module
to determine whether a saved copy of this resource exists and has not yet expired. If there is such a copy, it can
be used to satisfy the request, rather than requiring the browser to transmit an explicit request to a server and
wait for a response to be transmitted back. Even if the copy has “expired,” the request for the resource can be
sent with an If-Modified-Since header. If the resource has not changed since the time it was originally
retrieved, the server should return the 304 Not Modified response, rather than returning a new copy of the
resource.

If there is no copy stored in the local cache, the Request Generation module does not include the
conditional header in the request. The content of the response should be considered as a candidate object to
be stored in the cache. If there are no directives in the headers indicating that this item should not be cached,
then the item should be stored in the cache, along with the associated expiration information. The Response

260

Processing module must examine response headers and, if appropriate, pass the content of the response to the
Caching module. The Caching module determines whether the content should be stored in the cache.

This HTTP response specifies that the content should not be cached:

Subsequent requests for the same resource would result in its repeated transmission from the server.
This HTTP response has a defined expiration date (the entry expires one day after the original request):

The next time this particular resource is required, the cached copy may be used, at least until the specified
expiration date.

When a copy of a resource is stored in the cache, the Caching module maintains other information
(metadata) about the cache entry, namely its expiration date and its last modification date. This information is
necessary in optimizing the use of cache entries to satisfy requests.

For example, let’s say a full day passes from the point in time at which the resource above was cached.
According to the expiration date specified in the Expires header, the cache entry has expired. At that point,
the Request Generation module could simply submit a request for a fresh copy of the resource, telling the
Caching Support module to dispose of the expired cache entry. However, this may not be necessary. If the
content of the resource has not changed since it was retrieved, the stored copy is still usable. So, why not use
it?

There are several ways to determine whether a resource has been modified since it was last accessed. Prior
to HTTP/1.1, the most economical way to do this was to make use of the HEAD method. HEAD requests
return the same results as GET requests, but without the response body. In other words, only the headers are
sent in the response. The browser can check the Last-Modified header in the response and compare it to the
last modification date associated with the cache entry. If the date specified in the header is not more recent
than the date associated with the cache entry, the cache entry is used. Otherwise, the cache entry is deleted
and a request is made for a new copy of the requested resource.

HTTP/1.1 provides a simpler and more efficient way to accomplish the same goal. Requests can include
the If-Modified-Since header to specify the last modification date found in the cache entry. If the last
modification date of the requested resource is not more recent than the date specified in the header, the server
sends back a response with a status code of 304 Not Modified. This tells the browser that the cache entry can

261

still be used. Otherwise, the server sends a new copy of the requested resource and the browser replaces the
cache entry. With this new feature of HTTP/1.1, what used to take (potentially) two sets of HTTP requests
and responses now can be accomplished in one.

The browser must choose between HTTP/1.0 and HTTP/1.1 prior to deciding which of the two cache
validation mechanisms to use. By default, a browser should attempt to use HTTP/1.1, but if HTTP/1.1
requests are rejected by the server, it should fall back to HTTP/1.0. Cache validation exchanges are
summarized in Figure 7.3.

Naturally, the cache cannot continue to grow indefinitely. There are physical limitations on how large it can
become. To that end, there must be a mechanism that allows the browser to delete the least useful cache
entries when that limitation is reached, so that new entries can be created. The Caching module should search
for and delete expired cache entries periodically, but this is not always sufficient. Typically, the least-recently-
used algorithm is employed to select (as first candidates for deletion) those cache entries that have not been
accessed for the longest time. Since most browsers use a combination of in-memory (RAM) cache and disk
cache, coordination between these two caches is also needed. The browser may first move cache entries held
in memory to disk rather than deleting them. The Configuration module controls maximum cache sizes and
other caching behaviors, since these should be user-configurable settings that depend on the amount of RAM
and disk space available on the user’s computer.

262

Figure 7.3 Optimized usage of cached resources with HTTP/1.0 and HTTP/1.1.

History Repeats

An awkward situation that occurs in even the most sophisticated browsers is the history
anomaly. Users can employ the Back button to see pages they already have visited. The browser
history mechanism often stores not only a reference to links, but also the presentations
associated with those links, regardless of any caching directives (e.g., Cache-Control: no-cache)
that the server may have included in the original response headers! Browsers should treat the
Back button event as a request for new content, making the decision to re-use the presentation
only after examining caching directives associated with the original response.

When it comes to pages with form fields, even within the scope of this anomaly, browsers do
not act consistently. Older browsers frequently left form fields filled in with whatever values
had been entered on a previous visit to the page.

You may have noticed that some sites take precautions against this, explicitly taking action
to clear form fields as the form is being submitted. To do this, they employ
DHTML/JavaScript tricks, such as copying entered fields into another form with hidden
fields, resetting the form with the visible fields, and submitting the hidden form.

263

7.8.2 Authorization: challenge and response

As with any sophisticated mechanism employed within HTTP requests and responses, the authorization
mechanism associated with basic HTTP authentication is an ongoing interchange. If we start at the very
beginning, it would be when a simple HTTP request is made for a resource that just happens to be
“protected.”

Mechanisms exist on virtually all web servers to “protect” selected resources. Usually this is accomplished
through a combination of IP address security (ranges of addresses are explicitly allowed or denied access to the
resources) and some form of Access Control List (ACL) delineating the identifiers and passwords for users that
are allowed to access the resources. ACLs are generally associated with realms, which is an abstract
classification that a webmaster can use to organize secure resources into discrete categories. Webmasters can
associate groups of resources with specific realms (e.g., by configuring the web server to associate all files
under a specific directory with a particular realm).

In Chapter 6, we discussed the design of services that implement both IP address security and ACL-based
security. Here we cover the mechanisms that browsers and other web clients need to employ to interact with
these services.

Let’s start with a web client request for a protected resource. The request looks like (and is) a perfectly
normal HTTP request, because the client may not even realize that this resource is protected:

The web server, however, knows that the resource is protected (and is associated with a particular realm),
and sends an appropriate response (the authorization challenge):

The client must answer the challenge by providing authentication credentials.
Before it does anything else, the client should check whether it has provided credentials for this realm to

this particular server during the current session. If it has, it does not need to obtain or derive these credentials
again. It can simply retransmit the stored credentials in its response. But we’re getting ahead of ourselves: let
us go back to the first request for protected resources.

The web browser would obtain authorization credentials by prompting the user. Normally, this is
accomplished by displaying a dialog box asking the user to enter a userid and password for the realm
associated with the requested resource. Once the browser has obtained the credentials, it must include them in
a resubmitted HTTP request for the same resource:

264

If the credentials do not match the userid and password in the ACL, the server returns another response
with a 401 Not Authorized status code, causing the browser to re-prompt for valid credentials. If the user
elects to stop trying (e.g., by choosing the Cancel option), the browser presents an error message or the
HTML content (if any) provided with the 401 response. Most servers give up after a fixed number of
exchanges with the browser, changing the 401 status code to 403 (Forbidden).

If the credentials do match the userid and password in the ACL, the web server transmits the contents of
the requested resource. The browser should mark credentials as validated so that it can reuse them for
subsequent requests within the same realm.

265

7.8.3 Using common mechanisms for data persistence

Note that there are many similarities between the mechanisms provided for storing cached content, cookie
information, and authorization credentials. They represent a form of persistence for similarly structured
information that can be reused later. It may be a good idea to build a generalized persistence mechanism into
your browser, and to use that mechanism for all of these purposes. This mechanism would need to support
both in-memory persistence (saving persisted information only for the duration of the browser session and
never permanently) and long-term persistence (where persisted information is placed in some form of
permanent data storage so that it outlasts the browser session). Obviously, there are differences in using this
mechanism for each of these functions, as summarized in Table 7.2.

For content, the decision to store the data in the cache is based on response headers that the Caching
module must interpret. The key used for addressing a cache entry is the requested URL (including the query
string, URL parameters and POST content associated with the request). Cache entries should be stored with
an expiration date. If one is provided in an Expires header, then that should be used. If the date provided is in
the past, this indicates that the browser should cache the entry only for the duration of the current session and
flush it when the session ends. There should be a mechanism in the Configuration module for establishing the
maximum cache size. If that size is exceeded (or approached), the Caching module should flush the least
recently used entries.

Table 7.2 Browser Mechanisms for Persistence

For cookies, the decision to store information found in a response’s Set-Cookie header is based on two
factors: whether or not the user has elected (via the interface to the Configuration module) to accept cookies,
and whether or not the user’s privacy preferences permit acceptance of cookies from the site sending the
response, based on that site’s declared privacy policy. The key for addressing a cookie is the domain and path
information specified in the Set-Cookie header. Cookies also have an expiration date. If none is specified, the
cookie information should be stored for the duration of the current browser session and flushed when the
session ends. If the date specified is in the past, the cookie should be deleted. The browser can provide limits
on the amount of space available to store cookies; it is not required that all cookies be stored indefinitely.

266

For authorization credentials, there is no decision to be made: this information should always be retained.
However, authorization credentials are always flushed when the session ends and are never kept beyond the
end of the browser session. Thus they should be kept in memory and never written to stable storage. The key
for addressing authorization credentials is the IP address (or name) of the server and the name of the realm
with which the server associates the requested resource.

Information that is required only for the duration of the browser session should be kept in memory, while
information that must be persisted beyond the end of the session must be recorded using permanent data
storage. This can be as simple as a text file (as Netscape did with cookies) or a directory subtree (as most
browsers do for cached content), but more sophisticated mechanisms can be used as well.

267

7.8.4 Requesting supporting data items

Even the simplest web page is not “self-contained.” Most pages, at the very least, contain references to images
found at other URLs. In order to render graphics, apply externally defined CSS style sheets, or retrieve
JavaScript code, a browser must make additional requests for supporting resources.

Figure 7.4 Browser steps for requesting supporting data items.

In order to issue secondary requests, the browser needs to parse HTML markup and find references to
additional resources that are specified on the page. The Content Interpretation module is responsible for
performing this analysis. Once it has determined which additional resources are desired, it must tell the
Request Generation module to construct and transmit HTTP requests to obtain these resources.

Consider a user who requests http://www.cs.rutgers.edu/~shklar/. In Figure 7.4a, the browser sends a GET
request to the server, which sends back a response containing a reference to an image. The browser creates a
GET request for the image and sends it to the server, which sends back the image. The browser then displays
the image to the user (Figure 7.4b).

Remember that caching comes into play when making supplemental requests. A well-organized site is likely
to use the same images on many different pages. If the server indicates that these images can be cached and if
a reasonable expiration date is specified, the browser may not need to make additional requests for some of

268

http://www.cs.rutgers.edu/~shklar/

these images: it may already have them in the cache!

Keep the Connection Open!

Resources (e.g., images) are often found on the same server as the HTML page itself. Prior to
the advent of HTTP/1.1, a browser would repeatedly open and close connections to the same
server to get all the resources it needed. Fortunately, HTTP/1.1 defaults to using persistent
connections. Unless otherwise specified, the browser keeps the connection to a server open so
that supplemental requests can be made without additional overhead.

269

7.8.5 Multimedia support: helpers and plug-ins

From the beginning, browsers have provided integrated support for many different types of data. Obviously,
they rendered HTML (as well as plain text). When it came to graphics, support for GIF and JPEG images
was practically ubiquitous with the early browsers (Mosaic and Netscape), and support for animated GIFs
followed soon thereafter. The tag was defined in the very earliest versions of HTML.

Almost all modern desktop browsers “natively” support HTML, plain text, and GIF and JPEG images.
There are exceptions: text-only browsers, such as Lynx, and browsers for handheld devices of limited
bandwidth and screen size do not support images. Apart from images, there are other popular types of data
presented via the web. The most prominent example is that of multimedia objects (audio and video), but there
are also proprietary formats such as Adobe’s PDF and Flash.

To enable the presentation of these data objects, browsers can do one of three things: they can provide
native support for the format, they can invoke helper programs to present the object, or they can support plug-
ins. Plug-ins are program modules closely integrated with the browser, which enable the rendering or
presentation of particular kinds of object within the browser window.

The first option can be overwhelming. There are many multimedia data formats out there, and supporting
even the most popular ones through embedded code within the browser is a daunting task. Furthermore,
proprietary formats such as Flash and PDF are subject to frequent change, as vendors keep implementing new
and more advanced versions of these formats. It seems a far better idea to offload support for these formats
onto the people best capable of providing that support: the vendors themselves.

This leaves the choice between helper applications and plug-ins . Helper application support is relatively
simple to implement. As we know, all of these different formats are associated with particular MIME types.
Browsers can be configured to defer presentation of objects whose formats they do not support natively to
programs that are specifically intended for presentation of such objects. A browser may create a mapping of
MIME types to helper applications (and give users control over which applications should be invoked as
helpers) or it can take the simpler route of using the operating system’s native mapping of MIME types to
associated helper applications.

The downside of this approach is that these objects are rendered or presented outside the browser window.
A separate application is started to display the object, sometimes obscuring the browser window entirely, but
at the very least abruptly shifting the user’s focus from the browser to another application. This can be very
confusing and detrimental to the user experience.

What’s more, this approach is limited to usage with links pointing directly at the object, e.g., . In many cases, page designers want to embed an object directly into the
current page, rather than forcing users to click on a link so that the object can be presented to them.

The plug-in mechanism is an alternative to helper applications for rendering proprietary formats. This
mechanism can make use of the <EMBED> and <OBJECT> HTML tags to tell the browser to render
content contained within the respective elements (between open and close tags) using a specialized plug-in
module. The <EMBED> tag has been deprecated in favor of <OBJECT>. W3C sees <OBJECT> as a

270

generalized approach to embedding multimedia objects. The <EMBED> tag is still predominant and is used
by many DHTML widgets (see Chapter 8) to insert multimedia content into a web page.

Browsers that choose to enable plug-ins also need to support the registration of plug-ins through the
browser’s Configuration module, to make them available to the rendering mechanism invoked through
<EMBED> and <OBJECT> tags. The browser needs a way to associate MIME types with built-in modules,
plug-ins or helper applications. The Configuration module should provide ways for users to define and
customize such associations. Omitted mappings should result in selecting the helper application mechanism
and deferring the responsibility for choosing a helper application to the operating system.

The Configuration module must also associate MIME types with filename extensions (suffixes). These
associations are needed when the browser attempts to present local files or responses that do not contain a
properly formatted Content-Type header. Such responses violate HTTP protocol requirements, but a browser
can use the table of associations to infer a MIME type from the filename suffix found in the URL.

Browsers should be designed not to be too clever in this regard: some versions of Internet Explorer tried to
infer a response’s MIME type by examining the content. If it “looked like” HTML, it would try to present it
with a Content-Type of text/html. But webmasters sometimes want HTML content to be explicitly presented
as text/plain (e.g., to show what the unprocessed HTML associated with a page fragment actually looks like).
With this in mind, browsers should only engage in heuristic practices to infer the MIME type if all else fails
(i.e., if there is no Content-Type and no known URL filename suffix).

Great Moments in MIME History

The notion of associating MIME types with designated applications dates back to the earliest
uses of MIME. Remember that MIME was originally intended for use with e-mail
attachments (you may recall that MIME stands for Multimedia Internet Mail Extensions).
Unix systems made use of a .mailcap file, which was a table associating MIME types with
application programs. From the earliest days of the web, browsers made use of this capability.
Early browsers on Unix systems often used the .mailcap file directly, but as technology
advanced and plug-ins got added into the mix, most browsers started to use their own MIME
configuration tables.

271

7.9 Summary

In Chapters 6 and 7, we have examined design considerations for web servers and web browsers. We discussed
their structure and operation, as well as the reasoning behind key design decisions. Given the proliferation of
different devices, you just might end up having to implement your own server or browser. After all, web
servers now run on everything from cable modems and network routers to home media appliances and web
browsers run on everything from mobile phones to microwave ovens. Even if you don’t go down this road,
having a knowledge and understanding of web agents and their operation will give you an edge in building
and troubleshooting sophisticated Internet applications.

This list provides a summary of the functionality associated with browser modules:

Table 7.3 Browser modules and their respective responsibilities

272

273

QUESTIONS AND EXERCISES

1. What main steps does a browser go through to submit an HTTP/1.1 request?
2. What main steps does a browser go through in processing an HTTP/1.1 response?
3. Is it possible for a browser not to support persistent connections and still be
compliant with the HTTP/1.1 specification? Why or why not?
4. What is the structure of a POST request? How does it differ from a GET request?
5. What headers have to be present in HTTP/1.0 and HTTP/1.1 requests?
6. Revisit Exercise 4 from Chapter 3, in which a request-response interaction with a
web server is emulated using a Telnet client. What aspects of the HTTP protocol
make more sense now after examining what browsers have to do in order to submit
requests and process responses?
7. What functionality would be lost if browsers did not know how to associate (a) file
extensions with MIME types (b) MIME types with helper applications?
8. What is P3P? How does it affect your applications?
9. Consider an HTML document (such as, http://www.cs.rutgers.edu/~shklar/).
How many connections would an HTTP/1.0 browser need to establish in order to
render this document? What determines the number of connections? How about an
HTTP/1.1 browser? What determines the number of connections in this case? What
would be the answer for your own home page?
10. Describe a simple solution for using the HTTP protocol to upload files to the

274

http://www.cs.rutgers.edu/~shklar/

server through your browser. What about downloading files from the server? Use the
POST method for transmitting files to the server and the GET method for
transmitting files from the server. Make sure you describe the file transfer in both
directions separately and take care of details (e.g., setting the correct MIME type and
its implications). Do you need any server-side applications? Why or why not?
11. Take another look at Exercise 8 in Chapter 3. We asked what would happen if
the server did not return a redirect when a URL pointing to a directory lacked a
trailing slash. If the server were to return immediately an index.html file stored in the
target directory, would it create a problem for browser operation? Why or why not?
12. Suppose we install a server application at this URL:

The servlet supports two ways of passing arguments: as a query string (e.g.,
http://www.vrls.biz/servlet/xml?name=/test/my.xml) and as path information
(e.g., http: //www.vrls.biz/servlet/xml/test/my.xml). It is designed to apply a
default transformation to the referenced XML file that is located at the server,
generate an HTML file, and send it back to the browser. Suppose that the
servlet generates exactly the same HTML in both scenarios, but the browser
renders the response as HTML using the query string and as XML using the
path information. When we compare HTTP responses (including status codes,
headers, and bodies) in these two cases, it turns out that they are identical.

How is this possible? Is there a problem with the servlet? Why does the browser
behave differently when the HTTP response is exactly the same? How do we fix
this problem?

275

http://www.vrls.biz/servlet/xml?name=/test/my.xml
http://www.vrls.biz/servlet/xml/test/my.xml

7.10 Bibliography

Berners-Lee, Tim, Fielding, R. and Frystyk, H., 1996. RFC 1945: Hypertext Transfer Protocol - HTTP/1.0 .

Cranor, Lorrie Faith, 2002. Web Privacy with P3P. Sebastopol, California: O’Reilly Media.

Fielding, Roy, Gettys, J., Mogul, J., et al. 1999. RFC 2616: Hypertext Transfer Protocol - HTTP/1.1.

Franks, John, Hallam-Baker, P., Hostetler, J., Lawrence, S., et al. 1999. RFC 2617: HTTP Authentication:
Basic and Digest Access Authentication.

Gourley, David and Totty, Brian, 2002. HTTP: The Definitive Guide. Sebastopol (CA): O’Reilly &
Associates.

Kristol, David and Montulli, L., 2000. RFC 2965: HTTP State Management Mechanism.

Marchiori, Massimo and Cranor, L. et al., 2002. The Platform for Privacy Preferences 1.0 Specification (P3P
1.0). World Wide Web Consortium.

276

7.11 Web Links

Mozilla.org. Module Owners. Available at www.mozilla.org/owners.html.

Wikipedia. MIME type Base64. Available at en.wikipedia.org/wiki/Base64.

277

http://Mozilla.org
http://www.mozilla.org/owners.html
http://en.wikipedia.org/wiki/Base64

7.12 Endnotes

1 Mozilla.org Module Owners, http://www.mozilla.org/owners.html.

2 http://en.wikipedia.org/wiki/Base64

278

http://Mozilla.org
http://www.mozilla.org/owners.html
http://en.wikipedia.org/wiki/Base64

CHAPTER 8

Active Browser Pages: From JavaScript to AJAX

IN THIS CHAPTER

• JavaScript
• Cascading Style Sheets (CSS)
• Dynamic HTML (DHTML)
• AJAX
• Case study: Five-star-rating widget

OBJECTIVES

• Review the evolution of dynamic page presentation techniques.
• Consider the limited options available for dynamic manipulation of page content
before the advent of JavaScript.
• Illustrate how JavaScript is used to exercise programmatic control over web page
presentation.
• Present an overview of CSS, with an emphasis on using it to facilitate dynamic
presentation.
• Discuss DHTML, showing how it can be used to modify page content dynamically
and to perform client-side validation.
• Introduce AJAX and discuss how it enhances the end-user experience.
• Show how remote content injection and validation are accomplished using AJAX-
based techniques.
• Demonstrate the advantages of toolkits for enhancing productivity and eliminating
cross-browser incompatibilities.
• Use a case study to illustrate the concepts.

Markup languages, while very powerful, have their limitations. They provide formatting instructions for the
static rendering of content. HTML, especially in combination with CSS, makes it possible to control page

279

layout, combine text with graphics, and support minimal interactive capabilities through links and forms.
HTTP servers transmit responses whose bodies contain HTML documents, and browsers receive these
responses and render the documents.

The problem is that the presentation is static: HTML does not provide a mechanism for modifying the
page once it is rendered. The rendered page just stays there until the next request. Even a simple operation,
such as the validation of a form entry, requires server-side processing, which means an extra connection to the
server.

Static presentation is fine for fixed documents, but for the web it poses an artificial limitation. Why can’t
the layout of a page change over time, based on events triggered either by user interaction or simply by the
passage of time? For that matter, why shouldn’t the content of a page change similarly, without requiring the
entire page to be reloaded and re-rendered?

The focus of this chapter is dynamic interactivity in presenting web pages. We start with history, discussing
the “old-school” approaches for producing interactivity, and move on to programmatic interactivity through
JavaScript, advances brought about by CSS and Dynamic HTML (DHTML), and finally cover the latest
approaches to dynamic interactivity, specifically AJAX .

This chapter is not an in-depth tutorial on JavaScript, CSS, DHTML, or AJAX. Our goal is to familiarize
you with the concepts behind these technologies and how they support dynamic client-side interactivity in
web applications. The chapter assumes a working knowledge of JavaScript. Readers who are not familiar with
it should examine the JavaScript references and tutorials listed in Section 8.9 before proceeding further.

Active Browser Pages

We have coined the name “Active Browser Pages” to reflect the nature of the interactive client-
side technologies discussed in this chapter. The techniques are reminiscent of server-side
approaches, which allow content to be generated and presented dynamically based on
information in user requests. This flexibility in determining content need not stop with the
response. “Active Browser Pages” is our name for the collection of client-side methods that
enable interactive presentation of content in the browser following the initial rendering step.

Making the Case

In previous chapters of this book, we have used HTML 4.01 notation for tags. This notation
decrees that tag names should appear in upper case and attribute names should appear in lower
case. Most modern tools that generate HTML use XHTML notation, where both tag and
attribute names appear in lower case. While this is technically a violation of HTML 4.01, it is
now common practice and the upcoming HTML 5 specification acknowledges this and makes
it official. You will note that our examples from this point forward use the HTML 5/XHTML
notation. We continue to use HTML 4.01 notation in discussions of past practices.

280

8.1 Pre-History

Since the early days of the web, there have been coarse approaches to changing page content and layout after
the initial rendering. The “meta-refresh” technique uses the HTML <META> tag (see Section 4.2.2) to
simulate the presence of an HTTP Refresh header that, after a specified timeout period, either reloads the
page from its current URL (effectively refreshing it with new content) or redirects the browser to a new page.

The directive above, when included in the <HEAD> portion of an HTML document, directs the browser
to the specified URL after five seconds. Assuming this document was generated by a request to the URL
http://site.com/refreshme.cgi, it would effectively reload the page generated from that URL every five
seconds. This is a rather crude approach to dynamic content presentation. Take, for example, a static HTML
page containing a Server Side Includes (SSI) call to a CGI script to produce dynamic content (e.g., the current
temperature in a particular locale). In order to keep the temperature fragment of the page up to date, the
entire page needs to be refreshed.

A more direct way to achieve the same result would be to have the web application that produces this page
insert an HTTP Refresh header directly into the response:

This option was not available with static content, even for pages that contained SSI instructions. It required
fine-grained control over HTTP headers, which could be accomplished only through web application code.
For flexibility, control over page refresh parameters had to be deferred to HTML using the meta-refresh
technique.

281

http://site.com/refreshme.cgi

8.2 JavaScript

The primitive meta-refresh technique described in the previous section can only take us so far. It is not a
replacement for programmable behavior. More was needed to provide true programmatic functionality within
the browser.

Over time, the HTML specification evolved to support event handlers - custom code that executes when a
browser event occurs (e.g., when a user clicks on a link, when the mouse pointer hovers over an element, or
when data is entered into a form field). Implementing these handlers required a programming language that
would execute in the browser and interface with the page’s document object model. The language that fulfilled
this role was JavaScript.

JavaScript was developed initially for Netscape Navigator but is now supported by most desktop browsers,
including Microsoft’s Internet Explorer. Despite being perceived as a simple scripting language, it is actually a
rather sophisticated object-oriented programming language. Its name was coined in the flurry of excitement
surrounding Sun’s introduction of Java. Although JavaScript bears some remote structural resemblance to Java,
the languages are related in name only.

Unfortunately, many examples of JavaScript code you are likely to find on the web do not lend much
credence to claims of its sophistication. The presence of disjointed, inconsistently formatted chunks of
JavaScript scattered throughout HTML documents frequently makes pages completely unreadable (and
impossible to maintain). This kind of jumbled JavaScript code is much too common even though the language
is sophisticated enough to facilitate best practices in coding. We will step through some simple examples of
JavaScript code with the goal of demonstrating how structured code can take advantage of JavaScript’s object-
oriented capabilities.

ECMAScript

Despite its origins as a proprietary language developed by Netscape for its browser (and, later,
an equally proprietary variation by Microsoft for Internet Explorer), there is now an official
specification (ECMA-262, from the European Computer Manufacturers Association) for the
browser programming language, which is now officially called ECMAScript. There are some
differences between the ECMAScript standard and the implementations of JavaScript found in
web browsers, which is one reason why JavaScript is the name still used by most people
involved in web development.

Browsers process JavaScript statements embedded in HTML documents, as they interpret the documents.
This embedding can take one of two forms. Inline JavaScript code can be included in the page, in a block
delimited by <script> and </script> tags:

282

JavaScript can be stored in a separate file and referenced through a <script> tag with the src attribute set to
the URL denoting the location of the code:

(Although application/javascript is the designated Internet media type for JavaScript code, text/javascript is
still the more commonly used value for the type parameter in the <script> tag, despite its being deprecated.)

Yet Another Internet Explorer Anomaly . . . or Is It?

Using a <script> tag to reference an external file containing JavaScript code works reasonably
well with most browsers, provided users do not turn off JavaScript processing. (Turning off
JavaScript is something many users still do because the fear that malicious JavaScript code
downloaded from rogue sites can cause significant damage is not unwarranted.) However,
special care must be taken to ensure that the referenced external JavaScript code can be
retrieved and executed by all browsers.

If you just code <script src=http://site.com/myscript.js> into the page, most browsers accept
and recognize it but Internet Explorer does not: it requires the closing </script> tag. (In the
case of XHTML, the <script src=http://site.com/myscript.js/> notation can also be employed.)
The closing tag ensures correct execution with Internet Explorer and does not negatively affect
other browsers.

This may appear to be somewhat of a nuisance but the closing tag is required for compliance
with the current HTML and XHTML specifications. Internet Explorer enforces this
requirement while other browsers tolerate a deviation from it. Assuming you want your pages
to execute correctly across all browsers, you should code your external JavaScript inclusions
with the closing tag.

Not all JavaScript processing happens at the same time. Some statements are interpreted prior to rendering
the HTML document, while others are interpreted as the document is rendered:

• JavaScript code found in the <head> portion of the document (either inline or externally
referenced) is interpreted before the HTML body is parsed and rendered. This often includes global
variable assignments and function definitions. Note that a problem may arise if a function is invoked
before the page elements to which it refers have been rendered.
• JavaScript code included within the body of the document (again, either inline or externally
referenced) is interpreted and executed as the body is parsed and rendered. This may be appropriate
if the code refers to specific elements in the body, provided the code is placed within the page after
those elements. (While it may seem unorthodox to include JavaScript code within the body of the
document, it is not uncommon.)
• JavaScript may also be present within HTML elements on the page, as handlers for events
associated with those elements. The handler code is executed only when the associated event (e.g.,
clicking a link) occurs:

283

http://criptsrc=site.com/myscript.js
http://scriptsrc=site.com/myscript.js/

Including JavaScript within HTML elements is deprecated, because it intermixes code with presentation
formatting. The preferred approach is to associate an element with a handler declaratively, outside the
document body:

This assumes that the clickTheLink function has been declared previously in inline or externally referenced
JavaScript code. The code fragment might look something like this:

Note that the clickTheLink function is defined before it is referenced in the onclick handler. If this were
not the case, a runtime error would occur. Note the syntax: only the name of the function is used in the
assignment statement, without the parentheses associated with an actual function call, i.e., we do not write
clickTheLink().

284

8.2.1 Manipulating page content

There are two main approaches to using JavaScript as a mechanism for manipulating document content. The
first approach is the trivial use of document.write statements. This function, as its name implies, simply writes
content into the document. If the document.write statement is invoked as the page is loading, the new content
is inserted at the point in the document where it has been invoked. If it is invoked after the page has loaded, it
clears the existing document content and starts the page from scratch. This approach may be simple, but it is
awkward, unreliable, and deprecated.

The second approach is to use JavaScript methods for manipulating the Document Object Model (DOM).
Unlike document.write, these methods can be employed after the browser has finished loading the page
without causing the entire document to be cleared. The DOM is organized as a tree with the document object
as its root.

If this sounds a lot like XML, there is a good reason for it: the DOM is a hierarchical representation of an
HTML page in which each HTML tag is equivalent to a node in an XML document. However, not all
HTML documents are well-formed according to the XML specification. Browsers attempt to produce a
DOM tree from these non-compliant documents and the trees produced by different browsers are
inconsistent. With the advent of HTML 5, there will be well-defined mappings from these non-compliant
documents to proper DOM structures. Until then, differences in browser behavior for ill-formed documents
will persist.

Early uses of the HTML DOM employed arrays or collections of types of elements, through which code
could iterate to find desired elements. For instance, document.images contained an array of all the tags
in a document, document.forms contained an array of all its <form> elements, and document.links contained
all its links.

It was impractical to write code that addressed elements by their array subscript, especially since adding new
images or forms might change the meaning of document.forms[0] and cause scripts to break. Once supported,
addressing elements by their name became the more popular approach. This required that elements have a
name attribute, but there was no requirement that elements have such an attribute or that it be unique within
the document, leading to other issues and problems. What’s more, the usual problem of inconsistencies
between the implementations of the DOM across different browsers made development of cross-browser
scripts difficult if not impossible.

Now, after years of consternation and anguish, there is some common ground, in the basic set of DOM-
related JavaScript methods and properties that can be employed across most browsers:

• getElementById is perhaps the most commonly used method in modern JavaScript. Instead of
sifting through collections of page elements to find the one you are looking for, you supply the value
of its id attribute. Naturally, this requires that the page elements you plan to access and manipulate
are assigned unique id values.

285

• The innerHTML property was first defined in Internet Explorer and was not supported for a long
time in other browsers. Now it is supported much more widely. It provides a means of retrieving (or
replacing) the content inside an element (i.e., between its opening and closing tags). If your needs
are simple (e.g., if you are using a <div> as a container whose content is replaced or cleared
programmatically), then innerHTML is a good choice.

• Every node in the HTML DOM (except the document root) has the parentNode property.

• The childNodes property is an array containing all of a node’s children (empty if it is a leaf node).
In this example, the parent.childNodes property refers to the current node and all of its “siblings.”

• The style property gives some degree of uniformity in referencing the “look” of a node. For a long
time, the CSS style attributes of a page element were accessed inconsistently by different browsers.
Cross-browser hacks were needed to retrieve or set style attributes such as background color, font,
positions, and margins.

• The getElementsByTagName method returns an array of all the elements in a document with a
particular tag name. In this example, all links in the document (those with tag <a>) are assigned to
an array.

While it is also possible to retrieve links by referencing document.links, this generic method
provides the ability to aggregate any elements with the same tag name, not just the ones found
in pre-defined arrays. Similarly, the document. getElementsByClassName method makes it
possible to retrieve all the elements assigned a particular CSS class name. These methods are
useful if you want to change the status (e.g., visibility) of an entire group of elements on a page.

Toolkits

There are a number of JavaScript toolkits available to ease the pain of cross-browser
incompatibilities by providing helper methods that work across all browsers supported by the

286

toolkit or by extending JavaScript to provide common DOM-based methods, which are not
supported directly by many browsers. We return to these toolkits and their benefits throughout
this chapter.

287

8.2.2 Client-side form validation

One of the most common uses of JavaScript is to perform client-side validation of form entries. Without
client-side logic to validate form field contents, it would be necessary to perform all validation on the server,
requiring a request-response “roundtrip”. For each validation, it would be necessary to:

• send a request to the server;
• allow the server-side application to perform validation;
• either continue processing based on the validated data in the submitted form or tell the browser to
redisplay the original form (hopefully with detailed error messages) so that the user could re-enter
fields whose content was deemed invalid.

Providing feedback for each form field as it is entered is ideal, but if validation must be performed on the
server this becomes impractical. Performing form validation on the client side, using JavaScript, makes the
user experience more immediately interactive, by obviating the need for communication with the server to
perform validation and by making “field-by-field” validation more viable.

We begin with “classic” validation using JavaScript. Note that this is for historical purposes only. Better
JavaScript validation techniques are supported today and we discuss them in Section 8.4.4.

In the past, validation was accomplished most frequently through the <form> tag’s onsubmit event handler,
which is executed prior to the submission of the form. If the code returned by the event handler evaluates to
the Boolean value true, the HTML form has passed validation and an HTTP request is generated and
submitted to the server. Otherwise, the code evaluates to false and no submission takes place. It is considered
good practice for event handlers to display a JavaScript alert box describing validation errors.

Figure 8.1 provides a simple example of client-side form validation using JavaScript. The form contains two
fields and the <form> tag calls for the execution of a JavaScript function, validate(), when the form is
submitted. This function examines the values entered in the two form fields and determines whether they are
valid. If either value is unacceptable, an appropriate error message is appended to the string variable errors. If
the length of this variable is greater than zero after all the fields in the form have been checked, a JavaScript
alert box is displayed containing the error messages, and the function returns false. Otherwise, the function
returns true, causing the form to be submitted to the server.

288

Figure 8.1 Example of client-side form validation using JavaScript. (

With this approach, the validation process is initiated with the submission of the form. As we mentioned
previously, it is possible to perform validation on a per-field basis, using the onchange or onblur JavaScript
event handlers in the <input> tags associated with individual form fields. (These handlers are invoked when a
field’s value changes or when the focus of the browser moves away from that field.) The displaying of alert
boxes as data is entered can become overwhelming and confusing to users. Depending on the application, the

289

acceptability of entered field values may be dependent on other fields, in which case the “holistic” approach of
validating on submission is preferable.

Naturally, validations that depend upon server-side calculations and comparisons still require
communication with the server. This includes validations that require knowledge of stored authorization
credentials and validations that require confirmation of user-supplied credit card information.

In practice, distinctions between the kinds of validation that can and cannot occur on the client are not so
cut-and-dried. For example, even though confirmation of credit card information requires server-side
information, it is possible to catch some errors (for example, credit card numbers that do not pass mod-10
checksum validation) on the client side. This preemptive validation weeds out simple typing errors before
wasteful requests are sent to the server and, ultimately, to the credit-card validation service.

AJAX Validation

In the age of AJAX, the distinction between client-side and server-side validation becomes
even more blurred. For example, it would be impractical for an on-line community web site to
check requested user names for uniqueness using client-side validation, as that would require
sending the entire list of current user names to the browser. AJAX requests can give the
appearance of client-side validation by verifying whether or not a name exists in the database
and flashing an error message without having to reload the page.

Figure 8.2 Simple implementation of onmouseover behavior.

290

8.2.3 Hovering behaviors: image rollover

JavaScript provides mechanisms to perform actions when the mouse pointer is hovering over a region specified
as a hyperlink (e.g., presenting different images depending on the position of the mouse pointer). The
onmouseover and onmouseout attributes in the HTML anchor tag (<a>) serve to define the respective
handlers.

The image rollover technique, shown in Figure 8.2, is a simple illustration of onmouseover behavior. The
 tag is identified through its name attribute, making it possible to reference the image directly, using the
document.images object associated with the page. The src attribute of the tag is set to the relative URL
of the default image (images/pic1a.jpg). When the mouse pointer hovers over the image (onmouseover),
JavaScript code is invoked to change the image’s location (referenced by its src attribute) to a different URL,
causing a different image (images/pic1b.jpg) to be displayed. Similar code is invoked when the mouse pointer
leaves the area (onmouseout) to redisplay the original image.

Camel Case

Note that we are not using the expected “camel case” for the handler names. Although most
browsers may accept the notations onMouseOver and onMouseOut, the name JavaScript
expects for these handlers is strictly lowercase. This becomes important when we specify event
handlers in inline JavaScript, rather than injecting handler code into HTML tags.

Let us consider incremental improvements to this basic example of image rollover functionality:

1. The document.getElementById method is now the more commonly used approach for selecting
page elements, as it is least susceptible to cross-browser incompatibilities. This requires a change to
the tag to set the id attribute:

2. Rather than including JavaScript assignment statements in handler definitions within HTML
tags, functions should be defined in the HEAD section of the document (either inline or via an
externally referenced JavaScript source file). This way, the handler code embedded in the HTML
tags is limited to a simple function call:

291

http://images/pic1a.jpg
http://images/pic1b.jpg

3. Instead of inserting handler code into HTML tags, the preferred approach is to tie event handlers
with page elements declaratively:

Strictly Speaking: XHTML-Compliant Inline JavaScript

To make inline JavaScript blocks compliant with the XHTML specification, they must be
marked as CDATA blocks, beginning with <![CDATA[and ending with]]>. To keep the
CDATA start and end delimiters from being misconstrued as invalid JavaScript code by
JavaScript interpreters, the lines containing those delimiters should begin with the JavaScript
line comment notation, //.

Although it has long been common practice to surround inline JavaScript blocks with HTML

292

comment delimiters (<!-- and -->), this is an archaic practice that is no longer required. It was
necessary when the possibility existed that a browser might not understand the <script> tag and
might try to render an inline JavaScript block as HTML. All modern browsers either support
JavaScript or know to ignore content within <script> blocks.

293

8.2.4 JavaScript Object Notation

Before we wrap up our initial discussion of JavaScript, it is worthwhile to mention JavaScript Object Notation
(JSON). It is a native part of JavaScript that allows declaration of (and access to) complex variable content,
using a simple lightweight notation (see Figure 8.3).

Brackets are used to wrap array constructs, while braces surround maps (whose key-value pairs are denoted
as key:value). In the example, the JavaScript variable complexThing contains a variety of elements ranging
from strings and a simple array of numbers to an array of maps. These elements are directly addressable with
dotted or bracketed notation (Figure 8.4).

JSON is a common format for data transmitted from servers to browsers in AJAX responses. Although
many presume that AJAX necessarily involves responses that are formatted as XML, XML is too complicated
and heavyweight for many applications. Using JSON means that the data is already in a format that JavaScript
understands natively. (Note the way the block of JSON is directly assigned

Figure 8.3 A complex JavaScript object defined using JSON.

Figure 8.4 Accessing attributes of the JavaScript object defined in Figure 8.3.

to the variable complexThing in Figure 8.3.) JSON bears a very close resemblance to Yet Another Markup
Language (YAML), which is used for configuration files in Ruby on Rails.

We come back to JSON in our discussions of DHTML toolkits and AJAX.

294

295

8.2.5 Summary

As we intimated, there are differences between JavaScript implementations used by different browsers, which
range in effect from subtle to significant. In some extreme cases, there are major differences between the
JavaScript implementations used by different versions of the same browser!

The result is code that exhibits serious cross-browser compatibility issues. It is possible to write JavaScript
code that works consistently across different browsers, but it is not easy. Even when it comes to seemingly
trivial functionality, there are enough quirks to make cross-browser JavaScript development a tedious trial-
and-error process.

The best advice is to learn from those who have been through the mill of writing code that works
consistently across most (if not all) browsers. It is very useful to study toolkits that do the tricky and complex
tasks associated with reusable JavaScript components. In the rest of this chapter, as we demonstrate the
capabilities associated with DHTML and AJAX, we also show the virtue in making use of these generic
toolkits, to avoid reinventing the wheel over and over again.

JavaScript has acquired a bad reputation over the years as a poorly defined language that yields sloppy code
that is very difficult to maintain. This reputation was borne out by the majority of examples of JavaScript code
you were likely to find on the web. In the first edition of this book, we made the following statement about
using JavaScript in web applications:

JavaScript is not the right language for implementing sophisticated logic. Apart from making your
pages entirely unreadable, . . . [it] is a little bit like an organic poison - it would kill you in large doses
but may be an invaluable cure if you use it just right.

To make this same statement today would be naıve. As we shall see, JavaScript has been “rehabilitated.” It
is the programming language associated with almost all AJAX code, making it the centerpiece of most Web
2.0 applications. When used properly, developers can avoid most of the negative characteristics commonly
associated with the language in practice. From one perspective, JavaScript is a loosely defined language that
gives developers more than enough rope to hang themselves. At the same time, it is a sophisticated object-
oriented programming language, which makes it possible to produce well-organized, reusable code that runs
correctly in the vast majority of web browsers.

296

8.3 Cascading Style Sheets

Cascading Style Sheets (CSS) is a mechanism for controlling style (e.g. fonts, colors, and spacing) in HTML. A
style sheet is made up of rules that determine how elements should be rendered. Rules can apply to an
individual element that has a unique id attribute, a group of elements that share the same class attribute, or
elements represented by the same HTML tag. The word “cascading” is used because multiple rules may apply
to the same sets and subsets of page elements, with those applied to the more specific subsets taking
precedence. We provide examples of how this works later in this section.

There are numerous ways of associating style sheets with HTML documents. The simplest is to use inline
CSS directives, placed within a <style> block in the <head> section of an HTML document:

An alternative is to reference external files that contain CSS style sheet directives by using the@import
directive inside a <style> block to specify the URL:

The more proper approach to referencing external CSS style sheets is to use a <link> tag in the <head>
section of the document:

The major benefit of maintaining style sheets separately from HTML documents is that this makes them
available for reuse across multiple pages. Another benefit is that different style sheets can be associated with
different modes of presentation (e.g., screen and print). In the examples above, two style sheets are imported,
with one used for screen presentation (the default) and the other for print presentation. For additional
reusability, an @import directive can be included in a style sheet externally referenced by a <link> tag.

297

298

8.3.1 Format of CSS rules

CSS rules follow the following format:

A selector within a rule can refer either to all elements in the document that use a particular HTML tag, to
a particular named class of HTML element (e.g., .authorName), or to a single HTML element referenced by
its id:

A rule can have multiple selectors, separated by commas (e.g., a rule that applies to both <pre> elements
and <blockquote> elements):

Rules contain declarations that specify properties and their values. A property can have a value that is a
comma-separated list. The list represents alternatives that the browser should consider in order of preference:

A composite property lists values for several subordinate properties in the same statement. Examples of this
shorthand notation can be used for properties associated with padding (specifying the top, right, bottom and

299

left padding for an element), borders (specifying the width, style, and color for a particular border), and fonts
(specifying the style, variant, weight, size, and family for a font). The subordinate properties need to be listed
in a specific order, separated by spaces and delimited with quotes if necessary (e.g., when individual values
contain spaces):

Some properties associated with numeric values (such as font size) can be relative rather than absolute. For
example, a rule for a particular class of element might specify a larger or smaller font than the one displayed in
normal paragraphs. This can be done with a percentage value, a specification in em units (the size of the letter
“m” in a font), or simply by providing an adjective that describes the relative size desired (e.g., “larger” or
“smaller”):

As you may have surmised from the last example, this is where the “cascading” aspect of CSS comes into
play. “Basic” rules apply to broad classifications of HTML elements, while more narrow rules are applicable to
a specific element or set of elements. Paragraphs (<p> elements) in documents associated with the above style
sheet fragment are in 12 point Arial. However, there is another more specific rule, which dictates that the font
in all paragraphs given a class name of emphasize (as well as block quotes with the class name bigger) should
be 20% larger. Similarly, there is a rule dictating that the paragraph with an ID attribute of tiny should have a
much smaller font size. Notice that selectors that begin with a period refer to classes, and selectors that begin
with # refer to unique element IDs.

The scoping of specific rules can get even more complex. Here, the specification p. bright a is a single
selector, referring to <a> tags found within <p> elements of class bright:

There is one more aspect to the “cascading” nature of CSS. Multiple style sheets can be associated with a
document and they can have conflicting directives. Once again, rule specificity determines the resolution of
the conflict. However, a rule can be specified as being “important” (meaning it should carry more weight in

300

the conflict resolution process) by including the string !important in its declaration:

Always Wear Your ID: Clearing up Confusion about CSS IDs and Classes

As we already mentioned, selectors that begin with a period refer to classes and selectors that
begin with # refer to unique element IDs:

The notion of a CSS class is useful to specify behavior for groups of elements that should
behave similarly. Multiple elements can have the same class. An element’s class is specified by
including a class attribute in its opening tag:

Notice that while the CSS rule defining a class begins with a period, class references in
elements associated with the class do not.

An ID is something intended to be associated with one element only. Having more than one
page element with the same ID should cause a validation error. An element’s ID is specified by
including an id attribute in its opening tag:

The id attribute is now preferable to the name attribute as a mechanism for uniquely
identifying and accessing one particular element, and the JavaScript method
document.getElementById() is now almost universally supported in modern browsers. Notice
that while the CSS rule for an ID begins with a #, the id reference in the element does not.

It should be noted that IDs double as page anchors! Visiting this page with a URL that
looks something like http://site.com/myPage.html#myUniqueElement causes the browser to
position itself at this element within the page. This means there is no longer a need for tags that serve solely as page anchors.

301

http://site.com/myPage.html#myUniqueElement

Finally, a page element can have both an ID and a CSS class (or classes) associated with it:

Since an ID is more specific than a class (it refers to only one element), the CSS
specifications associated with the ID take precedence.

An element can be associated with more than one class, simply by appending more class names to the end
of the class attribute, delimited by spaces:

What if the intent is to have a certain style apply to some fragment of the document that is not defined by
HTML tag boundaries? The and <div> elements were introduced for this express purpose: associating
presentation styles with arbitrarily delimited portions of HTML documents. As we mentioned in Chapter 4,
 is an inline element, used in a manner similar to and , while <div> is a block element
that may include paragraphs, tables, and, recursively, other <div> elements.

What if you want just one word to be displayed in green, bold, and italic but there’s no greenBoldItalic
class? Well, there are the old deprecated tags but, naturally, we would rather avoid using them: text

It is much better to use and <div> elements, which support inline CSS directives through the style
attribute:

You can enclose the word you want to highlight within open and close tags of the element.
The HTML specification now dictates that all tags should have a style attribute. However, using this

attribute with elements other than and <div> conflicts with the goal of separating out style directives
from the document, to an even greater degree than embedding inline CSS in a <style> block. The style
attribute within HTML elements should be used with utmost discretion, only when absolutely needed.

302

8.3.2 Hovering behaviors: the a : hover pseudo-class

A simple application of CSS for dynamic interactivity is the use of the a:hover pseudo-class to define rules for
presenting links in their “normal” state and in a state where the mouse pointer is hovering over them. The
following code block illustrates a common technique used on many web sites today:

Hyperlinks are displayed as a shade of green (#009900) with no underlining. When the mouse pointer
hovers over a link, it is underlined, its text color switches to a darker green (#006600), and its background
color is transformed to a shade of pale yellow (#ffff99). All of this draws attention to the link as the mouse
pointer hovers over it.

The a:hover pseudo-class can also be used to implement the kind of image rollovers we created in Section
8.2.3 with JavaScript. The text associated with a link could be defined not as an image tag (as in
), but as an area with a specified background image defined via CSS rules. The width and
height of the area can be specified in the CSS directive (along with display: block). One background image
could be defined for the “normal” state, and another for the “rollover” state (see Figure 8.5).

Hover and Shift

One variation on the technique illustrated in Figure 8.5 employs a single background image
that contains both the normal state image and the hover state image next to each other.
Naturally, this image would be twice the size of the area associated with the link, so only half
the image would be displayed initially. The CSS declaration for the a:hover state would specify,
not a different background image, but a negative margin (coupled with the overflow: hidden
property) that would offset the relative position of the image within the area in the hover state,
causing the other half of the image to be displayed while the first half is hidden.

This trick is used in one interesting implementation of the “star-rating system” that we

discuss in Section 8.6.1 Instead of shifting between two halves of one image, this solution shifts
between ten different image segments, one for each possible number of stars (one star through
five stars) in two different colors. Although it works as an example of something that can be
done using only CSS, some kind of JavaScript must ultimately be present to initiate action.

303

Figure 8.5 Using the a: hover pseudo-class to implement image rollover.

The set of CSS directives in Figure 8.5 replicates the functionality we implemented in JavaScript, but in a
declarative fashion. Of course, apart from certain built-in controls, the declarative nature of CSS limits what
you can do without resorting to JavaScript. Behaviors that are more sophisticated can be configured by
combining CSS with some JavaScript, and throwing in a little HTML DOM processing for good measure.
This is the essence of DHTML, which we cover in Section 8.4.

304

8.3.3 Summary

In case you thought that CSS’s pedigree as a rigorously defined specification agreed upon by a standards body
meant that there would be no cross-browser compatibility issues, think again. Despite near universal
acceptance of the standards in principle, some browsers (most specifically Internet Explorer) tend to interpret
CSS rules slightly differently - enough to cause visible inconsistencies in layout. This means that cross-
browser compatibility hacks to ensure consistent rendering across different browsers are not uncommon. Some
browsers even employ “extensions” to CSS, defining their own CSS properties to take advantage of browser-
specific features. This only adds to the confusion as browser-specific CSS directives pop up in style sheets.

In addition, there are several versions of CSS, with each succeeding version adding new capabilities to the
specification. Most browsers claim to be compliant with CSS 2, though few if any achieve 100% compliance
with that standard. Some browsers attempt to support advanced CSS 3 features without fully complying with
the base CSS 2 specification. Finally, some browsers are stricter than others in interpreting supported CSS
directives. (Apple’s Safari browser, for example, fails to render pages properly if it finds style sheet syntax
errors that other browsers blissfully ignore.)

There is much more to CSS than we can possibly convey in a brief section. Our goal was to illustrate the
aspects of CSS that play a part in enhancing dynamic interactivity in page presentations.

305

8.4 DHTML

Dynamic HTML (usually called DHTML) is often talked about as if it were some new version of HTML,
with advanced functionality above and beyond HTML itself. In reality, DHTML is just a catch-all name
used to describe existing features in HTML, JavaScript and CSS that are combined to provide engaging forms
of page presentation. While HTML provides a static presentation format, the coupling of HTML tags with
JavaScript event handlers and CSS style specifications offers a degree of interactive control over page
presentation. Where JavaScript, CSS, and HTML come together is the place where dynamic page
interactivity really begins.

It is not our intention to provide a DHTML primer. Many good books are devoted to describing the
intricacies of DHTML, but we believe it is worthwhile to understand the principles associated with DHTML
presentation techniques.

306

8.4.1 Inner workings

The basic building block in DHTML is the event handler. Event handlers, as we have already discussed, are
blocks of JavaScript code that are executed when triggered by browser events, be they user-initiated or time-
driven. The association between a handler and an event is defined either by specifying in a page element the
attribute associated with the event:

or (preferably) by declaratively linking the name of a JavaScript function with a page element:

So when does an event handler qualify as DHTML? Since DHTML is so loosely defined to begin with,
there is no straight answer. In general, when a handler creates new page elements using HTML DOM
processing in JavaScript or changes the style definitions associated with page elements to change their
appearance in reaction to events, this is Dynamic HTML. Examples include (but are by no means limited to):

• Changing the visibility of an element: making a currently visible element invisible and vice versa.
• Changing aspects of an element’s style so that it belongs to a different CSS class with different
display characteristics. (Remember that a page element can be associated with more than one CSS
class, which means that the set of classes an element belongs to can be appended or constricted.)
• Creating new list items (elements) in existing ordered or unordered (or) lists. Note
that the simplistic approach to creating new content within a page, using JavaScript document.
write() statements, is strongly discouraged in favor of approaches that add elements to the DOM
programmatically. (Note: The sidebar in Section 8.5.1 says more about the dangers of injecting
“unsafe” requests for external content into your pages.)
• Moving elements from one position on a page to another as a result of user initiated dragging and
dropping (e.g., to construct a custom portal page, such as My Yahoo!), provided the general layout
and the style information for the target elements allow this.

307

8.4.2 Controlling content visibility

CSS positioning properties make it possible for more than one page element to occupy the same screen
coordinates. Although sometimes it might make sense for two elements that occupy the same space to be
visible at the same time (e.g., where the opacity setting of one makes it partially transparent), the usual
application of this strategy calls for switching between the co-located page elements so that only one is visible
at a time. This technique is often used to provide tabbed panes and collapsible menus.

Figure 8.6 Using CSS to create a tabbed interface.

308

In Figure 8.6, CSS styles are defined explicitly for tab1, tab2, and tab3. JavaScript functions are defined to
change the visibility attribute of page elements. Hyperlinks give users the option to see tab1 (which is visible
when the page loads), tab2 or tab3 (which are initially hidden).

309

8.4.3 Leveraging toolkits

The setVisibility() JavaScript function in Figure 8.6 is somewhat simplified. Describing how to implement it
in a manner that would be truly compatible across the majority of popular web browsers is too complex for a
short overview. Suffice to say that cross-browser compatibility when using JavaScript and CSS (especially
positionable elements) is difficult but by no means impossible. It is strongly advised that you make use of
established DHTML toolkits, such as Prototype and Dojo, that do most of the complex browser-specific
coding for you.

Do Try These at Home!

The examples in this chapter were tested with the latest stable versions of these toolkits:
Prototype version 1.6.0.2, Scriptaculous version 1.8.1, and Dojo version 1.1.1.

The Prototype toolkit, for example, has Element.show() and Element.hide() methods that expose and hide
page elements in a manner that is compatible across virtually all major web browsers. It also provides a very
convenient shorthand, the $() method. Using a notation somewhat familiar to Unix/Linux users, this method
addresses elements in the DOM by their id attribute, circumventing the need to use the
document.getElementById() method, which does not work in some older browsers (Prototype takes this into
account with its browser detection services and corrects for it). Prototype also supplies a
document.getElementsByClassName() method which returns the array of elements that are associated with a
named CSS class.

Figure 8.7 shows how Prototype can be leveraged to simplify and modularize the show-hide functionality
used to produce a tabbed interface. We replace our three JavaScript functions with one: the showTab()
function, which is smart enough to show the desired tab after hiding all the tabs. This is accomplished using
the document.getElementsByClassName() function. Notice that all of the tab <div> tags have been assigned a
class name of tab. The function first uses Prototype’s Element.hide() method to hide all elements of class tab
and then uses the Element.show() method to reveal the tab passed in as an argument. The handler for each
link that causes one of the tabs to be shown is established declaratively in the <script> block, rather than
embedding it into the HTML code.

More dramatic effects can be achieved using the Scriptaculous toolkit, a companion package to Prototype,
which provides methods for fading elements in and out, or making them appear and disappear with Venetian
blind up and down effects.

Figure 8.8 replaces calls to Prototype’s Element.show() method with calls to Scriptaculous’s Effect.Appear()
method, which gradually changes the opacity of an element over a specified period of time. The defaults for
this method use the current opacity of the element as the starting point and complete opacity (represented as
1.0, or 100%) as the end point. In other words, the element is faded in over the period of time specified in the
duration parameter.

This section is not a tutorial on using Prototype or Scriptaculous. It is an illustration of what such toolkits
are good for. It is preferable to use the functions in these toolkits rather than attempting to implement all

310

these functions from scratch. However, it is important to have an idea what is really going on when these
toolkits are utilized.

Brace Yourself for JSON

You may notice an interesting but perhaps unfamiliar notation in the code example in Figure
8.8:

The notation here is JSON, which we discussed in Section 8.2.4. The code example shows
how Scriptaculous effects use JSON in the argument lists for function calls. The supplied
parameter surrounded by braces sets the duration for the effect to half a second. Some
Scriptaculous effects and Prototype functions accept more complicated arguments in the form
of attribute lists in JSON format:

This statement causes the element to increase in opacity from 30% to 80% over the course of
half a second but, instead of being linear, the transition from one opacity level to another
wobbles.

311

Figure 8.7 Creating a tabbed interface using the Prototype toolkit.

312

Figure 8.8 Creating a tabbed interface using Scriptaculous effects.

313

8.4.4 Client-side validation using toolkits

We have already discussed how to accomplish client-side form validation using simple JavaScript. One elegant
approach to client-side validation combines JavaScript with CSS to make the specification of validation rules
more declarative.

With Dexagogo’s validation.js package (which requires Prototype to function), you attach class names to
each form element to indicate the types of validation rule to apply. Table 8.1 shows some of the validation
classes.

There is an API for adding custom validation classes and attaching appropriate handler code to those
classes. In the example below, a class name is defined to have certain textual validation characteristics, as well
as requiring the field’s content to match the value in another form field. Notice the use of JSON to supply
validation parameters such as minimum and maximum length:

Table 8.1 Validation Classes Defined in validation.js

Validation is enabled by including appropriate JavaScript code in the page, coupled with associated class
definitions for the form elements. This approach to form validation conforms to JavaScript best practices. The
JavaScript code is separated from the HTML, and the only modifications to HTML page elements involve
the insertion of appropriate CSS class names associated with the validation engine (see Figure 8.9).

314

8.4.5 Hovering behaviors using toolkits

We have revisited hovering behaviors a couple of times, each time injecting a new facet into the
implementation that makes it more modular and reusable. In this example, we use Prototype’s Event functions
to watch for mouse-over events and process them accordingly:

This strategy applies to other applications beyond simple hovering behaviors and is included here for
illustrative purposes.

315

Figure 8.9 Using Dexagogo’s validation.js toolkit.

316

8.4.6 Widgets

One prominent new category of dynamic presentation technology is DHTML widgets. They are simple
mechanisms for adding “flair” to a page presentation by executing embedded JavaScript code that exercises
DHTML functionality. The intent is for users who have limited technical knowledge to insert, with relative
ease, JavaScript code fragments into their personal web sites, their MySpace pages, or their blog templates.
The widgets are simple and brief enough to be used by users who are neither developers nor designers.

The widgets use server-side scripts or programs that generate JavaScript code to inject new content into a
page, modify existing content, or provide some other add-on functionality. (Some may also employ the
deprecated <iframe> tag as the container for newly injected content, while others simply require that you
provide an empty <div> element with a predefined id attribute.) The code commonly traverses through the
elements on the page (e.g., adding onmouseover handlers to certain links).

Widget providers usually require some sort of user registration and user identification information is
embedded in the query string of the URL accessing the remote JavaScript code. To keep things simple for
non-technical users, DHTML widget providers take shortcuts that deviate from established “best practice” for
integrating JavaScript code into a page. For example, they advise that users put the inserted <script> blocks
not in the <head> section of the page, but at the bottom of the page, just before the </body> tag. (This
ensures that any page elements referenced by the widget have been rendered.) Also, the code they generate
often employs document.write () statements (rather than using DOM-based techniques) to inject new content
into the page. Despite these idiosyncrasies and issues, expect this technology to blossom in the coming years.

Google AdSense

If you register with Google and insert a block of code supplied by Google into your page or template, Google
presents advertisements on your web site:

You are given options about the format and layout of the ads, but Google uses its well-known search

317

capabilities to display ads that are related to the content presented on your site.

Amazon Associates

When you sign up as an Amazon affiliate, you get an affiliate ID that you can include in links on your pages
to products offered on Amazon.com. In essence, this makes you an online bookseller, allowing you to sell
books (or other products) on your web site. (Amazon gives you a “cut” from the sales arising from links on
your site.)

The widget comes into play when you insert a <script> tag referencing a URL on Amazon’s web site that
dynamically generates JavaScript based on your affiliate ID (it must be included in the link defined in the src
attribute of the <script> tag):

This code causes a DHTML popup to appear whenever site visitors hover over links on your pages that
point to Amazon.com. The popup displays a thumbnail image of the book cover, CD, or other product, as
well as other information about that product, including a link to allow visitors to purchase it using your
affiliate ID.

Snap Shots

The Snap Shots service (from shots.snap.com) also enhances hovering behavior for links on a page. After you
sign up, you receive a block of HTML code containing a <script> tag that you insert into your page:

This tag references a URL that produces dynamic JavaScript, which, in turn, causes a DHTML popup to
appear whenever visitors to your page hover over links. The popup displays a thumbnail preview of the
content found at the URL associated with the link. Since this behavior can be excessive if applied to all links
on a page (including, for example, links to other pages on your site), the widget code can be configured to be
more selective and page elements can be associated with specific CSS class names that selectively enable or
disable this functionality.

318

http://Amazon.com
http://Amazon.com
http://shots.snap.com

8.4.7 Summary

Our examples barely scratch the surface in describing the capabilities of DHTML. Readers are invited to
pursue the referenced sources and explore on their own the possibilities that arise from the interaction of
JavaScript, CSS, and HTML. Our examples show how programmatic modifications to CSS attributes
through JavaScript and insertion of new elements into the DOM offer great power to developers.

319

8.5 AJAX

AJAX is a name applied to a set of programmatic techniques that enable browsers to communicate
asynchronously with web servers. Common uses of AJAX include retrieving content from the server to be
inserted into the current page and transmitting new or updated information to be persisted on the server.
AJAX techniques make it possible to achieve these results without causing a refresh or re-rendering of the
current page.

What’s in a Name?

AJAX is an acronym coined by Jesse James Garrett of Adaptive Path, a consulting firm that
had been using the techniques described here without associating those techniques with an
identifiable name. Garrett’s blog post drew attention to these commonly used patterns and the
AJAX label caught on. Depending on whom you talk to, AJAX stands for either Asynchronous
JavaScript And XML or Asynchronous JavaScript And XMLHttpRequest. The word
“asynchronous” is appropriate in that AJAX does make use of requests and responses processed
in the background. AJAX does not necessarily make use of XML, but it almost always involves
both JavaScript and the XMLHttpRequest object.

The functionality behind AJAX is made possible by an object called the XMLHttpRequest, which is the
entity capable of transmitting an asynchronous HTTP request, waiting for a response, and using the contents
of that response in some interactive fashion. The XMLHttpRequest object can be considered an independent
background HTTP client executing within the browser’s JavaScript-processing module. Originally an ActiveX
object developed by Microsoft specifically for their Internet Explorer browser, it is now available in most
modern browsers as a native JavaScript object with pretty much the same set of behaviors. Just as DHTML
can be thought of as “JavaScript, CSS, and HTML DOM”, AJAX can be summarized as “DHTML and
XMLHttpRequest.” (These trite descriptions, of course, do not accurately describe what either DHTML or
AJAX can do.)

Beyond AJAX

The XMLHttpRequest object is not the only way to achieve the effects associated with AJAX.
Another technique uses a hidden frame (or IFRAME) as the vehicle for submitting

background requests and accepting responses. This predates the creation of the
XMLHttpRequest object by Microsoft. JavaScript code in the main content frame passes
information to JavaScript code in the hidden frame, which submits an HTTP request. The
response to this request refreshes the hidden frame, triggering additional JavaScript code that
passes information (and control) back to the main content frame.

Adobe’s Flex product is a descendant of Flash. It provides mechanisms for declaratively
creating the equivalent of a Flash movie in MXML (an XML-based language tightly bound to
Adobe’s underlying APIs) and ActionScript (an ECMAScript-compliant scripting language).

320

Flex employs interactive data services that populate and read data, analogous to the way AJAX
uses the XMLHttpRequest object. Flex promises a world of “rich Internet applications” (RIAs)
that do what AJAX does within a framework designed for instantaneous responses and live
interactivity. Adobe plans to release as open source large portions of the Flex specification and
code base, including the interface builder software.

Other similar approaches include OpenLaszlo (an open source framework also based on
Flash but employing its own XML language, LZX) and Microsoft’s Silverlight.

321

8.5.1 Content injection: manual approach

Content injection is one of the most common uses of AJAX. A background request is sent to the server to
fetch content, which is used either to replace the content of an existing DOM element within the page or to
create an entirely new element to hold the retrieved content.

Let us begin by understanding what is required to create an XMLHttpRequest object. As expected, the
dual nature of the XMLHttpRequest object leads to cross-browser compatibility issues from the very start.
Just the act of creating an instance of this object in JavaScript code is an exercise in tedium:

This is just a sample JavaScript function for creating an XMLHttpRequest object in a compatible manner
that works across different browsers. It checks to see if XMLHttpRequest is the name of a valid JavaScript
entity and, if so, simply creates it; otherwise it attempts to create an XMLHttpRequest as an ActiveX object.
As convoluted as this example looks, it is far from complete. More rigorous checks are needed to confirm
which version of ActiveX (if any) is associated with the browser (so that an appropriate version of the
XMLHttpRequest object can be created), and to fail gracefully if the browser lacks support for this object. (Be
patient: there are easier ways to do this.)

Once you have an XMLHttpRequest object, what do you do with it? Obviously, you want to specify a URL
that is the target of your request. After you have established the request URL and the associated request
method, you attach a JavaScript callback function to the XMLHttpRequest object that is invoked when the
response is received successfully. Then you submit the request by invoking the send () method.

In Figure 8.10, we use the getAjaxRequest () function to create an XMLHttpRequest object, point it at a
URL, submit the request, wait for the response, and then replace the content of the named page element with
the content retrieved from the server.

Notice the additional complexities in the callback function, insertRetrievedContent (). The readyState
property of the XMLHttpRequest object indicates what it is currently doing: a readyState of 4 (or complete -
another cross-browser incompatibility!) indicates that the response has arrived and is ready for consumption.
This callback function is invoked, as the handler name implies, whenever the value of the XMLHttpRequest
object’s readyState changes. This happens several times over the lifetime of the request. When this value
changes to the completed state, the code within the if block is executed, replacing the content of the page
element named divToReplace with whatever was retrieved by the request.

322

Figure 8.10 Manual coding of AJAX functionality with custom callback function.

AJAX Response Data Formats

A common assumption is that the “X” in AJAX stands for XML, and that AJAX responses
must contain XML. As we mentioned earlier, this is not necessarily the case. In fact, many
server-side components used by AJAX applications do not return XML at all - they send back
plain text or JSON instead because these are simpler to process.

To produce XML in AJAX responses, the Content-Type header in a server response must
be set to text/xml or application/xml. In addition, the JavaScript function that interprets the
content of the response must make use of the responseXml attribute of the XmlHttpRequest
object, rather than the responseText attribute. The resulting content should be parsed as XML
by the JavaScript code. This may require the use of additional JavaScript libraries for some
browsers.

Plain text may be good enough if all you are trying to do is to insert retrieved text into an
existing element (or insert a new element containing the retrieved text into the DOM). JSON
may be useful if the data sent to the browser is more complicated.

JSON data is made available to JavaScript through the eval () function. The following
fragment sets the responseData variable to the value of the JSON object included in the
response:

323

Simply assigning the response text to the variable does not work:

That would set the variable to a string containing the content of the response, instead of
building the complex data structure defined by the text.

There is a serious danger in using eval () with JSON-based responses. Rogue sites can

engage in JavaScript hijacking2 by sending responses that contain malicious executable code in
place of (or hidden inside) JSON data. Care should be taken to exercise tight control over the
use of JSON responses to prevent this from happening in your AJAX applications.

As complicated as the code in Figure 8.10 appears at first glance, it lacks proper error checking. What
happens if the request fails? What happens if the named element does not exist? What happens if the request
takes a long time and the user has to wait for a response with no indication of what is going on?

With this much conditional processing to account for differences between browsers and this much required
error checking and event tracking to make the code robust, you would hope that there might be some sort of
wrapper object that would encapsulate it all in a cross-browser compatible, abstract, and reusable fashion.

Hope springs eternal.

324

8.5.2 Content injection: using toolkits

Most of the better toolkits do abstract XMLHttpRequest functionality into wrapper objects that are much
more usable, with a lot less need for the boilerplate code seen in the previous examples. This is one of the
reasons why using toolkits for JavaScript, DHTML, and AJAX has become a necessity.

One popular toolkit, Dojo, provides a nice wrapper mechanism through the dojo.xhrGet function (see
Figure 8.11). Notice that we have eliminated our custom getAjaxRequest method (which was not robust
enough any way) and simplified the callback function by making it unnecessary to test the value of readyState.

The Prototype framework provides an even simpler abstraction for this particular function, replacing text in
a page element through the Ajax.Updater (see Figure 8.12).

325

8.5.3 Auto-completion

One of the most common uses of AJAX is to provide auto-completion functionality. Google made this popular
with their experimental “Google Suggest” application. After entering a few characters into the search box, a
list would appear under the box, containing ten entries, which begin with the characters you just entered.
Google “suggests” one of these entries might be the one you are looking for, saving you the trouble of typing
the entire search string. This is done by submitting an AJAX request as you enter each character. Each AJAX
request queries Google’s database for previously entered search strings that match the entered characters and
returns the list of the ten most popular search strings.

Figure 8.11 Content injection using the Dojo toolkit.

326

Figure 8.12 Content injection using Prototype’s Ajax.Updater.

This kind of function requires:

• a text field (the search box) whose onchange handler submits an AJAX request every time the
content of the search box is modified;
• a page element (<div>) that contains the list of matches found by the AJAX request for the current

327

content of the search box;
• a callback function that takes the AJAX response from the server and uses its content to populate
the hidden element;
• a server-side script or program that produces an HTML unordered list () containing the
entries that begin with the characters currently in the search box.

As you might expect, the usual vagaries associated with cross-browser compatibility arise here as well.
Browsers have their own native auto-complete functionality, which may interfere with this application. Other
browser-specific issues may cause problems when an onchange handler is used. With this in mind, using
toolkit functions to implement the AJAX auto-completion application is a very good idea.

Scriptaculous provides Ajax.Autocompleter to perform this function. It takes three required parameters:

• the ID of the text field whose content is being scanned;
• the ID of the <div> element (typically an HTML list) that will contain the results;
• the URL of the server-side program that determines which entries should be displayed in the list.

There are also optional parameters (in a JSON block) including the names of various callback functions (for
example, after the content of the element has been updated). The target <div> is associated with CSS style
directives to make the list stand out when presented (instead of looking like a normal unordered list). The
Ajax.Autocompleter attaches the class name selected to the current list item. That class specifies a different
background color to emphasize the selected item (see Figure 8.13).

328

8.5.4 Remote validation

Another common AJAX application is remote validation. Its goal is to mimic the responsiveness of client-side
validation when it is impractical for the browser to perform this function with the data at its disposal. The
example mentioned in Section 8.2.2 can be extended to prevent new registrants

Figure 8.13 Using Scriptaculous’s Ajax.AutoCompleter.

from choosing user names that are already in use. Before AJAX, the alternatives would be either to download
the entire list of user names so that the browser could perform the comparison locally or to use server-side
validation.

The strategy for performing remote validation through AJAX is similar to that for auto-completion. An
AJAX request is transmitted to the server containing the string to be validated (the requested user name). In
this case, instead of a list, we are expecting a simple “yes” or “no” response: “yes” means that the user name
already exists in the database and “no” means that the user name does not exist and can be claimed by a new
user.

The example in Figure 8.14 shows a JavaScript function designated as the onblur handler for a text input
field, username. When focus moves away from this field, the handler sends an AJAX request, examines the
response to that request, and injects the content of the response into a <div>.

329

AJAX Limitations

AJAX has an important security limitation that we have not discussed up to this point. AJAX
requests can be submitted only to servers in the same domain as their pages of origin.

While this may seem very restrictive, it is necessary to prevent malicious exploitations of
AJAX technology by rogue sites. Legitimate web applications seeking to use AJAX to
communicate with servers outside their domain have a simple mechanism for getting around
this restriction. They can provide proxy services on their servers that forward AJAX HTTP
requests to other domains, process the responses, and send them back to the requesting clients.

330

8.5.5 Where does DHTML end and AJAX begin?

The boundaries between DHTML and AJAX are somewhat blurry. Techniques that employ only DHTML
functionality are often (erroneously) referred to as “AJAX.” This is in part because many of the popular
toolkits, such as Dojo and Prototype, include both DHTML and AJAX functions. Most of the visual effects
in the Scriptaculous toolkit are DHTML, yet Scriptaculous is often referred to as an AJAX toolkit.

By definition, AJAX involves the transmission of a background request that causes discrete updates to the
content displayed in the browser or updates to the data stored on the server. Applications with cool DHTML
features that do not involve such requests are not AJAX. This includes Scriptaculous functions that make page
elements appear and disappear, grow and shrink, and move around on the page. (In other words, just because
it is cool does not mean it is AJAX.)

Not that these labels matter. DHTML was always a loosely defined term describing techniques that arose
from the synergy between JavaScript, CSS, and the HTML DOM. AJAX is another loosely defined term
describing techniques arising from the synergy between DHTML and the XMLHttpRequest functionality.
As if all this wasn’t confusing enough, the term “Web 2.0” (which refers to the features enabled by these
technologies in collaborative community-driven web applications) is sometimes used erroneously to refer to
the technologies themselves.

331

Figure 8.14 Using Prototype’s Ajax.Request to perform remote validation.

332

8.5.6 Summary

In many ways, AJAX changed the landscape of the web, taking what was coming to be perceived as a stodgy
mechanical request - response paradigm and turning it into a truly interactive application platform. Web
applications were limited because of their dependency on request - response transactions that updated the
entire presentation. Compared to the client-server applications prevalent in the 1990s, this was viewed as a
step backward, to a world reminiscent of old-school, IBM-mainframe-terminal transactions. AJAX-based
applications allowed user actions that modified the page (e.g., entering text into a form field) to be
“instantaneously” reflected in some other aspect of the presentation (e.g., adding the analysis of entered text
into some other page element).

The word “instantaneously” needs to be in quotes, because it reflects the perception, not the actual fact.
When a server interaction is required, the application must wait for responses to one or more background
requests in order to update the page. A slow network can make AJAX transactions slow. AJAX-heavy pages
can bog down the browser as it attempts to process multiple background requests and responses.

The point is that AJAX needs to be used judiciously. Too much of it would be overwhelming, not just for
the browser but also for the user who has to grasp and assimilate all that is happening on the page. While it is
technically feasible to build applications that use empty HTML page skeletons that are filled via AJAX
requests, this is rarely the best approach.

Above all, there is no reason to reinvent the wheel. Toolkits such as Dojo and Prototype can free you from
the burden of coding routine support functions. On the flip side, do not treat these toolkits as magical black
boxes, without any understanding of their underlying mechanisms; use them knowing what they do for you
and what kind of work they are saving you from.

333

8.6 Case Study: 5-Star Rating

This technique (see Figure 8.15 - check our web site for full color image3) seems to have appeared everywhere
on the web at once. One of its pioneers was the online DVD rental service, Netflix, but it is not clear whether
they are the ones who originated it. In any case, the gist is as follows:

Figure 8.15 Star-rating images: unrated (gray), mouse-over highlighting (yellow) and recorded (red).

• An array of five images (usually stars) is displayed on a page associated with some item (e.g., a
movie) that site visitors can “rate” as terrible (one star), excellent (five stars), or somewhere in
between. The initial color of the stars is usually bland (gray, white, or transparent).
• As the mouse pointer hovers over a star, its color (and the color of all stars to the left of it) changes
to something more vibrant. Moving the mouse away from the array of stars causes them to revert to
their original color.
• Clicking on a particular star causes a background request to the server, recording the user’s
selection. For example, if the user clicks on the leftmost star, a rating of “one star” persists in the
server database. If the user clicks on the star in the middle, a rating of “three stars” is recorded. If the
user clicks on the rightmost star, the record indicates a rating of “five stars”. The current page
continues to be displayed after the mouse click (i.e., there is no page refresh).
• Once the server-side processing has succeeded, a confirmation message is displayed.

(A variation on this technique was mentioned in the sidebar toward the end of Section 8.3.2.)

334

8.6.1 Designing a star-rating component

Implementations of this functionality usually do more than persist individual user ratings; they often tally all
the ratings submitted by site visitors and display an average rating. These added complexities make discussion
of a real world example of this functionality impractical in this overview. For that reason, we concentrate on
the mechanics of the star rating display. Our goal was to keep this example simple as an illustration for those
who wish to use this functionality in their web pages:

• We use individual images for the stars, rather than using compound images with multiple
segments.
• We want JavaScript to do as much of the work as possible, so that the required HTML is simple
(no need for custom JavaScript code in script blocks or within the HTML).

We start with three star images, equal in size and orientation. One star is light gray (meaning unrated or
unselected), one is yellow (actively hovering, highlighted), and one is red (rated).

We define a CSS class for each star type and for the enclosing list items. Links (<a> tags) within list items
with a class of unratedStar-* should use the gray star as their background image, links with a class of
highlightedStar-* should use the yellow star, and links with a class of ratedStar-* should use the red star (see
Figure 8.16).

We then add code (see Figure 8.17) to change the CSS class of all the list items to the left of the selected
list item. (The a:hover specification takes care of the hovered-over list item itself.) This would simulate the
onmouseover handler for all affected star elements. Consequently, the image under the mouse pointer, plus
the images to its left, would be highlighted.

We also need to add code to reverse this procedure and remove highlighting, as shown in Figure 8.18. This
would serve as the onmouseout handler for the same set of elements. When the mouse pointer leaves the area,
the stars return to their original state (“unrated”).

We add code to submit an AJAX request to record the rating on the server and reset the handler definitions
for all elements in the list once the rating has been recorded. This code (outlined in Figure 8.19) would serve
as the onclick handler for the same set of elements. When a star is

335

Figure 8.16 CSS style sheet definitions for list items representing each star type.

clicked, that star and all stars to the left of it change permanently to the “rated” state. The resetting of event
handlers means that subsequent hovering and clicking activity with the stars has no effect.

Here is where the JavaScript code gets really interesting. Attach highlightAllToLeft, unHighlightAll, and
sendRating as onmouseover, onmouseout, and onclick handlers for all children of elements that are associated
with the class name ratingBlock. Remember that the element is assigned the class name of ratingBlock,
so its children are the list item () elements (see Figure 8.20).

When building the HTML content for the page, we use an unordered list with the appropriate class
designation (ratingBlock) and give it a unique id attribute. Create list items (tags) for each star in the list,
assigning each of them the appropriate class name. Assuming we are dealing with five stars, this means five
list items:

336

Figure 8.17 Code fragment containing the highlightAllToLeft function.

Figure 8.18 Code fragment containing the unhighlightAll function.

337

Figure 8.19 Code fragment containing the unhighlightAll function.

We can set up a similar list for any additional items to be rated on the page:

338

Figure 8.20 Code fragment that sets up handlers for all rating blocks.

If the JavaScript code and the CSS style sheet are associated with the page, only the lists are necessary in
the page itself.

339

8.6.2 When you click upon a star: what happens on the server?

Highlighting stars of different colors and clicking on them to change their presentation locally in the browser
may be a nice visual effect, but something has to happen on the server in order for these ratings to be recorded
for posterity. That is something we haven’t covered yet, but be patient: when we provide examples of how web
applications are designed and developed, you will get an idea what needs to happen.

Basically, the server-side code needs to register the fact that a rating (from 1 to 5 stars) has been submitted
for a particular item (specified by the id attribute of the enclosing list). It would record that in the database as
a new row in a ratings table.

The point is that all this browser-side magic requires supporting code on the server to record the events that
transpire, or to fulfill the dynamic requests for data. Organizing your server-side code so that these operations
can be performed atomically via AJAX requests makes your web applications more resilient and easier to test,
extend, and maintain in the long run.

In essence, AJAX requests make use of discrete services to retrieve specific sets of data and to upload data
that is persisted in a server-side database. Web applications that are organized around such services fit well
into the AJAX paradigm. Using AJAX with applications that are not designed this way would require either
duplication of code to perform the same operation in different ways, or major refactoring to make such code
duplication unnecessary.

340

8.7 Summary

We entitled this chapter “Active Browser Pages” because we concentrated on technologies for producing
dynamic interactive presentations in the browser: JavaScript, CSS, DHTML, and AJAX. AJAX produced a
huge paradigm shift that changed the way web applications are conceived and designed. It also changed the
way JavaScript, a language that grew to be scorned and dismissed over the years, was viewed. The gimmicks,
snippets, and spaghetti code long associated with JavaScript have given way to a disciplined approach to
building structured user interfaces. Combine JavaScript with CSS and the HTML DOM, and you get
DHTML. Combine DHTML with the XmlHttpRequest object that allows communication with servers
through background requests, and you get AJAX.

However, communicating with the web server will not be of much value unless applications running on the
web server produce sophisticated dynamic content to be presented in the browser. Just as this chapter offered
up a perspective on browser-side approaches to producing dynamic content, the next chapter will cover server-
side approaches to web application development.

QUESTIONS AND EXERCISES

1. What is the purpose for introducing CSS? What are the alternatives for
associating styles with HTML documents?
2. What is the relationship between HTML and JavaScript? What is the role of
event handlers?
3. What is JSON? Name three ways that JSON can be used.
4. What is DHTML? Describe the most common DHTML usage patterns and the
enabling technologies.
5. What is AJAX? What can AJAX do that previous technologies could not? How
did the advent of AJAX change the structure of web applications?
6. Name three ways to create image rollover functionality.
7. Implement the “5-star rating” component described in Section 8.6, Case Study: 5-
Star Rating. What functionality is missing from the finished product that is needed
to make it usable in a real world web application environment?
8. What is the main advantage of using toolkits to perform sophisticated
DHTML/AJAX functions? Name three popular toolkits and list some of the things
they can do.
9. What would you expect to happen if the response to an AJAX request contained a
redirection (301 or 302) status code? Investigate what actually happens in different
browsers.

341

342

8.8 Bibliography

Angus, Chris, 2006. Prototype and Scriptaculous: Taking the Pain Out of JavaScript (O’Reilly Short Cuts Series).
Sebastopol (CA): O’Reilly Media.

Goodman, Danny, 2006. Dynamic HTML: The Definitive Guide, 3rd Edition. Sebastopol (CA): O’Reilly
Media.

Hadlock, Kris, 2006. AJAX for Web Application Developers . Indianapolis (IN): SAMS Publishing.

Meyer, Eric, 2006. Cascading Style Sheets: The Definitive Guide, 3rd Edition. Sebastopol (CA): O’Reilly &
Associates.

Powers, Shelley, 2006. Learning JavaScript . Sebastopol (CA): O’Reilly Media.

Schutta, Nathaniel T. and Asleson, Ryan, 2006. Pro Ajax and Java Frameworks. New York: Apress.

Stephenson, Sam et al., 2007. Prototype 1.5.1: The Complete API Reference. Prototype Development Team.

Teague, Jason Cranford, 2006. CSS, DHTML and AJAX for the World Wide Web: Visual Quickstart Guide, 4th
Edition. Berkeley (CA): Peachpit Press.

Zakas, Nicholas C., 2006. Professional JavaScript for Web Developers. Indianapolis (IN): Wrox Press/Wiley
Publishing.

343

8.9 Web Links

Chess, Brian, O’Neil, Yekaterina Tsipenyuk and West, Jacob, 2007. JavaScript Hijacking. Available at
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf.

O’Brien, Paul, 2007. CSS The Star Matrix Pre-loaded . Available at http://www.search-
this.com/2007/05/23/cssthe-star-matrix-pre-loaded/.

344

http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://www.search-this.com/2007/05/23/cssthe-star-matrix-pre-loaded/

8.10 Endnotes

1 http://www.search-this.com/2007/05/23/css-the-star-matrix-pre-loaded/

2 http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf

3 http://www.webappbuilders.com/images/starrater.jpg

345

http://www.search-this.com/2007/05/23/css-the-star-matrix-pre-loaded/
http://www.fortifysoftware.com/servlet/downloads/public/JavaScript_Hijacking.pdf
http://www.webappbuilders.com/images/starrater.jpg

CHAPTER 9

Approaches to Web Application Development

IN THIS CHAPTER

• Taxonomy of web application approaches and frameworks
• Comparative survey of approaches and frameworks

OBJECTIVES

• Introduce the taxonomy of web application approaches and frameworks.
• Discuss the differences between programmatic, template, and hybrid approaches,
and the compromises associated with these approaches.
• Clarify the distinction between frameworks and approaches.
• Offer a comparative survey of popular approaches and frameworks.
• Use examples to illustrate the advantages and drawbacks of individual approaches
and frameworks.

It is neither desirable nor practical to design and develop every new web application from the ground up. We
would have to keep building the same functional components that accept and interpret requests, authenticate
and authorize users, access and transform requested data, and construct and transmit final responses. Many of
these components would be identical across different applications. Web servers provide application developers
with well-defined endpoints - the acceptance of requests and transmission of responses. Some servers lay the
basic groundwork for building and deploying web applications (as discussed in Chapter 6). In practice, such
groundwork is too basic to facilitate development and deployment of sophisticated applications.

In this chapter, we classify and analyze various strategies for building web applications, distinguishing
between approaches and frameworks. We define approaches as libraries of functional components that take
advantage of the web server foundation and can be reused across multiple applications. They usually revolve
around a particular programming language, with supplementary APIs and packages providing the
functionality needed by web applications.

Frameworks go beyond application development approaches. They provide a consistent infrastructure that

346

includes a rich set of services, eliminating the need to write redundant “boilerplate” code for common
application functions. They usually include integrated support for database access, authentication, and state or
session management. Most importantly, frameworks strive to separate content from presentation, which is an
elusive goal of good web application architecture. They aim to achieve this goal by making developers
responsible for business logic and access to content, while giving creative designers control over page
formatting. The best frameworks allow developers and designers to work on separate source modules, so that
they do not interfere with each other as they go about their respective jobs.

In this chapter, we examine various approaches to web application development. We discuss the evolution
of such approaches from the early years of the web through to the present day, with an eye toward the future.

347

9.1 Taxonomy of Web Application Approaches and Frameworks

We divide web application development solutions into four broad categories:

• scripting or programmatic approaches
• template approaches
• hybrid approaches
• frameworks.

Although there is overlap (as well as debate about where certain approaches fit into this categorization
scheme), most established approaches are associated with one particular category. They differ in the types of
object used as the “source” for generated pages and in the degree of support they provide for the development
of advanced, scalable applications.

348

9.1.1 Programmatic approaches

In scripting or programmatic approaches, the source associated with the page object consists predominantly of
code written in a scripting language (such as, Perl, Python, or Tcl) or in a high-level programming language,
such as Java. The code may be interspersed with formatting constructs. Naturally, such approaches are
oriented toward programmers. The bulk of the page source implements application logic, while the page
formatting (e.g., HTML) is commonly produced using output statements written in the associated
programming language. Among the approaches that fit into this category are CGI scripts and servlets (which
were covered in Chapter 6).

The biggest issue with programmatic approaches to web application development is their code-centric
nature. HTML and other formatting constructs are embedded within program logic. This limits the creative
input that web designers can have into the layout of the final page. A web designer can “mock up” a page, but
a programmer must then translate it into code and integrate it into the script or program. Programmer
intervention is required to modify practically any aspect of the generated page, whether it is a change in
program logic or a change to the layout.

349

9.1.2 Template approaches

Template approaches utilize a source object (the template) that consists predominantly of formatting
structures, with a limited set of embedded constructs that add programmatic power. The focus of the source
object is on formatting, not programming logic. These approaches are friendlier toward web designers, whose
expertise is in the area of layout and design rather than programming.

Template approaches revolve around the page structure and the formatting tags, not around the code. With
this in mind, we call such approaches page-centric. The source objects are page templates, consisting mostly of
HTML coupled with embedded constructs that support conditional processing, iterative result presentation,
and parameter substitution.

Server-Side Includes (SSI) was an early mechanism for adding simple template functionality to web pages.
Among other well-known template approaches are Adobe’s Cold Fusion and Apache’s Velocity.

Template Programming?

Some argue that the presence of programmatic constructs in templates means there is no real
difference between the template and programmatic approaches. The argument is that the
addition of programmatic constructs turns a template approach into a programming language,
albeit less powerful than those commonly used to produce CGI scripts and other applications.

Comparing the two kinds of approach based solely on programming power, programmatic
approaches appear to “win out.” However, this is a flawed comparison: programmers have the
background and skills to use the features of powerful programming languages, but most page
designers do not. The purpose of template approaches is to put presentation objects in the
hands of page designers. Introducing complex programming constructs subverts that purpose
by forcing the designers to rely on programmers to implement design changes.

A page-centric approach that employs a minimal set of logic constructs provides unique
value because it enables designers with limited programming skills to create presentation
layouts without programmer intervention.

350

9.1.3 Hybrid approaches

Hybrid approaches employ source objects that combine formatting constructs with code. They have more
programmatic power than template approaches because they allow embedded blocks containing “scripts”. This
would seem to combine the benefits of the template and programmatic approaches. Examples of hybrid
approaches include PHP, Microsoft’s Active Server Pages (ASP) and Sun’s Java Server Pages (JSP).

Most of these approaches translate hybrid source objects into code. The more sophisticated among them
employ some form of pre-compilation, so that the translation and compilation process does not occur every
time a page is requested.

Best of Both Worlds or a Web Developer’s Worst Nightmare?

The intermixing of script blocks with page formatting is not just a violation of an important
principle: separation of content from presentation. The worst part is that the issue of who
“owns” the source object becomes muddled.

The frequent contention that page designers can easily learn to work around the embedded
code constructs is not borne out by experience. When designers and developers work on the
same source objects, this inevitably leads to problems when code changes break the HTML
formatting, or when changes made by designers inadvertently introduce bugs into the
embedded code.

A mechanism for separating application logic from presentation constructs would make a
hybrid approach more viable. But as long as both content and presentation aspects of the
application are contained in the same source objects, the problem remains. Separating out
functions associated with application logic from page templates is necessary to minimize
collisions and conflicts between developers and designers and to maximize productivity. This is
what true frameworks aim to achieve.

351

9.1.4 Frameworks

Frameworks represent the next level of sophistication in web application development. Rather than combining
layout and logic into a single module, frameworks follow the principle of separating content from presentation.
The modules responsible for producing content (the model) are distinct from the modules that present that
content in a particular format (the view).

Why is it so important to separate content from presentation? The answer has two components: increased
application flexibility and the appropriate division of responsibility between designers and programmers.

Application flexibility

When people talk about “confusing the map and the territory,” they are describing the problem that occurs
when the distinct natures of content and presentation are confused. The map is not the territory; it is a
representation of that territory in one of many possible ways. A map could be a street map, showing the
highways and roads found in a region. It could be a topographical map, describing the surfaces and elevations
of that region. A map might not even be graphical: a set of explicit verbal directions to get from one place to
another is also a representation of the territory and thus a kind of map. We have the flexibility of representing
the territory in a number of different ways, using a variety of different maps.

In web applications, the “territory” is the data or content. The “map” is the view - the organization and
layout of the content in the desired form. The choice of presentation format should be separate from the
choices made to access the data, so that any “territory” can be represented as any kind of “map” (HTML,
XHTML MP, VoiceXML, etc.). The “map” can be personalized, co-branded, stylized, embedded, or
otherwise customized in a variety of ways.

It terms of flexibility, it does not matter where your content comes from or how it is retrieved. What
matters is that the data model is open enough so that the content can be transformed to multiple presentation
formats (or views), and that there is a controlling mechanism (or controller)

352

Figure 9.1 Model - View - Controller design pattern.

that can match up retrieved content with the appropriate view. That is, it should implement the Model -
View - Controller (MVC) design pattern (see Figure 9.1).

The Controller receives a user request, accesses and modifies the Model that fulfills this request, and selects
a View to present the results. The View communicates with the Model to determine its content, and presents
that content to the user in the desired format. The View also serves as the interface for transmitting user
requests to the Controller.

This pattern, designed to facilitate true separation of content from presentation, enables the development of
applications that can dynamically tailor and customize presentations based on user preferences, device
capabilities, business rules, and other constraints. The data model is not tied to a single presentation format
that limits the flexibility of the application. View customization possibilities range from the simple (choosing
a CSS style sheet) to the complex (choosing a target markup language).

Division of responsibility for processing modules

As we have already discussed, the people responsible for content and presentation have very different skills
and agendas:

• Presentation experts are page designers whose skills focus on formatting languages, such as
HTML and CSS, and on page design tools, such as Macromedia Dreamweaver and Microsoft
FrontPage, with perhaps some exposure to XML with XSLT. They are not programmers, and their
expertise is not in the area of coding and application logic.
• Content access and manipulation are the responsibility of application developers or database
programmers. They may require elaborate conditional logic and complex queries to obtain the
desired data.

Both sets of skills are very specialized; both require sophistication and are critical to the process of web
application development. Just as you would not ask a page designer to code up your SQL stored procedures,
you would not want an application developer to design and implement the layout of your pages. More often
than not, applications in which developers designed the user interface have issues with usability. Similarly,
applications which were fully conceived and built by page designers have problems with scalability and are
difficult to maintain.

Many hybrid approaches, including Cold Fusion, ASP, and JSP, offer a great deal of power by combining
presentation formatting with application and data access logic. Unfortunately, they do not clearly define who
owns and is responsible for these hybrid page objects. What happens when the page designer’s modifications
break the application developer’s embedded Java code? Conversely, what happens when a database
programmer modifies an embedded query, inadvertently altering the HTML layout?

While some programmers like to believe they have the skills to perform all the tasks associated with
dynamic page generation, experience teaches us that development of sophisticated web applications is a
collaborative effort. To achieve maximum productivity, people with distinct skills should have the opportunity

353

to work independently on components most suitable for their expertise.
There is always the temptation to turn a page into one contiguous block of code (like a CGI script).

Anyone who has worked heavily with PHP, ASP, or JSP can attest to this challenge. Over time, the
intermixing of code and formatting constructs gets ugly; the page modules become extremely difficult for both
designers and developers to read - and to maintain. Because these hybrid page objects are so dense and
complicated, even simple design changes are likely to require developer intervention.

An MVC-based approach makes it possible to combine application flexibility with the appropriate division
of responsibility. Developers are responsible for the controller. This is often a lightweight module, which
delegates processing to appropriate subordinate tasks, also created by developers. These tasks are responsible
for retrieving data and making changes to the model. Designers are responsible for building the views. The
controller determines dynamically which view should present the data associated with the model. Designers can
implement changes to views without the need for developer intervention.

Good frameworks allow projects to come together naturally, like interlocking puzzle pieces, without force-
fitting dissimilar functionality into a single component. With framework approaches, we no longer
encapsulate both logic and formatting in a single module. Instead, they are relegated to different modules that
interact with each other. The degree of complexity associated with these interactions requires that conventions
and standards for them are well-defined and easily understood.

Rapid Application Development

In recent years, there has been a backlash over the degree of complexity inherent in modern
web application frameworks. Frameworks, particularly those associated with Java EE, are
viewed by many as being too cumbersome, making development and deployment of even
simple applications an onerous task.

The rise of a new generation of Rapid Application Development (RAD) approaches to web
application development is a reaction to this complexity. The hope is that an approach can be
devised that eschews the complexities associated with advanced frameworks while retaining the
advantages such frameworks provide (e.g., scalability, configurability, and the separation of
roles). Later in this chapter, we examine one such framework, Ruby on Rails and, in Chapter
11, we build an application using it, to see how close it comes to achieving those goals.

354

9.2 Comparative Survey of Web Application Approaches and Frameworks

What follows is a historical survey describing the evolution of web application development approaches and
frameworks. We offer a brief summary of how the approaches work and what they offer. These summaries are
not intended as in-depth tutorials, nor should they be considered endorsements or dismissals of any particular
approach. The goal is to provide observations about the evolution of these approaches.

355

9.2.1 CGI and FastCGI

We discussed the CGI approach in Chapter 6. To review briefly, web servers process requests to execute CGI
programs by spawning new processes. A set of CGI environment variables that are derived from information
in the HTTP request is supplied to the executing program, along with the body of the request.

Most approaches that employ CGI are historically code-centric, providing a structure for writing programs
that generate dynamic web pages in C, Perl, or another programming language. Formatting and layout
constructs are embedded within the code. The CGI mechanism gives programmers access to request context
information, including headers and URL parameters. Support for state and session management, database
access, and other functionality (all of which are important for web applications) is made available through
specialized packages.

Historically, the major deficiency of the CGI mechanism has been the overhead in creating a new web
server process for every request. Various server extensions have arisen to alleviate this problem, including
embedded language interpreters, such as mod_perl and mod_php for the Apache Web Server.

One such extension was FastCGI, which uses a variation on the CGI protocol to reduce the process
creation overhead. Although FastCGI provides the same services as the original CGI protocol (including the
same set of environment variables passed to executing programs), the underlying architecture is different. To
take advantage of the performance improvements afforded by FastCGI, developers must structure their code
so that it employs a reentrant loop that executes for each request passed to the program. A FastCGI
application continues to execute for as long as the web server is running. Theoretically, a failure of an
individual FastCGI application should not bring down the web server. (In this sense, FastCGI has many
things in common with Java Servlets, discussed in Section 9.2.4.)

FastCGI’s popularity dissipated somewhat over the years, but it has undergone a revival. One reason for
this revival is that FastCGI is seen by some as a better performer and a more flexible mechanism than
language-specific embedded interpreters. Another reason is that FastCGI has served as the environmental
underpinning for advanced approaches, such as Ruby on Rails.

Not all FastCGI applications are code-centric. Some web application development approaches that have
used FastCGI (including Ruby on Rails) transcend the programmatic category by providing template
processing and other advanced functionality (such as support for the MVC paradigm).

356

9.2.2 Server-Side Includes (SSI)

The Server-Side Includes (SSI) mechanism was a popular adjunct to CGI scripts in many early web
applications. The simple syntax for SSI directives, which are embedded in HTML comments, allowed page
designers to embed dynamic output in HTML pages:

The dynamic output could include:

• the results of executing various system commands;
• the results of executing a CGI script;
• CGI environment variables associated with the request;
• other environment variables associated with the file and the server;
• date and time.

The Apache implementation of the SSI mechanism added simple constructs for conditionally including
portions of HTML pages depending on the values of environment variables.

The combination of CGI scripts with SSI offered additional power to web page designers, but not enough
to support sophisticated pages, especially for database-driven applications. The problem with accessing the
database from a CGI script and invoking that script from an SSI template is that the script itself is responsible
for all formatting of query results, meaning that designers have little or no direct control over the look and feel
of the results.

357

9.2.3 PHP

PHP is a recursive acronym that stands for “PHP Hypertext Preprocessor” (though it originally stood for
“Personal Home Page”). It allows developers to embed code within HTML templates, using a language
similar to Perl and Unix shells. The source object is structured as an HTML page, but dynamic content
generation is programmatic. For example, the PHP fragment:

is equivalent to the following:

In other words, text embedded within “<?php... ?> “ blocks is processed using PHP syntax, while text
outside these blocks is treated as arguments passed to “print” statements. (We see this strategy again when we
discuss Java Server Pages in Section 9.2.8.)

It is debatable whether PHP qualifies as a programmatic approach or a template approach. While other
template-based approaches provide several distinct elements designed to perform specific tasks, in PHP there
is one element - <?php... ?> - that serves as a “container” for PHP code. Although PHP scripts are often
referred to as templates, they depend on code to perform most of the work associated with dynamic page
generation. This makes PHP a hybrid approach, and one that is closer to a programmatic approach than a
template one. Its reliance on code puts it beyond the reach of the average page designer as a tool for building
dynamic web pages.

PHP Challenges

Many of the popular open source web applications, including MediaWiki (the software behind
Wikipedia) and the blogging, or content-management, application WordPress, are
implemented using PHP. They offer a degree of presentation customization in the form of
“skins” and “themes”, but creation and maintenance of these customizations requires
knowledge not only of HTML and CSS, but of the PHP programming language as well.

Developers of these applications seem unconcerned about the barrier this poses for page
designers who do not have a programming background. The common attitude in blogs and
forums devoted to these applications is either that programmers should be the ones
maintaining and configuring them, or that designers should just learn PHP.

358

The current popularity of these applications insulates them from pressure to change, but
there is hope. Template extensions, such as Smarty, lower the barrier for non-programmers,
even though the PHP community still looks down on them. Unfortunately, PHP approaches
have not evolved to accommodate true separation of content and presentation.

359

9.2.4 Java Servlet API

The Java Servlet API implements the programmatic approach to dynamic page generation using Java. Like
CGI, it provides access to request and response information. Unlike CGI programs, servlets are loaded and
initialized either at server startup time or as initial requests for the servlets are processed. Requests are
processed by threads, so there is no per-request overhead of process creation and initialization.

Servlet programmers have access to the servlet context (e.g., servlet initialization parameters, server
information) as well as attributes associated with the incoming requests and with the session. The Servlet API
provides support for state and session management, making it the responsibility of servlet containers to deal
with the stateless nature of the HTTP protocol. The containers implement session management based on
server-side storage of state information, by employing cookies that contain session identifiers or by embedding
these identifiers in the request through URL rewriting.

This simple servlet makes use of selected aspects of servlet functionality:

360

When loaded, the servlet enumerates the set of initialization parameter names and stores them in a member
variable as a Map. For each request, it gets the name of the “user agent” from request headers, and determines
the value of the session attribute called “title.” It then sets the MIME type of the response to text/html and
outputs the collected information in HTML format via the “writer” associated with the response.

The Servlet API took dynamic page generation to another level. It transcended many of the inadequacies
associated with CGI processing, but did not get us past our dependency on programmatic approaches for
dynamic page generation. However, it did set the stage for important advancements toward eliminating this
dependency. Just as FastCGI provided a foundation for more advanced platforms, the Servlet API was the
foundation for a series of progressively advanced Java-based approaches to web development, discussed later in
this chapter.

361

9.2.5 Cold Fusion

Cold Fusion represents one of the first commercial template approaches to dynamic server-side page
generation, providing a set of tags that support the inclusion of external resources, conditional processing,
iterative result presentation, and data access. Cold Fusion owes much of its success to two features:

• Queries are very simple to create and use.
• Every form of data access behaves just like a query and formats its results in the same way that a
query does.

Database queries are constructed using the <CFQUERY> element, referencing an ODBC or JDBC data
source with the SQL code embedded between the opening <CFQUERY> and the closing </CFQUERY>
tags. It is possible to traverse the results using the <CFOUTPUT> element, with each column available for
variable substitution (see Figure 9.2).

In addition to <CFQUERY> for talking to databases, Cold Fusion provides tags for accessing other sources
of data, including POP3 e-mail servers, FTP servers, and the local file system. Each of these elements utilizes
the same method for accessing and presenting iterative results through variable substitution:

Like the Servlet API, Cold Fusion provides access to scoped environment variables (e.g., query string
parameters, HTTP headers, and session data). It also allows for the creation of custom tags (much like JSP
custom tags that we discuss in Section 9.2.8).

As the Cold Fusion platform evolved, it succumbed to the pressure to provide scripting capabilities within
templates. Although this capability gives programmers more power, it also makes it easy to create that clumsy
mixture of code and formatting within the same source object.

Although Cold Fusion offers many of the features associated with a solid template approach to web
application development, it is a proprietary software product, and the Cold Fusion Markup Language
(CFML) is the intellectual property of Adobe Systems. The irony is that many of the tag specifications in
Sun’s Java Standard Tag Library (see Section 9.2.10) are semantically similar to Cold Fusion tags. This does
not make Cold Fusion any less proprietary, but it is a sign that it may have been on the right track regarding
tag functionality.

362

Figure 9.2 Simple Cold Fusion example involving a database query

Over the years, Cold Fusion has evolved from a proprietary product that executed only on top of FastCGI
or proprietary server plug-ins (such as ISAPI or NSAPI) into an application compliant with Java Platform,
Enterprise Edition (Java EE) and compatible with the MVC paradigm. Despite its proprietary origins, Cold
Fusion still maintains a stable share in the web application software market, serving as the underlying platform
for a number of major web sites including myspace.com.

363

http://myspace.com

9.2.6 Velocity

Velocity is a true template-based approach to dynamic page generation. Using a small set of logic constructs to
support iteration, conditional processing, and the inclusion of external resources, it provides the functionality
needed to build dynamic web pages without scattering code fragments and related clutter throughout the
page. Although by itself it is not MVC-compliant, it does function well as the view component in MVC
frameworks that support inclusion of external technologies.

Jakarta Project

Velocity started out as an open-source implementation (by Apache’s Jakarta Project) of another
template approach for building web applications, WebMacro. Today both approaches co-exist
as independent open-source projects. Their syntaxes and structure are similar but not
equivalent.

The following code fragment is from a sample Velocity Template Language (VTL) template:

The VTL directives in this example include a conditional construct (a message that is only displayed if $x is
equal to $y), the inclusion of an external file (filename.wm), and the iterative construct that maps the result set
produced by the database query stored in a previously defined variable ($dbquery) to the HTML table.

Velocity templates depend on the request context that is established by a controlling Java servlet. This
makes it possible to provide template designers with access to content that has been transformed into an
appropriate data model by an MVC-compliant controller.

Notation, notation, notation!

Velocity employs Unix-style parameter substitution, with variables indicated by dollar signs
($variable). This notation is intuitive to Unix users and Perl programmers, but it may take
some getting used to on the part of designers. The same variable-name boundary issues that
arise in Unix shells come into play in Velocity templates as well. They are resolved by providing
a more formal notation for variable names (e.g., $variable) to alleviate confusion, for example,

364

http://filename.wm

clarifying whether $correctness means ${correctness} or ${correct}ness. (This notation is also
employed in the expression language that is part of the JSP 2.0 specification.)

Velocity’s notation is a major improvement over approaches that require program code to
display variables and those that enclose variable names in < and > delimiters (which, as we
explain in Section 9.2.8, create their own set of problems related to nested angle brackets).

365

9.2.7 Active Server Pages and .NET

By the late 1990s, many companies had developed their own proprietary server-side processing solutions.
Netscape offered LiveWire (which evolved into Server-Side JavaScript), and other companies developed
products to support their own approaches for building dynamic web applications, including NetDynamics,
Dynamo, and Cold Fusion. (Of these four, only Cold Fusion has survived as a viable platform to the present
day.)

Microsoft entered the fray with Active Server Pages, which combined server-side scripting capabilities with
access to the wide variety of OLE and COM objects in the Microsoft arsenal, including ODBC data sources.
Bundled with Microsoft’s free Internet Information Server (IIS), ASP quickly gained popularity among Visual
Basic programmers who appreciated the VB-like syntax and structure of ASP scripts. Unfortunately, that
syntax and structure are ill-suited to modern web applications. ASP pages contain references to obscurely
named COM objects intermixed with HTML formatting. Unlike object-oriented languages, such as Java or
C++, the language used within ASP pages is flat, linear, and strictly procedural.

In Figure 9.3, there are two “script blocks” embedded within the page. The first block, which appears
before the start of HTML markup, sets up the page context by creating a database connection, opening it
with appropriate credentials, creating a result set, associating it with the connection, and populating it with
the results of the database query. The second block is inserted in the HTML table; it contains procedural code
that outputs table rows with cells containing values from columns in the result set.

Like PHP, the structure of ASP is simple: blocks delimited with the <% and %> character sequences
contain script code to be executed by the server when it generates a response, while text found outside such
blocks is treated as “raw” HTML. As with PHP, the page is divided between discrete blocks of code and
HTML. (Note the presence of page directives in ASP, e.g., <% @LANGUAGE = VBScript %>.)

The fact that ASP is bundled with the Microsoft IIS web server makes it an attractive option for
installations that employ Microsoft solutions. ASP is popular enough to have been ported to other platforms
besides Microsoft’s IIS. This bodes well for the future of ASP, given the security holes and other problems
associated with IIS. As with Cold Fusion, its benefits are mostly in the area of speeding up the deployment of
relatively simple web applications.

366

Figure 9.3 ASP example

Microsoft’s .NET purports to be a “framework” that alleviates many of the limitations of ASP. In reality, it
is ASP on steroids: a set of extensions to the existing ASP infrastructure that offer many of the convenience
features found in the Java language, coupled with some advanced page components and the option to create
pages using a variety of languages (e.g., VB.NET and C#). There is a lot of additional power provided in
.NET, but there are still limitations in scalability, flexibility, and reusability of components. Many
installations that tried .NET found that they needed to migrate to a more scalable platform.

One reason that Microsoft’s web development approaches have continued to be successful, despite the
problems associated with them, is their emphasis on GUI tools. These tools are integral to Microsoft’s web
application development strategy. Application design and development are accomplished almost exclusively
through these tools. In that sense, Microsoft has a tremendous lead over competing web application
development approaches. Some non-Microsoft approaches have GUI tools to support application

367

development, but they appear to be an afterthought rather than a primary development interface. They are
also not as robust as the tools produced by Microsoft, in part because advocates of these approaches tend to
eschew GUI tools. Microsoft tools may make simple things simple, but customizing applications built with
those tools ends up requiring low-level coding which often introduces bugs that are very difficult to track
down and fix.

368

9.2.8 Java Server Pages

JSP was Sun’s answer to Microsoft’s ASP. As with PHP, JSP support was implemented through a pre-
processor that turned page objects with embedded code blocks into servlet source code. For example, the
sample JSP page in Figure 9.4 translates into servlet code similar to that shown in Figure 9.5.

The first line in Figure 9.4 is the page directive to import classes in the java.io package. The next line is a
variable declaration. Java code blocks are delimited by the <% and %> character sequences. HTML outside of
these delimiters is translated into print statements as shown in Figure 9.5. The entire page is translated into
Java servlet code that is compiled by the server.

JSP converts hybrid pages into code that is compiled and executed. To be more specific, the code is
translated into a Java servlet that is compiled and executed by the servlet engine. The vestiges of its hybrid
origins can be found in the structure of JSP pages (e.g., page directives, declarations, and - in pages that fail to
satisfy strict design constraints - clumsy intermixing of “scriptlets” and HTML formatting). However, JSP has
evolved over time, adding powerful features that enable it to transcend its original limitations.

Among these features is the JSP taglib. A taglib is a library of custom JSP tags that can abstract
functionality, which otherwise would have required the inclusion of an embedded scriptlet containing Java
code. These tags are a step toward XML compliance in the JSP world, since they are specified using XML
namespaces and are defined in XML configuration files. Two of the most commonly used tags are
<jsp:useBean> and <jsp:getProperty>. The <jsp:useBean> tag allows page designers to embed a JavaBean
(constructed and populated by the application and perhaps persisted in the session) within a JSP page. They
can access, and possibly modify, properties within that JavaBean using the <jsp:getProperty> and
<jsp:setProperty> constructs. The JSP translation process, which takes place prior to compilation and
execution, converts these constructs into Java code. For example:

is translated into:

Note the syntactic complexities associated with variable substitution in the JSP environment. To access a
JavaBean property, the <jsp:getProperty> tag must be included. (The alternative - using the <%=
object.variable %> syntax - is arguably worse.) In addition, despite the claims that these tags make JSP pages
XML-compliant, variable substitutions may force violations of XML formatting requirements. Take, for
example, the attempt in Figure 9.6 to use a JavaBean property to specify the src parameter for an tag.

369

http://java.io

Figure 9.4 Sample JSP page

Figure 9.5 The result of translating the JSP page in Figure 9.4 into servlet code

Figure 9.6 Using a JavaBean property with the < syntax

The text in bold is a <jsp:getProperty> tag embedded within an HTML tag. Not only is this difficult
to read, it violates XML formatting constraints (tags cannot be embedded within one another). A more
friendly notation for parameter substitution is desirable, especially if JSPs are intended for manipulation by
page designers.

Nested Angle Brackets

The syntactic ugliness associated with variable substitution is not limited to the JSP
mechanism. It is present wherever < and > are used as parameter substitution delimiters. It even

370

manifests itself in the more recent Ruby on Rails’ erb template notation, as we see in Section
9.2.14.

The evolution of the JSP mechanism did not end here. JSP 2.0 added a number of new features, including
an expression language for accessing scoped variables within the page and simplified mechanisms for building
user-defined tags. Additionally, Sun offered up JSP Model 2 (see Section 9.2.9), which is a set of guidelines for
making the JSP mechanism work better in an MVC context. To that end, Sun provided the Java Standard
Tag Library (see Section 9.2.10) to make JSPs more usable for developing streamlined view components.

371

9.2.9 JSP Model 2

JSP Model 2 (not to be confused with JSP 2.0) is Sun’s attempt to wrap the JSP mechanism within the MVC
paradigm. It is not so much a product offering (or even an API) as it is a set of guidelines, which go along
with Sun’s packaging of Java-based components and services under the umbrella of Java EE.

The general structure of a web application using the JSP Model 2 architecture is as follows:

1. User requests are directed to the controller servlet.
2. The controller servlet accesses and modifies the model, possibly delegating the processing to
helper classes.
3. The controller servlet (or the appropriate subordinate task) selects and passes control to the
appropriate JSP page responsible for presenting the view.
4. The view page is processed and returned to the requesting user.
5. The user interacts with the controller servlet (via the view) to enter and modify data, traverse
through results, etc.

Data access and application logic should be contained within the controller servlet and its helper classes.
The controller servlet (or the helper class) should select the appropriate JSP page and transfer control to that
page object based on the request parameters and session information, which commonly includes user identity.
Based on user identity, the controller servlet can retrieve user preferences, select JSP pages, and let selected
pages personalize the response. Another common dynamic customization pattern is to use the referring URL
to perform content co-branding. By examining the request, it is also possible to identify the browser, infer the
type of the device making the request, and choose between different formatting options (HTML, XHTML
MP, VoiceXML, etc.).

In addition to the guidelines associated with JSP Model 2, Sun provided a set of blueprints for building
applications using the MVC paradigm. These blueprints were eventually renamed the Core J2EE Patterns.
They are too numerous and complex to examine in detail here, but some of the more important patterns are
described below:

• Front Controller is a module (often a servlet) acting as the central entry point into a web
application, responsible for managing request processing, performing authentication and
authorization services, and selecting the appropriate view.
• Service-to-Worker and Dispatcher Views are strategies for MVC applications where the front
controller module defers processing to a dispatcher. The dispatcher can be part of the front
controller, but normally it is a separate task, selected by the controller module based on the request
context. In the Dispatcher View pattern, the dispatcher performs static processing to select the
presentation view. In the Service-to-Worker pattern, the dispatcher’s processing is more dynamic,
translating logical task names into concrete module references, and allowing these modules to
perform complex processing that determines the presentation view.
• Intercepting Filter allows for pluggable filters to be inserted into the “request pipeline” to perform
pre- and post-processing of incoming requests and outgoing responses. These filters can perform

372

common services required for all or most application tasks, including authentication and logging.
• Value List Handler is a mechanism for caching results from database queries, presenting discrete
subsets of those results, and providing iterative traversal through the sequence of subsets.
• Data Access Object (DAO) is a centralized mechanism for abstracting and encapsulating access to
complex data sources, including relational databases, LDAP directories, and CORBA business
services. The DAO acts as an adapter, allowing the external interface to remain constant even when
the structure of the underlying data source changes.

The structures and guidelines defined by JSP Model 2 form the foundation for a number of advanced
frameworks (including Struts, which we cover in Section 9.2.11).

373

9.2.10 Java Standard Tag Library

Sun continued to provide enhancements to JSP as a development platform, including the ability to create your
own JSP tags. The result was a proliferation of specialized custom tags written locally by development teams,
which only caused more confusion. Sun provided neither standards nor guidance for organizing and
structuring custom tags.

Finally, Sun came out with a specification for a Java Standard Tag Library (JSTL). It specifies the standard
set of tags for iteration, conditional processing, database access, and many other formatting functions.
Originally provided as an optional adjunct to JSP, JSTL and its associated expression language, was
incorporated into the JSP specification with the advent of JSP 2.0.

JSTL tags fit into several categories:

• The core tags provide the standard functionality you would expect from a template approach:
inclusion, iteration, and conditional processing.
• The XML tags provide similar functionality within the XML context, as well as XPath-like
traversal of XML documents.
• The SQL tags offer the means to define a data source, submit a query, and iterate through the
results.
• The formatting tags include internationalization and localization functions, as well as the means to
format dates and numbers.

Figure 9.7 illustrates the use of JSTL tags to execute a database query and present the results of that query
as an HTML table. The SQL tags (<sql:setDataSource> and <sql:query>) establish a database connection,
return the results of a query, and assign them to a variable. The core tag <c:forEach> iterates through the
query results, presenting each returned row as a row in an HTML table (<tr>), with the table cells (<td>)
representing the values in each column. (Note the similarities with the Cold Fusion example in Figure 9.2.)

Parameter substitution comes from the expression language (often called EL) associated with JSTL, which
provides access to variables defined (presumably by a controller servlet) in page, request, session, and
application scopes. The notation for variables is Unix-like: ${scopeName.variableName}. The dotted notation
can be extended further where variables represent complex Java objects, including arrays, collections, and maps
(e.g., ${session.myObject.myMemberVariable}). Originally, the expression language worked only within
JSTL tags. With the advent of JSP 2.0, EL expressions are now valid anywhere in a page, not just inside of
JSTL tags. Additionally, there are EL functions that support working with strings (substring, matching,
replacement, upper and lower case).

374

Figure 9.7 A JSP page using JSTL

When you hear developers express distaste for the JSP mechanism, they are more than likely referring to
the tendency of JSPs to become bloated with embedded Java code (scriptlets) so complicated that the page
becomes impossible to maintain. This is often an outgrowth of the “monolithic JSP” anti-pattern. Cluttered,
scriptlet-ridden JSP pages are symptomatic of a failure to abide by the MVC paradigm. Controller logic and
presentation formatting end up being intermingled, with predictably unmanageable results.

JSTL made it possible to write JSP pages without embedded Java code, removing much of the ugliness
associated with early JSP implementations. It provides a viable view technology for the JSP Model 2 strategy,
especially with an MVC framework, such as Struts. Although JSTL has the capacity to stand on its own as a
complete web application solution using the SQL tags for database access, those tags are a violation of the
MVC paradigm, in that they provide a service that belongs in the controller component, not in the view.
JSTL is best employed as a pure view technology within the context of an MVC framework.

375

376

9.2.11 Struts

The Struts framework provides a robust infrastructure for JSP Model 2 application development. Developed
within the open source Apache Jakarta project, it makes use of the Model - View - Controller, Front Controller ,
and Service-to-Worker patterns to provide a true framework for web application development.

A Struts application consists of the following components:

• Controller: The org.apache.struts.action.ActionServlet class that comes with Struts is flexible
enough for most applications, though it is possible to extend this class if required. This servlet class
represents the entry point for user requests.
• Dispatcher: The org.apache.struts.action.RequestProcessor class that comes with Struts is flexible
enough for most applications, though it is possible to extend this class if required.
• Request handlers (custom): These are application-specific classes, often called actions, that extend
the org.apache.struts.action.Action class and override its execute () method to perform the
processing required by the application.
• View helpers (custom): These are JavaBeans that extend the abstract org.apache.struts.
action.ActionForm class. They mediate between the model and the view, providing getter and setter
methods for form fields and implementing custom validation if desired.
• Views (custom): The Struts framework is platform-neutral with regard to views: they can be JSPs
or Velocity templates, or can use any other mechanism that can access the servlet runtime context.

The main attraction of the Struts framework is that developers can make use of configurable application
components (e.g., the controller servlet) that come with the Struts distribution, instead of having to
implement these components themselves.

The whole application comes together through the XML configuration file, struts-config.xml, which is
located in the application’s WEB-INF directory. The application in Figure 9.8, deals with processing form
submissions.

Figure 9.8 Sample struts-config.xml file

377

http://struts-config.xml
http://struts-config.xml

The <action-mappings> section tells the dispatcher (RequestProcessor) which request handler (extending
the Action class) should process an incoming request, based on the path portion of the request URL. The
<action> element maps the action’s “logical name” (the /myapp/login URL) to the name of the Java class
implementing the request handler and establishes the scope of the action (the current request). The <action>
element references the JavaBean associated with the form by its logical name, which is specified in the <form-
bean> element.

In addition, <forward> elements (nested within <action> elements) map names (e.g., success and failure) to
URL paths associated with views or other actions. The execute () method of the Action class returns an
ActionForward object. The name associated with the returned ActionForward object determines what the
application does next.

Notice that there is no need to implement a new Java class for every action. It is possible to define just a few
generic request handlers and control their behavior through the <action> configuration. Decisions about the
generality of application-specific action classes, form beans, and other components are part of the application
design.

Using a small set of extensible, reusable components, along with a well-organized structure tying those
components together, Struts provides a viable platform for serious web application development. Add to this
the Struts JSP taglibs that make it easier to format pages that make use of ActionForm beans, and you have a
powerful framework. And, to top it all off, it is open source.

Still, this is not the be-all-and-end-all of web application frameworks. Struts has already been rewritten as
Struts 2, and there is a newer framework that supports Sun’s next-generation vision for presentation
technology: Java Server Faces.

378

9.2.12 Java Server Faces

Although Microsoft’s .NET framework received mixed reviews regarding its viability as a scalable web
framework, there was one aspect of it that was universally appreciated - its UI components. Just as JSP was
Sun’s response to Microsoft’s ASP, Java Server Faces (JSF) is Sun’s response to .NET’s UI functionality.

While JSTL provides a low-level approach to page layout, offering fine-grained controls for conditional
processing and iteration over database query results, JSF provides a higher-level approach through coarser
visual components. For example, in JSTL one might do what was demonstrated in Figure 9.7: use the JSTL
<c:forEach> tag to iterate through rows retrieved from a database, presenting each one as a row in an HTML
table (<tr>) with individual column values presented using the JSP Expression Language as HTML table cells
(<td>). In JSF, the same result is achieved with the <h:dataTable> tag, which abstracts the notion of an
HTML table populated by database query results:

The Faces servlet translates these directives into HTML - or into some other target markup format. The
idea is that the same directives could, if desired, support multiple presentation formats. This is where JSF is
supposed to shine: JSF components abstract away the underlying HTML constructs, and can be used to
render formats other than HTML. In practice, this capability is rarely employed. Unfortunately, there are few
alternative JSF renderkits for non-HTML presentation and few applications seem to make use of this
functionality.

Although JSF can make UI design less tedious, it has a number of disadvantages compared to more
established approaches, such as Struts and JSP/JSTL:

379

• JSF pages are rendered by a separately configured Faces servlet, not by the JSP processor that
comes with Java EE application servers. Although it is possible for JSP pages (with JSTL) to co-
exist with JSF, this is difficult to achieve and even more difficult to manage.
• The JSF expression language is quite different from JSP EL. For one thing, it uses a different set
of delimiters in its variable notation (#variableName rather than $variableName). JSF was originally
developed in parallel with the JSTL EL, before either technology had been widely accepted and
integrated into Java EE server standards. There was a perceived need for a distinctly different
notation, which has compounded confusion and slowed the acceptance of JSF.
• While JSTL tags provide fine-grained control at the level of iteration, inclusion, and conditional
processing, JSF components offer higher level functionality (e.g., a data grid or a login form). High-
level components may accelerate initial development, but customizing them to fit the needs of a
particular application (particularly when it comes to “look-and-feel” details) is difficult. This same
problem has historically plagued Microsoft offerings - the “simple” things are very easy and can be
done quickly, but customizing the look-and-feel or the underlying behaviors of the components is
never easy and is often impossible without extensive recoding. Remember, this is what you were
trying to avoid in the first place by using high-level components!
• The Struts framework already provides many advanced application services including validation.
(This is becoming less of a disadvantage over time as JSF implementations are augmented to
provide these services.)

The most common complaint about JSF is its complexity. Even though a component-based approach
ought to be simpler than other approaches, there is a much higher learning curve associated with designing
and developing JSF applications. The inconsistencies and collisions between JSP/JSTL and JSF notations and
conventions do not help matters. Developers see Struts and JSF as an “either - or” decision, not as a set of
complementary technologies whose capabilities can be cherry-picked to use the best of both.

Development on JSF began as JSTL and JSP 2.0 were just beginning to gain traction in the application
development community. It went its own way rather than piggybacking on established approaches and, as a
result, it remains incompatible. JSF provides its own controller servlet (FacesServlet) with its own XML
configuration file (faces-config.xml) that mirrors the functionality of the Struts ActionServlet and the struts-
config.xml file. It replicates the functionality of the struts-html JSP tags that work as an adjunct to JSTL tags
in Struts/JSTL applications. Many developers see this as reinventing a wheel that already rolls quite well.

JSF advocates often compare JSF components not to JSP 2.0/JSTL but to the much older Struts tag
libraries which have been supplanted by JSTL. While JSF compares favorably with those older tags, JSP 2.0
with EL and JSTL has evolved and matured, and a comparison between JSF and JSP 2.0 does not come out
quite as well.

Perhaps the creators of JSF thought that justifiable disgust with early JSP specifications and
implementations would lead developers to seek an escape to a different technology. However, the JSP
mechanism is not going away and in its current incarnation it is still a viable and flexible presentation
approach.

In the meantime, JSF continues to evolve. The latest specification, JSF 1.2, employs a Unified Expression

380

http://faces-config.xml
http://struts-config.xml

Language (UEL) that converges at last with the JSP/JSTL expression language. A number of third-party UI
component packages are available, both open source and commercial, including several that incorporate AJAX
and DHTML functionality (e.g., Ajax4Jsf and ICEFaces). Facelets provides an alternative view handler for JSF
that builds views from XHTML documents instead of JSPs. At the same time, new JSF-enabled frameworks
such as JBoss Seam are beginning to garner interest among developers.

381

9.2.13 JBoss Seam

JBoss Seam is a relatively new framework that is gaining a bit of traction in the developer community.
Developers who are interested in making use of JSF but have been scared off by its complexity and newness
are looking at Seam as a way to write applications that connect JSF with EJB 3.0.

EJB Revival?

We have not touched on Enterprise Java Beans (EJB) in this book. While EJB has always been
a strategic aspect of the Java EE architecture, it gained a reputation over the years as being
inordinately complex and overkill for most applications. A number of evangelists for simpler
approaches to application development (including Bruce Tate and Rod Johnson) have
eschewed EJB entirely, suggesting that the vast majority of projects do not require EJB’s
features. Our discussion of application development approaches concurs with that notion, and
focuses on approaches that do not rely on EJB.

However, EJB 3.0 is a milestone in that it simplified many of the complexities long
associated with EJB technology. Taking a page from “simpler-is-better” frameworks, such as
Spring and Hibernate, EJB 3.0 employs a simplified persistence model that focuses on Plain
Old Java Objects (POJOs) as its persistent entities, rather than on the more complex objects
required by earlier versions of EJB.

Seam is still the new kid on the block. Its biggest hurdle in gaining mass acceptance may be its origins. It
was developed by JBoss, a company known for its open-source Java EE container. In the minds of many
developers, there is a concern that Seam has been optimized to work with the JBoss application server and
that it may be tricky to get it work with other Java EE servers. JBoss has stated a commitment to keep Seam
container-agnostic, but the concern is still there.

Even though both JSF and EJB 3.0 are still relatively new technologies, Seam is a framework to keep an eye
on. As JSF and EJB 3.0 gain traction, Seam may become the framework of choice to make use of those
technologies. Seam 2.0 attempts to extend Seam’s reach by removing its dependencies on specific front-end
and back-end technologies, namely JSF and EJB 3.0, and integrating support for AJAX, Hibernate, Groovy,
and Facelets.

382

9.2.14 Rapid application development: Ruby on Rails

“With flexibility comes complexity.” While not universally valid, this axiom generally holds true for software
development and for web application development in particular. Perhaps the most obvious example of this is
Java EE - arguably the leading platform for scalable web-based enterprise applications. The Servlet API,
coupled with Java Server Pages, JSTL and now JSF, provide a foundation for the web tier. The Java core
libraries and extensions (including JNDI, EJB, and JavaMail) provide a solid base of functionality in other
areas.

However, this range of functionality comes at a price:

• The learning curve for Java EE developers is very steep.
• The range of options for application frameworks - Struts, Spring, Hibernate, Velocity, JSTL, JSF,
and so on - is mind-boggling, and daunting even to experienced developers.
• The number of separate components that need to be developed for a complete web application can
also be quite daunting.
• The mechanisms for creating, configuring, and deploying applications are tedious.
• Sun provides specifications (and sometimes reference implementations) for the Java EE APIs, but
production-worthy implementations of these APIs are left to commercial and open-source software
providers. Despite standardization, each comes with its own set of idiosyncrasies that hinder
development of interoperable applications.

All of the above factors limit the speed at which web applications based on Java EE can be developed and
deployed, making them less attractive for businesses.

These issues caused some measure of disenchantment with Java EE in the web application development
community at large. Bruce Tate (see Section 9.5) wrote an award-winning book called Better, Faster, Lighter
Java, in which he extolled the virtues of lighter-weight non-EJB approaches such as Spring and Hibernate. At
some point, his bitterness about Java became so extreme that he proclaimed the inevitable imminent death of
Java in another book, Beyond Java. He notes that rather than moving in the direction of eliminating Java EE
complexity, Java is guilty of “adding new features rapidly instead of simplifying what’s already out there.”

As a successor to Java, Tate points to Ruby on Rails as a web application framework for the future. It is
often referred to as just Rails, since Ruby is simply the name of the programming language used in the Rails
framework. It is a true open-source, full-stack MVC framework for developing and deploying web
applications.

Ruby on Rails was developed by David Heinemeier Hansson, a Danish developer, in 2004. He saw reusable
functionality in an existing web application written in Ruby, including template processing functionality and
the abstraction of database access. He combined those common facets into what grew into a fully fledged web
application framework. The initial beta version was released in July 2004 and the 1.0 version was made
available by the end of 2005.

Rails has sophisticated template-processing functionality, providing support for template objects in HTML
(.rhtml), XML (.rxml), and JavaScript (.rjs). (Note: In Rails 2.0, one of many major changes was that the

383

suffixes were changed to .html.erb, .xml.erb, and .js.rjs.) It also has its own built-in, transaction-safe, object-
relational mapping (ORM) service based on the Active Record paradigm advocated by Fowler (2002). Fowler
describes this paradigm as “an object that wraps a row in a database table or view, encapsulates the database
access, and adds domain logic on that data.”

One area where Rails definitely comes out ahead of other frameworks is in its usage of “convention over
configuration.” If standard conventions are adhered to when designing and developing an application, very
little configuration information needs to be constructed manually. What’s more, this practice is encouraged by
development tools that automatically generate application skeletons that conform to these conventions. This
includes directory structures for application source files separated into discrete categories: models, views,
controllers, and helpers. (Not too surprisingly, the first three of these categories just happen to conform to the
name of an architectural paradigm we’ve been advocating for most of this chapter.)

Ruby on Rails shines when it comes to rapid application development and deployment. A basic Rails
application that follows standard application development conventions is self-generating (at least the
application skeleton), self-configuring, self-testing, and (with an additional package) self-deploying. Rails
makes extensive use of scaffolding to automate the process of building a database-driven application skeleton
with full Create-Read-Update-Delete (CRUD) functionality. It also offers tight integration with DHTML
and AJAX toolkits, such as Prototype.

This is not to say that Ruby on Rails is the be-all-and-end-all of web application frameworks. It still falls
short in a number of areas:

• IDE and debugging support: As we mentioned earlier, advanced IDE support for code written in
loosely typed languages, such as Ruby, is difficult. Debugging support is on the weak side when
compared to other established frameworks, but Ruby does provide a sophisticated command-line
Read-Eval-Print Loop (REPL) tool called irb that facilitates interactive debugging.
• Scalability: A Rails application can be deployed locally on a developer desktop with incredible
ease, but that only works in a limited single-user environment. Deploying that application to a
production environment is another story. Rails has tried to piggyback on FastCGI to enable Rails
applications to work with web servers like Apache, but with mixed success. Mongrel is a standalone
HTTP server, written in Ruby, that is used by many Rails installations to achieve durability and
scalability for Rails applications in a production environment. Apache can be configured to use
Mongrel as a proxy for requests targeting Rails applications.
• Parameter substitution notation in templates: This is a lesson that ought to have been learned and
relearned by now, but the problem keeps coming back even in newer frameworks. Basic template
processing in Rails makes use of a notation that uses < and > as delimiters. Specifically, the embedded
Ruby syntax calls for blocks that begin with <%= and end with %>. This is a throwback to the
notations associated with PHP, ASP, and the original version of JSP, reviving the problems
associated with those older notations.

384

Figure 9.9 Parameter substitution using embedded Ruby syntax

The example in Figure 9.9 harks back to Figure 9.6, which shows a similar problem with embedded Java in
JSPs. Java EE learned this lesson and the JSP EL uses ${ and } as delimiters.

It is a good bet that Ruby on Rails will outgrow these issues, but a new framework only gets one shot at
Version 1.0; in subsequent releases, backward compatibility becomes an overwhelming concern. Still, Ruby on
Rails is the up-and-coming web application framework. Apple recently started including Ruby on Rails as part
of the Mac OS X Server 10.5 (Leopard) operating system.

Will the ascent of Rails lead to the oft-predicted death of Java? Maybe, but Java isn’t going down without a
fight. Following in the footsteps of Ruby on Rails, new approaches, such as Grails (which uses Java’s Groovy
scripting language), attempt to eschew the clumsy configuration mechanisms and complex interactions
commonly associated with Java EE application development. Only time will tell whether Rails will mature to
become a true enterprise framework, and whether alternatives, such as Groovy on Grails, will successfully
challenge Ruby on Rails for the crown.

385

9.3 Summary

We have only touched on the most popular approaches and frameworks used in web application development.
We have omitted discussion of approaches that are only of historical significance. We have not covered
marginally popular frameworks that use XML as the foundation for their data models (e.g., Cocoon) or that
use XSLT as the engine to transform data into appropriate presentation formats (e.g., XHTML, XHTML
MP, SMIL, and VoiceXML).

Today, the best approach to building a durable, flexible, and extensible web application is to make use of
the MVC paradigm, coupling a controller-driven framework with template-based views. The most viable
approach that satisfies these requirements is the Struts framework, using JSTL as the view technology. In
Chapter 10, we design a simple real-estate broker application using Struts and JSTL. In Chapter 11, we build
the same application using Ruby on Rails so that we can compare the benefits and drawbacks of the two
approaches.

Before we move on, let us spend some time on a side-by-side comparison of the web application
development approaches (see Table 9.1). Even though we strive toward the MVC architecture, no existing
framework (including Struts and Ruby on Rails) achieves all of its goals. In practice, we do not always get to
choose the best platform for application development. With this in mind, it behooves us to summarize the
capabilities - and limitations - of the most popular web application development approaches.

Table 9.1 Comparison of Web Application Development Approaches

386

387

388

389

QUESTIONS AND EXERCISES

1. What is the difference between a programmatic approach and a template
approach? Provide examples. Can we apply this classification to the MVC paradigm?
Explain.
2. Give examples of a hybrid approach. Explain why they are described as “hybrid.”
3. What are the advantages of the Model-View-Controller paradigm for web
application development?
4. The Model-View-Controller paradigm provides separation of content from
presentation, which means that the same model can be associated with many

390

different views. Give reasons why applications might require multiple views.
5. What are the main advantages of the Struts framework? Describe the main
components of a Struts application and their operation.
6. Where do XML and XSLT fit in with respect to the available approaches and
frameworks?
7. What was the approach that you used last? Were you satisfied with it? Describe
your main concerns with regard to this approach. Can you recommend
improvements?
8. What are the tradeoffs between simplicity (ease of development and deployment,
learning curve, etc.) and flexibility (scalability, customizability, and functionality) in
considering application development approaches? What is gained or lost in striving
to achieve maximum flexibility? When does an approach achieve maximum
simplicity? Describe a middle-ground approach that is both simple and flexible.

391

9.4 Bibliography

Bayern, Shawn, 2002. JSTL in Action. Greenwich (CT): Manning Publications.

Bellinaso, Marco, 2006. ASP.NET 2.0 Website Programming: Problem - Design - Solution. Indianapolis (IN):
Wrox Press/Wiley Publishing.

Birznieks, Gunther, Guelich, Scott and Gundavaram, Shishir, 2000. CGI Programming with Perl. Sebastopol
(CA): O’Reilly & Associates.

Bosanac, Dejan, 2007. Scripting in Java: Languages, Frameworks, and Patterns. Boston (MA): Addison-
Wesley/Pearson Education.

Eide-Goodman, Heow and Lecky-Thompson Edward, et al., 2004. Professional PHP5 (Programmer to
Programmer) . Indianapolis (IN): Wrox Press/Wiley Publishing.

Fowler, Martin, 2002. Patterns of Enterprise Application Architecture. New York: Addison-Wesley.

Gantz, Shlomy and Camden, Raymond et al., 2003. Cold Fusion MX Developer’s Handbook. Alameda (CA):
Sybex.

Geary, David and Horstmann, Cay, 2007. Core Java Server Faces, 2nd Edition. Santa Clara (CA): Sun
Microsystems Press/Prentice-Hall.

Hall, Marty and Brown, Larry, 2003. Core Servlets and Java Server Pages, Volume I: Core Technologies, 2nd
Edition. Santa Clara (CA): Sun Microsystems Press/Prentice-Hall.

Halloway, Stuart and Gehtland, Justin, 2007. Rails for Java Developers. Raleigh (NC): Pragmatic Bookshelf.

Holmes, James, 2006. Struts: The Complete Reference, 2nd Edition. Emeryville (CA): Osborne.

Hunter, Jason and Crawford, William, 2001. Java Servlet Programming, 2nd Edition. Sebastopol (CA):
O’Reilly & Associates.

Johnson, Rod with Juergen Hoeller, 2004. Expert One-on-One: J2EE Development Without EJB. Indianapolis
(IN): Wrox Press/Wiley Publishing.

Kurniawan, Budi, 2005. Struts Design and Programming: A Tutorial. Vancouver (BC): Brainy Software.

Tate, Bruce, 2002. Bitter Java. Greenwich (CT)Manning Publications.

Tate, Bruce, 2005. Beyond Java. Sebastopol (CA): O’Reilly Media.

Thomas, Dave, 2004. Programming Ruby: The Pragmatic Programmer’s Guide, 2nd Edition. Raleigh (NC):
Pragmatic Bookshelf.

392

Yuan, Michael Juntao, Orshalick, Jacob and Heute, Thomas, 2008. Seam Framework: Experience the Evolution
of Java EE, 2nd Edition. Upper Saddle River (NJ): Prentice-Hall/Pearson Education.

393

CHAPTER 10

Web Application Primer 1: Struts and JSTL

IN THIS CHAPTER

• Case Study: Virtual Realty Listing Service (VRLS)
• Application requirements
• Technology choices
• Overview of Struts
• Structure of the VRLS application
• Design decisions
• Enhancements

OBJECTIVES

• Review the notion of a web application.
• Use the VRLS case study to discuss the requirements gathering and application
design processes.
• Provide an overview of the Struts framework and examine the inner workings of a
Struts application in the context of VRLS.
• Explain the reasons behind application design decisions.
• Propose enhancements to the VRLS application.

As we mentioned in Chapter 1, web applications are client - server applications that use a browser as their
client program. However, web applications are not limited to the interactions between browsers and servers.
Server-side application components can operate as “clients”, interacting with back-end data sources such as
databases, web services, and legacy systems. In multi-tier web applications, every set of adjacent tiers
represents a pairing of a client and a server, and every intermediate tier may act as either a client or a server,
depending on which of its neighbors it is interacting with. For example, just as the browser connects to the
web server to make a request, the application component executing on the web server may connect to a
business logic layer, acting as a client for that layer’s services.

394

In the last few chapters, we have covered both client-side techniques and server-side frameworks that
enable us to construct sophisticated web applications. In this chapter, we offer a primer for using this
knowledge, by designing, developing, and deploying a sample web application that we call Virtual Realty
Listing Services.

On the book’s companion web site (www.webappbuilders.com), we offer this sample application for non-
commercial tutorial purposes, in a package that includes source code, database schema, and configuration
instructions. To get the most out of this chapter, we recommend that you install the application first, before
working through the text. This will give you a better perspective on the look and feel of the application and its
workflow. We also recommend that you refer to the source code and associated configuration files while
reading this chapter.

395

http://www.webappbuilders.com

10.1 Case Study: Virtual Realty Listing Services

Virtual Realty Listing Services (VRLS) is a fictitious on-line, real-estate company that supports multiple listing
services, a cooperative venture that is common in the real-estate industry. Many bricks-and-mortar, real-estate
brokers share listings for properties they want to sell or lease, in an attempt to attract customers who want to
buy or rent these properties. If a customer goes to one broker and buys or rents a property associated with
another, the two brokers split the commission. This way, there is a greater chance for all brokers to sell or rent
their properties.

An on-line version of this service would link the web sites of several real-estate brokerages to an aggregated
database of shared property listings. Customers locate the VRLS application through links from their real-
estate broker, on-line search, print advertisements, or word-of-mouth. Through this application, they can
access property listings from many different brokers. They can browse the available listings freely but need to
register in order to see details about particular properties. When customers register, they remain associated
with the broker whose site referred them to the VRLS registration page. The referring brokers are called
affiliates or partners.

In the scenario in Figure 10.1, Jane starts her house search by visiting the Why-Kurt realty web site. While
browsing through that site, she comes across a link to the VRLS application and follows it. Upon her initial
arrival at the site hosting the VRLS application, her affiliation is identified based on the referring site (found
in the HTTP request’s Referer header) and she is presented with the welcome page co-branded to the look
and feel of Why-Kurt. Jane uses the VRLS application to search for shared listings but does not follows links
to property details and remains an anonymous user. Consequently, her affiliation with Why-Kurt is preserved
only for the duration of the browser session.

Meanwhile, John visits the Decade23 web site and follows a link to the VRLS application from there. His
affiliation is recognized and he is presented with the welcome page co-branded to the look and feel of
Decade23. Just as Jane did, John searches for his dream house and finds a listing that looks interesting. He
attempts to retrieve detailed information about the listing, which results in an invitation to login or register in
order to proceed. When John registers, his temporary affiliation with the referring site Decade23 becomes
permanent and is stored in his profile. John receives an e-mail message with his assigned password and logs in.
From that point on, whenever he signs in, he is presented with pages co-branded to the look and feel of
Decade23.

396

Figure 10.1 Search and access scenario.

397

10.2 Application Requirements

Ideally, the prospective business customers of this proposed application would provide detailed requirements
from the start. Anyone who has worked on real-world projects knows that this rarely happens. More often,
application developers get a loosely defined set of objectives, which have yet to be detailed and clarified, to
serve as the foundation for building the application. Nonetheless, it is important to clarify and refine
requirements carefully and methodically.

With that in mind, let us assume that through a process of interviews with business users, use case
scenarios, and business process analyses, we have come up with the following simplified set of application
requirements:

1. There are four classes of user: customers, anonymous visitors, partners, and administrators.
2. There should be a mechanism for associating partner brokers with individual requests to the
VRLS application. This identification can be implicit (e.g., identifying the partner using the
referring URL) or explicit (e.g., identifying the partner via a query string parameter found in its
links to the VRLS site). When unregistered visitors arrive from a partner site, they see partner-
specific branding (e.g., a toolbar and company logo) that is applied across all pages served by the
VRLS application.
3. Mechanisms should exist for login by registered customers and for new customer signup.
4. When existing customers log in, they should see co-branded pages, according to their partner
affiliation. Partner identification for existing customers prior to login is on a “best-effort” basis. If it
is not possible to determine the partner, the application should present a default view.
5. Customers should be able to create a personal profile at registration time and modify it in the
future. Profile information should include a login name and password, name, address, phone
number, e-mail address, and the identity of the partner. Customers should not be able to modify
their system-assigned unique user ids, their login names, or their partner affiliation, but should be
able to modify all other profile parameters.
6. After signing up, customers should receive a confirmation notice via e-mail. Their profile should
not be “activated” until they visit the application again and confirm their receipt of the e-mail.
7. Customers should be able to search the available listings for properties that satisfy their search
criteria, which could include the type of property, number of bedrooms, etc. Search results should
include summary information about each listing that satisfies the search criteria.
8. Authenticated customers should be able to retrieve details about a particular property.
Anonymous visitors attempting to view property details should be redirected to the login page,
where they can follow a link to the signup page or identify themselves if they have already
registered.
9. The details page should contain images and additional information about the property, including
links for further inquiries.

So far, we have discussed requirements for the customer interface. However, an administrative interface for

398

maintaining the application and its underlying data is just as important as the interface exposed to the outside
world. This is something often forgotten in the course of establishing requirements and building applications.
The administrative interface is frequently added as an afterthought when the application is already in
production, once the client realizes that mechanisms are needed to update content without tedious manual
intervention by programmers or database administrators.

Let us provide a brief summary of administrative requirements for this application:

• Customer administration: select customer, reset customer password, change customer status
(active, suspended, etc.), remove customer;
• Partner administration: add new partner, specify custom markup (logos, background colors, etc.),
specify partner selection rules, remove partner;
• Listing administration: add a new listing, modify listing (change summary and detail information,
add or remove image), remove listing;
• Authentication and authorization: access to the administrative interface should be internal and
restricted to IP addresses within the company firewall.

399

10.3 Technology Choices

In this chapter, we aim to provide a practical demonstration of application design principles. To that end, we
want to employ an application development framework that represents state-of-the-art programming practices
and paradigms. We therefore implement the VRLS application using Struts, the popular open source Model -
View - Controller (MVC) application framework, and Sun’s Java Standard Tag Library (JSTL) for pages that
render the view components. This chapter is not a tutorial on Struts or JSTL. The focus is on applying the
principles of web application architecture that are the subject of this book. These principles are transferable to
other frameworks and approaches.

Struts is a stable MVC-based framework that is used successfully in different production environments on a
variety of server platforms. The action-mapping abstraction feature is one of Struts’ biggest selling points. Even
in the simplest Struts application, the use of action mapping makes it possible to keep the exposed URLs
unchanged even when the underlying pages (e.g., JSP templates) change or move. This remains true even
when switching to a different view component architecture (e.g., Velocity templates).

The Struts framework provides tag libraries that offer dynamic application functions (e.g., conditional and
iterative processing). In particular, the Struts HTML tag library (struts-html) provides a bridge between
HTML forms and Struts ActionForm classes. However, these tag libraries have been superseded by JSTL,
which makes JSP development more accessible to page designers. It is now an integrated component of Java
Platform, Enterprise Edition (Java EE), employing consistent tags and an “expression language” that is much
simpler than embedded Java scriptlets. While struts-html tags are not part of JSTL, the struts-html tag library
now supports the expression language used in core JSTL tags. We employ the struts-html tag library along
with JSTL in implementing our application.

We develop and deploy our application using Java SE 5 and J2EE 1.4 (a stable version of the Java EE
platform that includes Servlet API 2.4 and JSP 2.0). We use the Apache Tomcat 5.5 server, which supports
J2EE 1.4. Tomcat is a widely accepted application server that conforms to the Java EE specification.

Why Tomcat 5.5?

J2EE 1.4 was superseded by Java EE 5 in 2006. There are newer application servers that
support Java EE 5, including Apache Tomcat 6.0, and Sun’s own application server, which is
based on the open-source server GlassFish. We chose to use Tomcat 5.5 (thus sticking to J2EE
1.4) because it was the stable version of Tomcat when we developed our sample application.
The application also compiles, deploys, and executes properly in a Java EE 5 environment.

We use the MySQL relational database management system to support persistence. MySQL is a popular
open source database server. MySQL has evolved significantly and now supports referential integrity and
other advanced features. MySQL has a free “community version” of their database management system in
addition to its commercial product line. For our application, we used MySQL Community Server 5.0. Like
most other DBMSs, it has proprietary SQL extensions, which we chose to avoid.

Both our database schema and our persistence functionality employ the lowest common denominator of

400

RDBMS capabilities, which enables the application to function with an RDBMS that does not support
referential integrity (e.g., Hypersonic). Re-factoring the application to take advantage of advanced RDBMS
features would involve reworking parts of the schema to employ referential integrity and stored procedures,
which can greatly improve performance.

These choices ensure that our application is easily portable to other Java EE servers (e.g., WebLogic,
WebSphere, or JBoss) and other database management systems (e.g., Oracle, Sybase, or PostgresSQL). The
application is designed to run on any operating system that supports Java (e.g., Windows, Linux, or Mac OS
X).

401

10.4 Overview of Struts

Although it is not our intention to provide a tutorial on Struts, we review the main organizing principles of a
Struts application.

In an MVC application, incoming requests are directed to the Controller module, which serves as a “traffic
cop” that determines, based on the request context, which task should be performed next. These tasks are
mapped to application use cases. The components that perform these tasks may be part of the core Controller
module or distinct processing components in their own right. They include functions that access and
manipulate the Model, based on the current state and input parameters associated with the request. When the
selected task is complete, the Controller determines whether it is necessary to perform another task, or to
generate a response offering a specific presentation (the View) to the requestor. The presentation sent to the
user may provide links back to the Controller to perform additional tasks.

In a Struts application, MVC components are organized as follows:

• The Model comprises a set of JavaBeans. In complex applications, a separate business layer (e.g.,
EJBs) may communicate with back-end data sources to provide access to the Model. Strategies
utilizing the Data Access Object (DAO) design pattern are common for simpler applications.
• The View components are implemented as JSPs, although the Struts framework supports other
alternatives (e.g., Velocity templates). In addition, there are View Helper classes (subclasses of
org.apache.struts.action.ActionForm), which are implemented as JavaBeans used to support
interaction with HTML forms.
• The Controller is implemented by the ActionServlet class, which is provided with the Struts
distribution. A configuration file (struts-config.xml) contains action mappings that tell the
ActionServlet to direct requests to application-specific components, called Actions, that implement
individual processing tasks.

Each action mapping specifies a URL path (defined relative to the application context root) and a type,
which is the name of the Java class (a subclass of org.apache.struts.action.Action) to be executed when
requests directed at this URL path are processed by the ActionServlet.

Action mappings also specify a set of forward - symbolic names representing the set of possible processing
outcomes. Forward are mapped either to URL paths (defined relative to the application context root) or to
other Actions. Note that it is possible to define global forward that may be used for any Action.

When a request reaches the application, the Controller servlet examines its URL to select the appropriate
action mapping and determines which Action class should be executed. In the course of processing, the
Action class selects one of the defined forward by name. Consequently, it passes the context-relative URL to
the constructor of the ActionForward class and returns the resulting object. The Controller servlet then routes
processing to this URL, either by forwarding the request or by performing a redirect (depending on the value
of the optional redirect attribute in the action mapping).

A fragment of a sample struts-config.xml file is displayed in Figure 10.2. The <form-beans> block contains
the <form-bean> definitions, which associate ActionForm implementation classes with distinct names. The

402

<action-mappings> block contains the <action> definitions, which associate URL paths with a custom Action
class through the type parameter, and (optionally) with an ActionForm (a <form-bean>) through the name
parameter.

An <action> block can include multiple <forward> definitions, specifying options available to the Action
class for subsequent processing. Global names available across multiple actions are defined in the <global-
forward> block.

ActionForms can be defined in “request” or “session” scope. Request-scoped ActionForms exist for the
lifetime of a single request, while session-scoped ActionForms persist across multiple requests for the duration
of an HTTP session.

Notice that not every <action> definition references a <form-bean>. For example, the <action> with the
path of /authcheck does not refer to an ActionForm because it does not need one. Similarly, not every
<action> specifies a set of <forward> definitions: the <action> with the path of /home unconditionally forward
to a specific JSP.

Figure 10.3 provides an example of a custom Action class that extends org.apache.struts. action.Action. In
the example, we override the execute() method, defining it to log out authenticated users and to direct
anonymous users to the login page. The HTTP session is accessed by invoking request.getSession(). An
attribute named customer is obtained from the session by invoking session.getAttribute(“customer”). If the
value of this attribute is null (i.e., if it has not been set), the user is not logged in, and is directed to the login
page. If the attribute is set, the user is logged in, so the attribute is removed, and the user is directed to the
logout page. These alternative outcomes are implemented by passing either login or logout to the
mapping.findForward() method and returning the result of its execution.

403

Figure 10.2 Fragment of a struts-config.xml file.

The presence of an input attribute (as in the /profile action) tells the controller that it should route initial
requests to the view component specified by this attribute. This view component is responsible for the display
of an HTML form used for data entry. The form fields must be defined in the subclass of
org.apache.struts.action.ActionForm specified by the action’s name attribute.

The data entered by the user in the displayed form is validated if the action’s validate attribute is set to
“true” and if the custom ActionForm class has a validate() method containing application-specific logic for
verifying data entered by the user. This method returns an ActionErrors object, which is a collection of
ActionMessage objects representing errors encountered in the course of validation. Note that the validate()
method is not invoked when an ActionForm object is created. Since the HTML form is likely to be presented
initially with empty fields for the user to fill in, the validate() method would produce errors for empty fields
that are “required”.

Figure 10.3 Example of an Action class.

If the returned ActionErrors object is empty, the validation is considered successful. If it is not empty,
validation fails, indicating to the controller that it should redisplay the view component for corrections. Error
messages can be defined in a properties file. The name of this file is defined by the “application” parameter
associated with the Struts Controller servlet in the application’s web.xml file.

ActionForm classes allow for the inclusion of an optional reset() method that can be implemented to
provide initial values for the data entry form. This method would be invoked before the ActionForm’s
attributes are populated from the HTML form variables or database entries.

404

10.5 Structure of the VRLS Application

Our application follows the general structure of a Struts application:

• The Controller is a custom subclass of the Struts ActionServlet class, which performs additional
application-specific tasks, including partner identification.
• The View makes use of JSPs that do not embed Java code. Instead, they use JSTL tag libraries and
the version of the Struts HTML tag library that supports the JSTL Expression Language. The
pages that utilize form submission (e.g., login, profile, and search pages) are associated with
corresponding form beans (subclasses of ActionForm).
• The Model is a small set of JavaBeans persisted in a relational database. The bean classes
implement the CustomerProfile, Listing, and Partner interfaces.

In this section, we describe how our sample application is configured, and how the Controller, View, and
Model components are organized.

405

10.5.1 Configuration

Struts applications are organized and packaged like any other Java EE application. They contain a WEB-INF
directory that includes both executable code and configuration files. This directory includes a web.xml file,
which is the means of configuring the application within the server environment. Figure 10.4 shows how our
application is configured in the web.xml file. A custom servlet filter and its associated mappings are defined
first, followed by the definition for the Struts ActionServlet and its mappings. Other components of the
web.xml file not shown in Figure 10.4 include the “welcome file list”, which defines the hierarchy of pages
that the application should present if the context root is accessed, and the jsp-config block, which defines the
JSP tag libraries. The complete web.xml file is included with our source code distribution. The WEB-INF
directory in a Struts application also contains the struts-config.xml configuration file, which was discussed in
Section 10.4.

Figure 10.4 Fragment of the web.xml configuration file for the VRLS application.

We chose to use the URL format of /action/name for defining actions (as specified in the <url-pattern>
directive), so that the URL structure does not expose too much information about the underlying
implementation. There is no dependency on suffixes such as *.do or *. jsp. When next-generation controller
and view components (or even entirely new frameworks) come along, URLs such as
http://server/context/action/home will be more reusable than URLs such as http://server/context/home.do.

406

http://server/context/home.do

• Table 10.1 summarizes the contents of the struts-config.xml file (a fragment of which is in Figure
10.2). For each mapping, this table displays the URL specified in the <forward> element and the
URL of the target page for that element. The <forward> elements mostly specify URLs that point
to a single JSP page, /pages/main.jsp, with a query string parameter that provides the name of the
target page. For example, a path of /pages/main.jsp?name=home results in displaying
/pages/partnerName/home.jsp, where partnerName is the name of the active partner (which can be
found in a session attribute).

Since portions of the application are restricted to registered customers, we need a mechanism for
identifying and authenticating customers when they access the application. We use forms-based
authentication rather than HTTP authentication, because it provides more control and flexibility.
Applications can use custom HTML forms to collect user credentials, and persist them as necessary. In our
application, user credentials are stored in a relational database as part of the customer’s profile. For additional
security, the passwords are encrypted as one-way hashes.

Authentication Roles

There are alternative approaches that may make HTTP authentication more attractive for
some applications. In version 2.2 and later of the Java Servlet API, the web.xml file can contain
<security-constraint> elements. A <security-constraint> element may contain <web-resource-
collection> elements, each defining a resource as a basic unit of authentication, and an <auth-
constraint> element defining who has access to a resource. A <web-resource-collection>
element defines a resource by specifying its name and the URL patterns that are associated
with it. An <auth-constraint> element may contain any number of <role-name> elements
specifying which roles (e.g., enduser or administrator) should have access to the defined
resource.

The mechanism for specifying the roles and associating them with users is specific to the
application container. For example, Tomcat comes with built-in support for specifying user
names, passwords, and role membership via realms, which can be configured either in an XML
file (“tomcat-users.xml”) or in a relational database.

Since our application requirements necessitated the flexibility of forms-based authentication,
we did not pursue this option for implementing authentication. Additionally, we did not want
to introduce dependencies on a particular application container (i.e., Tomcat). This option is
worth considering if you have complex authorization requirements and you are already
committed to using a particular application container.

407

Table 10.1 Action Mapping Summary for the VRLS Application

408

10.5.2 Controller components

The org.jakarta.struts.action.ActionServlet class is responsible for the initial processing and routing of
requests. The process() method of this class locates the proper subclass of org.jakarta.struts.action.Action,
based on the mappings defined in the struts-config.xml file, and passes control to that Action’s execute()
method.

Figure 10.5 shows the class hierarchy of our custom Action classes, which are subclasses of our abstract
biz.vrls.struts.action.VrlsBaseAction class (see Figure 10.6), which extends org.apache.struts.action.Action.
This is considered good practice, because it allows you to put common code into one base Action class that
your other custom Action classes can extend. VrlsBaseAction overrides the Action class’s execute() method to
perform common processing functions and then invoke an abstract method, performAction(). It is this
method that must be overridden in our custom Action classes.

No Custom Controller This Time

In the original version of this application (developed for the first edition of this book), we
defined a custom ActionServlet class that extended the org.jakarta.struts.action.ActionServlet
class. We did this to ensure that certain session attributes were properly set every time an
Action was executed, without having to include redundant code to perform those functions in
every Action class.

Starting with the version 2.4 of the Servlet API, this is better accomplished by including a
custom Filter class that is configured to run before any Action code is executed. While the use
of a custom base Action class is still considered a good development strategy for a Struts
application, usage of a custom Controller class that extends
org.jakarta.struts.action.ActionServlet should be reserved for complex situations when a Filter
would not suffice.

Let us move on to a brief discussion of individual tasks and their action mappings, expanding the
information in Table 10.1. Remember that the classes are subclasses of biz.vrls.struts. action.VrlsBaseAction.

This is the entry page for the site, displaying a personalized welcome message. It also displays a navigation bar
(included on all application pages) that links to other important application functions.

The struts-config.xml file maps the /action/home URL to the home page (/pages/ main.jsp?name=home),
which ultimately embeds /pages/partnerName/home.jsp.

This page is invoked when the customer selects “log in” or “log out” from the navigation bar. If the customer
is already logged in, it returns the “logout” forward (/pages/main.jsp?name=logout), which is mapped to the

409

logout page (/pages/partnerName/logout.jsp). If the customer is not logged in, it returns the “login” forward
(/action/login) and performs the login action.

Figure 10.5 Action class hierarchy for the VRLS application.

Figure 10.6 Simplified code for VrlsBaseAction class.

The CustomerAuthCheckAction class is designed as a mediator between the login and logout actions. If
the customer is logged in, its performAction() method invalidates the session and returns the ActionForward
associated with the name logout, which is mapped to the page containing the logout notification. If the
customer is not logged in, the performAction() method returns the ActionForward associated with the name
login.

410

This page is invoked either by CustomerAuthCheckAction or by actions not supported for anonymous users.
For input (the failure forward, /pages/main.jsp?name=login), it displays the login page
(/pages/partnerName/login.jsp) where the user enters user id and password for authentication. It validates and
checks the credentials against the user database. On authentication failure, it redisplays the login page with
error messages.

Once the user is authenticated:

• It constructs a CustomerProfile object from data recorded in the user database.
• It maintains the CustomerProfile object until logout.
• It forward to the home page (when invoked by CustomerAuthCheckAction) or to the original
target (for actions not supported for anonymous users).

The CustomerLoginAction class uses the CustomerLoginForm form bean referenced on the login.jsp page
to support entering the user name and password. The input attribute of the action, which specifies the initial
data entry, is set to failure to treat the initial data entry the same way as a failed login (the only difference is
error messages, which are absent for the first try). The login page is presented when the action is first invoked
and again as long as the entered credentials do not match those of a registered user.

This action is performed when an anonymous user follows a link to /action/login or attempts to access a
restricted application function. In the second situation, the application creates a session attribute to store the
attempted URL. We define a method in the VrlsBaseAction class (called reroute()) that is invoked once the
authentication credentials match. If the session attribute containing the stored URL exists, the method
generates an HTTP response that redirects the user to the URL for the original restricted task. If the session
attribute for the stored URL does not exist, the user is redirected to the application’s home page.

This page is invoked when a customer selects “sign up” or “profile” from navigation bar. For input (the failure
forward, /pages/main.jsp?name=profile), it displays the profile page (/pages/partnerName/profile.jsp), which
allows unregistered visitors to sign up by entering a new customer profile into a blank form and allows
registered customers to modify their profile in a form pre-populated with the appropriate CustomerProfile
data.

The CustomerProfileAction class serves a dual purpose: to allow new users to enter profile information so
that they can become registered customers, and to allow registered customers to modify their profiles. The
profile page contains conditional logic that causes it to present itself differently for each of these situations.
The input attribute of the action is set to failure, which routes to the profile page when the action is first
invoked and repeats this routing until the entered information passes validation. At that point, the action’s
performAction() method returns the ActionForward associated with the name success (/pages/main.jsp?
name=profileConfirm), which results in a confirmation page (/pages/partnerName/profileConfirm.jsp).

411

This page is invoked when customers select “search” from the navigation bar. It provides a data entry form for
search criteria in the CustomerSearchAction class. The input attribute of the action is set to failure, which
routes to the search page (/pages/partnerName/search.jsp) when the action is first invoked.

• If no results are found, the action’s perform Action() method returns the ActionForward
associated with the name none (/pages/main. jsp?name=search), which redisplays the input page
(/pages/partnerName/search.jsp).
• If the query produces multiple results, the action’s performAction() method returns the
ActionForward associated with the name many, /action/results.
• If the query produces a single result, the action’s performAction() method returns the
ActionForward associated with the name one, it routes directly to /action/details, bypassing the
results page.

This page is displayed when customers follow a link from the results page (results.jsp), and also when a search
produces a single result. It displays details about a particular listing, identified by a request parameter.
Anonymous visitors may not go to the details page.

The CustomerSearchDetailsAction class is responsible for displaying details about a particular property
listing. It may be referenced explicitly or through the “search” action. The action’s performAction() method
returns the ActionForward associated with the name success (/pages/main.jsp?name=details) if the user is a
signed-in, registered customer and if the listingId parameter corresponds to a valid listing and loads
/pages/partnerName/ details.jsp. In the case of failure (/pages/main.jsp?name=error), it loads the error page
(/pages/partnerName/error.jsp).

If the user is not signed in, the action’s performAction() method returns the global ActionForward
associated with the name notauthorized (/action/login).

The ImageDisplayAction class ensures that protected images associated with real estate listings are displayed
only to authenticated users. Unregistered users should not be able to access an image URL, even if it was sent
to them by a registered user.

It is referenced in tags found in details.jsp to display images for a particular listing to registered
users. It displays an image containing an error message to anonymous users.

This is invoked when customers select “contact us” from the navigation bar or the listing details page. It
provides an input form for sending messages to realtors. Once the form is filled in, an e-mail is sent to the
partner’s e-mail contact address.

The CustomerContactAction class allows users to contact the broker to express interest in a particular

412

listing or to request further information about the broker. The input attribute of the action is set to failure
(/pages/main.jsp?name=contact), which routes to the contact page (/pages/partnerName/contact.jsp) when the
action is first invoked and redisplays the contact page on failed validation (e.g., if the e-mail address entered in
the form is improperly formatted).

If the user is an authenticated customer, the e-mail address field on the form is pre-populated from the
CustomerProfile. If the user was looking at details for a particular listing, the subject field is pre-populated
with a reference to the listing’s ID. Once a valid address has been submitted, the action’s performAction()
method sends an e-mail to the referring partner’s contact e-mail address and routes to the success forward
(/pages/main.jsp?name=emailConfirm) which displays a confirmation page
(/pages/partnerName/emailConfirm.jsp).

413

10.5.3 View components

The view components for our application are JSPs. JSPs interact with ActionForm objects, which are View
Helpers that manage data transfer between controller and view components. Figure 10.7 shows the class
hierarchy of our ActionForm classes.

Figure 10.7 ActionForm class hierarchy for the VRLS application.

We need to present a number of different pages throughout the application. The home page, search results
page, and listing details page are designed to display information, while the login, profile, search, and contact
pages are interactive forms.

We also need to present partner-specific versions of these pages, with each set of pages having the “look
and feel” of the partner’s own branded web site. Design alternatives for supporting partner-specific
presentations vary greatly. They range from the sharing of all page templates, to maintaining separate sets of
page templates for each partner. Sharing templates between partners limits the degree of customization to
style sheets (and possibly custom images such as corporate logos). We made the choice to maintain separate
sets of templates in order to achieve the greatest flexibility and to enable partners to create and upload their
own templates.

These pages have a lot in common: they reference the same JSP taglibs, display similar navigation bars, and
have the same general look and feel. Clearly, something needs to be done to reduce redundancy.

Our first step in this direction is to create an include.jsp file (Figure 10.8), which is included in all other
pages. This page defines tag libraries and initializes shared variables, which define commonly referenced

414

URLs and paths used for the navigation bar and other shared page components. In include.jsp, the variables
whose names begin with url_ are set to the URL paths of various application functions. The variable named
partner_images is set to the URL path to the directory containing partner-supplied images. For a partner
named XYZ, the resulting path would be /vrls/pages/xyz/images, where /vrls is the web application context
path stored in ${page-Context. request.contextPath}.

Figure 10.8 Shared include.jsp file.

To support co-branding, our original intent was to create a set of “root” pages, each of which would embed
its corresponding custom page from a partner-specific directory. The application determines which partner is
active when a user first arrives at the site. At that point, it places the appropriate Partner object in the session.
Incoming requests reference the attributes of the Partner object (e.g., name, code) to present content
appropriate for that partner. For example, /pages/home.jsp would embed
/pages/${sessionScope.partner.code}/home.jsp. Note that the initial partner selection may be revised and the
Partner object replaced on login.

However, as we discovered in the course of implementing this strategy, the only practical difference
between the root pages was the name of the custom page to be embedded. Consequently, we re-factored our
design to use one common root page, main.jsp (Figure 10.9), which determined the custom page that should
be embedded via the query string parameter, name. For example, a request to /pages/main.jsp?name=profile
would embed /pages/xyz/profile.jsp, assuming “xyz” was the code associated with the active partner.

Using JSTL’s <c:import> tag, main.jsp selects and embeds a partner-specific page based on session
information and request parameters, i.e., ${sessionScope.partner.code}/${param.name}. jsp. It also references
two CSS style sheets, one common and one partner-specific, found in the /css directory (/css/common.css and
/css/${sessionScope.partner.code}.css).

Every custom page should include a navigation bar, but apart from that, we leave it up to each partner to
design their page templates as they see fit. The navigation bar should include the following links:

• /action/home for the home page;
• /action/authcheck for the authorization action that routes to the login or logout page;
• /action/profile for the profile data entry action that routes to the profile page for new customer
profile entry and existing customer profile modification;

415

Figure 10.9 Shared main.jsp file.

• /action/search for the page containing the search form;
• /action/contact for the customer contact page.

It does not make sense for the action that displays search results, /action/results, to be included in the
navigation bar, since it should only be accessible through the search page. By convention, each page should
not include a link to itself in the navigation bar (which is one reason why a common include page or tag for
the navigation bar was not implemented).

The labels associated with links in the navigation bar are intended to be obvious: “home” for the home
page, “login” for the login page, “profile” for the profile page, etc. However, these labels should depend on the
visitor’s “state” - logged-in or logged-out. When dealing with an anonymous visitor (someone who has not
logged in), it is appropriate for the authentication link to have a label of “login” and the profile link to have
the label “sign up”. Conversely, for an authenticated customer (someone who has logged in), the
authentication link should have the label “logout” and the profile link should have the label “profile.”

Thus, the set of links in the navigation bar is static, but the set of labels is not. As you can see in Figure
10.8, the include.jsp page defines the set of links using the JSTL <c:url> tag as a set of session attributes. This
tag is intelligent enough to create a context-relative link, and to append appropriate parameters to support
URL rewriting when cookie support is not available from the browser.

The link labels are established in the VrlsServletFilter class. A custom object, an instance of the
biz.vrls.util.AppTextLabels class, is stored as a session attribute with the name navbar. This class implements
the java.util.Map interface and maintains two sets of label mappings: one for the logged-in state, and another
for the anonymous state. The labels are retrieved from the ApplicationResources. properties file, where built-
in Struts classes look for error message mappings and other localized application properties. Labels that are
supposed to have different values depending on the customer state are defined twice, once using a generic
name (e.g., app.navbar.profile) and again with the suffix .auth for authenticated customers (e.g.,
app.navbar.profile.auth), as shown in Figure 10.10.

416

Figure 10.10 Label definitions for the navigation bar.

From these specifications, the AppTextLabels class builds and maintains two Maps, one for the
authenticated state and one for the anonymous state. The isLoggedIn() method in the
biz.vrls.utils.SessionUtils class is invoked to determine which set of label mappings should be displayed.

Now we are ready to move on to the discussion of default templates provided as part of the application.

This acts as a welcome page, personalized to display the customer name. It contains the navigation bar to link
to other important application functions. This simple page displays static information and does not contain a
form for interactive data entry.

This is a simple form for authenticating users by user name and password. It contains the navigation bar to
link to other important application functions.

The struts-config.xml file associates the CustomerLoginForm class with the /login action, which uses the
login.jsp page for input. A fragment of the page’s code is shown in Figure 10.11.

The CustomerLoginForm bean does not directly correspond to a model component, but refers indirectly to
the CustomerProfile object. The CustomerLoginForm’s validate() method is invoked on form submission.
The page is redisplayed on validation failure. Validation error messages, if any, are displayed through the
<html:errors/> tag.

Note that in our sample application, we send these credentials “in the clear” (over a non-secure connection).
We do this to simplify the installation procedure for the demonstration application. In a real-world
application, the login action should always operate over a secure connection, especially if sensitive personal
information is included in the transmission.

The structure of this page is similar to login.jsp and CustomerLoginForm. It is used to enter personal
information as part of user registration and for modifying existing customer profiles. It contains a navigation
bar to link to other important application functions.

417

Figure 10.11 Template fragment for login.jsp

The CustomerProfileForm does directly correspond to the CustomerProfile object, but does not include
direct getters and setters for its attributes.

The struts-config.xml file associates the CustomerProfileForm class with the /profile action, which uses the
profile.jsp page for input. Remember that the label text associated with the link to this action depends on
whether or not the visitor is signed in.

The structure of this page is similar to home.jsp. It is displayed upon success of the /profile action and
confirms successful entry of personal information. It contains a navigation bar to link to other important
application functions. This page is displayed after successful entry or update of a user’s profile.

The structure of this page is similar to login.jsp and CustomerLoginForm. It is used to enter search criteria
for the property listings database. It contains a navigation bar to link to other important application functions.

The struts-config.xml file associates the CustomerSearchForm class with the /search action, which uses the
search.jsp page for input.

This page is designed to display search results by iterating over a List of biz.vrls.listing. Listing objects, which
are placed in the session as the result of the /search action (implemented by CustomerSearchAction). It
contains a navigation bar to link to other important application functions.

418

The results displayed are based on the search criteria entered on the search.jsp page. Each displayed listing
provides a link to the /details action, which is implemented by SearchDetailsAction, for individual results.

This page is designed to display details about individual properties. It contains a navigation bar to link to
other important application functions.

It queries an instance of biz.vrls.listing.Listing placed in the session by the SearchDetailsAction class to
display attributes of a particular property. It can only be seen by authenticated users.

This page is designed as a mechanism for customers to contact brokers with general questions or queries about
specific listings. The structure is similar to that of profile.jsp, CustomerProfileForm, and profileConfirm.jsp.
It contains a navigation bar to link to other important application functions.

The e-mail address is pre-populated for authenticated users. Anonymous visitors can enter their e-mail
address manually. If reached from a link on the listing details page, the subject is pre-populated with a specific
listing ID. emailConfirm.jsp serves as a confirmation page analogous to profile-Confirm. jsp.

The struts-config.xml file associates the CustomerContactForm class with the /contact action, which uses
the contact.jsp page for input. The CustomerContactForm bean does not directly correspond to a model
component.

419

10.5.4 Model components

The hierarchy of our model classes is shown in Figure 10.12. It includes JavaBean classes that implement
interfaces associated with the three main objects in our application: CustomerProfile, Partner, and Listing. In
turn, each of these interfaces extends Identifiable, Describable, and Logged. Classes that implement the latter
set of interfaces have to contain “ID” fields, description fields, and fields tracking the creation date and last
modification date of the object.

The CustomerProfile bean is designed to store information about a customer. Much of this information
comes from user input provided during the signup process. When a visitor clicks the “sign up” link in the
navigation bar, it routes to /action/profile and displays the profile.jsp page. In the struts-config.xml file,
/action/profile is associated with the CustomerProfileForm bean.

Figure 10.12 Model class hierarchy.

It may seem reasonable to use the same class for both the model and the form bean, but it is not a good
idea. If the CustomerProfile class were used as the form bean, hostile users could figure out the names of bean
properties that are not exposed to the outside world and construct HTTP requests that reset these properties
and jeopardize the integrity of our application. In a way, CustomerProfileForm acts as a “firewall” for
CustomerProfile - users do not have direct access to the setter and getter methods on the CustomerProfile
class. Without this separation, we would be relying on “security through obscurity”, which is a very dangerous
practice.

420

The Partner bean stores partner-specific information, including the partner id and URL prefix that are
necessary for inferring partner affiliation for new visitors.

Our design supports persistence, implemented through auxiliary service classes - DataAccess Service and
DomainService (see Section 10.6.1). On successful login, an instance of CustomerProfile is populated from
the database and stored in the session. This caches customer information for the duration of the session. A
modification to one or more attributes of the CustomerProfile instance causes a “write through” to the
database to maintain data integrity.

The Partner bean is populated from the database when a new session is established. The VrlsServletFilter
has a method (determinePartner()) that figures out partner affiliation. This association may be modified on
login if the initial inference about partner identity was incorrect. Modifications are handled the same way as
with the CustomerProfile bean.

The Listing bean is designed to store details about individual real estate properties. Strictly speaking, it is not
necessary to store the Listing bean in the session because of its transient nature. We do it to simplify
processing in the details.jsp page, which refers to this session attribute to determine which listing should be
displayed. We also make use of it in the contact.jsp page: if this attribute exists and is non-null, its ID is
included in the subject of the e-mail to be sent to the partner.

Database schema

Figure 10.13 is a simplified version of the entity - relationship (ER) diagram for our application’s database
schema, omitting lookup tables for states, countries, and regions. The slight variances between different
DBMSs are one good reason for using an object - relational mapping (ORM) package, such as Hibernate, to
define an application’s database schema so that it correlates directly to the Java classes associated with the data
model.

421

10.6 Design Decisions

In the course of building this application, we made some critical design decisions. Here we discuss the
rationale behind these decisions. In some cases, we also present alternatives and opportunities for
improvement.

422

10.6.1 Abstracting functionality into service classes

In designing this application, we abstracted various functions into service classes in the biz.vrls.services
package:

• DataAccessService is a high-level service class that encapsulates the acquisition of database
connections and the execution of SQL queries and update statements.
• DomainService employs the Data Access Object (DAO) design pattern and provides methods to
retrieve and persist the model components (CustomerProfile, Partner, Listing) associated with the
application.
• EmailService obtains a javax.mail.Session through the web server’s JNDI lookup facilities and uses
it to process e-mail.

All these service classes exploit the Singleton pattern, which ensures that only one instance of a class is
present in a system. In Java, this pattern is implemented by providing a static method, getInstance(), that is
the only way to access an instance of the class. There are no public constructors for the class; the getInstance()
method always returns a reference to the single instance, which is created using a private constructor.
Applications use methods found in service classes by calling the static getInstance() method and invoking
instance methods on the returned object:

423

Figure 10.13 Entity-relationship diagram for application database schema.

Benefits

• Code simplification: For domain objects, retrieval or persistence is accomplished through a single
method call within the DomainService class. For other database functions, queries can be executed
directly via methods in the DataAccessService class. A RowSet (a disconnected implementation of
the java.sql.ResultSet interface that can be cached) is returned for processing by the calling class.
Developers do not need to know the details of how persistence and retrieval are implemented.
• Flexibility: The model components are designed explicitly around interfaces rather than concrete
implementation classes and the return values for the methods in these classes are also interfaces.
This makes the application independent of specific implementations of the model components.
• Extensibility: Since the code for persistence and retrieval functions is in one place, instead of being
scattered throughout the application, it is simpler to maintain. Any or all of the service classes can

424

be replaced with a new version that performs its operations differently. This opens the door for
future versions that make use of more sophisticated persistence mechanisms, for example, based on
Hibernate, Enterprise Java Beans (EJB), or Java Persistence Architecture (JPA).

Alternatives or improvements

• We could have defined our services as interfaces, and used the Factory pattern to create instances of
classes that implement that interface. The particular implementation classes to be used can be
specified in a properties file, providing flexibility in configuring the application at deployment time.
Mock implementations of the service classes can be plugged in, to facilitate testing “outside the
container” (i.e., independent of the application server and the database). This technique is called
dependency injection . It is showcased in frameworks such as Spring, but the mechanisms and
strategies of dependency injection are relatively easy to understand and implement without relying
on an external framework.
• We could have added smart caching functionality to the DomainService class (see Section 10.7.4).

425

10.6.2 Including embedded pages to support co-branding

The VRLS application supports co-branding based on the referring partner. This means that if a visitor comes
to the VRLS application through a particular partner broker’s web site, the pages have a look and feel that
conforms to the layout of that site. Partner affiliation for authenticated users is retrieved from their profiles.

The strategy was laid out in detail in Section 10.5.3:

• A single root JSP page, /pages/main.jsp, contains instructions for including common JavaScript
files and CSS style sheets.
• URLs referencing the root page include a query string containing the name parameter, which is
used in conjunction with the active partner code (which is stored in a session attribute) to construct
the complete URL of the appropriate partner-specific JSP page.

For example, a visitor who comes to the site through a partner whose code is partner1, attempting to access
the URL http://host/context/action/home, is routed to http://host/context/ pages/main.jsp?name=home, which
embeds http://host/context/pages/partner1/home. jsp. Since the root page acts as a “wrapper” for the embedded
page, the latter is assumed to contain only HTML body content (i.e., not the head part of the HTML
document).

Benefits

• Simplicity: Individual partner pages are simpler and redundancy is minimized because these pages
do not need to embed common resources defined in the root page.
• Extensibility: The addition of new partners does not require any modification to the application. It
is simply a matter of adding a partner to the database, creating a directory to hold the partner’s JSPs
and images, and creating or uploading those JSPs and images.

Alternatives or improvements

• We could have eliminated virtually all the HTML in the root page and had it simply embed an
entire page; however, this would mean that all inclusion and common functions would need to be
replicated in every custom page.
• We could have created one set of common JSP pages and put placeholders in them to facilitate co-
branding customization. The placeholders could have been used to change a small set of common
elements such as the URL for the logo image, using substitution parameters provided in a partner
configuration file or in attributes of the Partner object. This approach would work if we were willing
to accept limited customization capability. For example, if we were to add a logo attribute to the
Partner class and set it to the URL of a company’s logo (e.g., http://partner1.com/images/logo.gif),
it could be referenced as follows:

426

http://partner1.com/images/logo.gif

• Another possibility would have been to use Tiles, which is a framework that partners with Struts to
provide JSP template functionality. The Tiles framework lets you create JSP templates that define
the general page layout as a set of components (known as tiles). Other JSPs can use this layout,
specifying external resources that should be used to fill in the template components. These external
resources are referenced through the <tiles:insert> tag, which is functionally similar to a JSP include
tag. When used in conjunction with Struts, both Tiles layouts and the associated URL paths can be
configured directly in an XML file.

427

10.6.3 Creating and modifying customer profiles in one task

Two discrete tasks in this application were combined into one: the creation of a new customer profile by an
anonymous user (during signup) and the modification of an existing customer profile by a registered user.
While these tasks are similar, they are not the same. For example, the signup process allows users to select a
login identifier, but the modification process does not allow them to change the identifier they selected during
signup.

We could have chosen to treat each function as its own task, with its own Action class and its own view and
view helper components (JSP pages and ActionForm classes). Instead, we chose to concentrate on what these
two functions have in common, and create one Action class and one set of view components.

The CustomerProfileAction class determines whether the user is logged in. If so, it considers this a task
that modifies an existing profile. Otherwise, it considers it a task to create a new one. If the task is to modify
an existing profile, the HTML form is populated with the current profile values and conditional logic within
the JSP page presents the login name as a fixed text field rather than a form input field. If the task is to create
a new profile, the form is displayed in an unpopulated state, including a form input field for a user-selected
login name.

The main benefit of this is that it minimizes redundancy . If we had created separate tasks and separate sets
of view components, there would have been substantial duplication, e.g., two form pages with mostly
redundant fields and two ActionForm beans. Too much duplication complicates maintenance. Our approach
emphasizes what the two processes have in common rather than focusing on what makes them different. In
doing so, we reduce the number of different objects.

As an alternative, we could have created separate Action classes, ActionForm beans, and JSP pages for each
of these functions. Whether this is a good idea depends on how much difference there is between the views
and processing for each task. Other applications may have requirements that cross this threshold.

428

10.7 Suggested Enhancements

No application is ever complete. Even if you successfully build an application that fulfills all the specified
requirements, you can be sure that these requirements will change after the application is deployed - if not
before!

This application is no exception. Since it was designed as a tutorial, some of the requirements were
deliberately not implemented or were implemented only partially. The suggestions described in this section
describe enhancements over and above the original requirements, as well as steps necessary to implement
those unimplemented and partially implemented requirements.

429

10.7.1 Adding an administrative interface

Although we strongly emphasized that an application is not complete without an administrative interface, we
did not make the implementation of the administrative interface available for download. The application
package includes SQL queries for adding partners and listings to the database, but no mechanism (other than
manual execution of SQL queries) for updating the database to add partners or listings.

The administrative interface should have its own authentication scheme. In other words, the mechanism
used to identify and authenticate administrators must be separate from the one used to identify and
authenticate customers. If you want an interface that employs one fixed administrative password shared by all
administrators, you can include that (preferably encrypted) in the application resources file. It would be more
thorough (and more secure) to provide a database table (similar to
VRLS_CUSTOMER_PROFILE_DATA) used for administrator authentication.

Ideally, the administrative interface should be treated as a separate application. If it is designed as a Java EE
application, it should be installed with a distinct servlet context that is not associated with the main
application. It would naturally require its own set of actions and view components.

In Chapter 11, we implement the VRLS application’s administrative interface using Ruby on Rails.

430

10.7.2 Enhancing the signup process through e-mail authentication

One of the requirements associated with this application was the ability for new users to sign up and create
customer profiles. Our implementation allows users to enter all the information needed to populate a
CustomerProfile object, including their chosen login name and password. The signup page includes a form
field into which new users can enter their password of choice. They can then proceed to the login page to
provide their login name and password.

However, application requirements dictate that a new user should not be allowed to use the application until
the e-mail address has been verified. We want to confirm that entered e-mail addresses really do belong to the
people signing up. If we do not confirm this, someone could enter another person’s e-mail address and subject
them to unwanted spam from our application.

One common way of fulfilling this requirement is to prevent a user from specifying their own password at
signup time. Once the profile entry form has passed validation, the application presents a landing page
informing the user that their entry is being processed, and that they should expect a confirmation e-mail to be
delivered shortly. In the background, the application sends an e-mail that contains a random password
automatically generated by the application. The user, upon receiving the e-mail, returns to the application and
enters their chosen login name and the generated password. Once authenticated, the user can change the
password to one of their own choosing, using the application’s profile modification functionality.

This is a more secure method of enrolling new users than the one we have built into the application. In its
current state, the application allows someone to enter an invalid e-mail address or someone else’s valid e-mail
address with impunity. Requiring that new users enter a valid e-mail address where they receive a message
containing the initial password they need to log in provides basic assurances of their identity. This is how we
could implement a little more secure process:

1. Remove the password field and the password confirmation field from the signup page. These
fields are still needed when modifying profiles for existing customers, so the profile.jsp page must be
modified appropriately to support this.
2. After successful form validation (but before routing to the profile confirmation page), the
application should record the user’s profile information with a dynamically generated random
password. The EmailService class should then send an e-mail to the provided address, containing
the random password generated by the application.
3. The profile confirmation page (profileConfirm.jsp) should tell new users that they should expect
a confirmation e-mail containing their password.
4. The application must be modified so that the user is not considered “logged in” after entering this
new profile.

As an alternative, the application could allow users to specify their own passwords at signup time while still
ensuring that e-mail addresses are properly verified. At signup time, the application would store profile
information temporarily in a staging area (e.g., another database table). The profile would be inactive. There
would still be a confirmation e-mail sent, but instead of a generated password, it would contain a URL. The

431

query string of this URL would contain a unique key of sufficient complexity that it would identify the user’s
unverified profile information in the temporary staging area. A request for this unique URL would indicate to
the application that the user had received the e-mail and clicked on the link. The application would then
retrieve the staged profile and activate it by storing it in the customer profile table. This approach would
require an additional Action class that would perform this “profile activation” function. The URL sent to a
new user at signup would be associated with this Action class in the struts-config.xml file. It would include a
query string parameter that uniquely identified the user.

More about Profile Passwords

A more secure way to perform customer profile modification would be to require entry of the
current password, making it a pre-condition for the processing of changes. Thus, three
password fields (all initially blank) would be required on the form for profile modification: one
for the current password, one for the desired new password, and one for confirmation of the
desired new password. If the value in the current password field is incorrect, the form should
fail validation. Changes to the password should only be processed when the current password is
entered correctly and when both new password fields are filled in and match each other. If the
new password fields are both blank, the password should not be changed, but other changes
should be processed.

432

10.7.3 Improving partner recognition through a persistent cookie

One of the problems with the current design is that customers returning to the application may not have their
partner affiliations recognized until after they log in. Some approaches to partner identification make this
process easier (e.g., using a sub-domain strategy to always identify the partner for requests to http://rrr.vrls.biz
as rrr). Using the referring URL for partner identification is more problematic, especially on subsequent visits
when the customer comes directly to the site and there is no referring URL.

Saving a persistent cookie to identify the partner would partially alleviate this problem. This could be
accomplished by having the VrlsServletFilter include a Set-Cookie header in its responses to successful
authentication requests. This cookie should identify the application’s domain and set a value of, for example,
partnerCode=abc, and an expiration date far in the future. Subsequent requests from the same browser on the
same computer would include a Cookie header providing this name-value pair. The VrlsServletFilter ’s
determinePartner() method should be enhanced so that it looks first for this cookie before trying to determine
the partner via the Referer header.

Other information could be persisted in this cookie, including the customer’s login name and password,
which would cause the customer to be identified and logged in automatically. Best practices dictate that we
not do this without giving customers the opportunity to enable or disable this feature explicitly. Some web
applications compromise by persisting only the login name, which means that upon returning to the site the
user needs to enter the password. However, even pre-populating the user name should be done only with the
user’s explicit consent. It is surprising that even web sites that need to be conscious of security issues, especially
financial institutions, often fail to abide by this recommendation.

433

http://rrr.vrls.biz

10.7.4 Adding caching functionality to the DomainService Class

Many different kinds of caching can be used in a web application. Here we discuss object caching, using the
DomainService class. Methods that store and retrieve instances of CustomerProfile, Partner, and Listing
make a database call every time, which may be very costly.

It is relatively simple to cache all retrieved objects in a Map that is maintained as an instance variable in the
DomainService class. The key associated with an entry in the Map is the identifying field used to retrieve the
object, and the value is the object itself. Java SE 5 introduced autoboxing and generics, enabling us to define
this Map as Map<Integer, CustomObject>, assuming that the id field is an integer (int). Each retrieval
method in the DomainService class could be modified as in Figure 10.14.

Similarly, the persistence methods should update the Map whenever objects are modified by the
application. It should be noted that the underlying data source could be modified independently of the
application (e.g., through direct database updates). A decision must be made as to whether the application
should tolerate this discontinuity or provide a mechanism for clearing the cache to allow updated objects to be
refreshed from the database.

To make this caching mechanism work, the following tasks must be performed:

• Modify the retrieval methods in the DomainService class (see Figure 10.14).
• Modify the persistence methods to update the Map when persisting new or modified objects.
• Provide public methods that can be invoked to clear object caches (individually or collectively).
The administrative interface should provide a mechanism to invoke these methods directly, so that
the cache can be cleared on request when necessary.

Figure 10.14 Object caching.

The caching mechanism should maintain a fixed maximum size for the cache, and should expire the least
recently used entries when it becomes full. It is a good idea to set a maximum age beyond which cache entries
are automatically expired. The Apache Commons project provides a custom Map class,
org.apache.commons.collections.map.LRUMap, which implements this algorithm and could serve as the

434

foundation for a custom cache implementation. JBoss Cache (formerly EHCache) is a configurable open source
implementation that could also serve this purpose.

Free Cache!

Many ORM packages, such as Hibernate, provide caching functionality of their own, which, if
you take advantage of it, renders this technique superfluous. See Section 10.7.8 for more
information on using ORM packages.

435

10.7.5 Paging through cached search results

The result set returned from a search query can be quite large. Rather than displaying the entire result set on
one page, the number of results per page should have a predefined limit, and the application should provide a
mechanism for customers to page through the discrete result subsets. Sun refers to this as the Value List
Handler pattern (one of the Core Java EE Patterns). In the past, it has been referred to as the Paged List or
Page-by-Page Iterator pattern.

We have already laid the groundwork for implementing this pattern. Query execution methods in the
DataAccessService class return a CachedRowSet, which is a disconnected cacheable implementation of the
RowSet interface extending the ResultSet interface. Normally, ResultSet objects produced by database queries
are tied to the database Connection. In other words, they are destroyed with the Connection and, since well-
behaved applications close the Connection as part of their task cleanup, the ResultSet cannot “live” across
multiple HTTP requests. CachedRowSets are “disconnected” (not tied to the Connection). They can be used
across requests, provided they are stored in the HTTP session. Fortunately, the application already does this.

To implement this pattern in our application, the following tasks must be performed:

• Provide a mechanism for defining the number of results per page. Using a property in the
ApplicationResources. properties file makes this parameter configurable.
• Modify the SearchResultsAction class to acknowledge a request parameter, page, which indicates
the number of the page that should be displayed (defaulting to 1). Use this parameter to calculate
the sequence numbers of the first and last results that should appear on the page. Store these values
as attributes named begin and end in the page scope. In addition, set two Boolean attributes named
atBegin and atEnd that indicate whether this is the first or last page in the result set and store them
in the page scope as well.
• Modify the <c:forEach> tag on the results.jsp page so that it displays only the specified range of
results. This is accomplished by adding these attributes:

• Add links to the page to allow forward and backward traversal to the next or previous page (e.g.,
http://host/context/action/results?page=${request.page+1}). Place these links within conditional
constructs (e.g., <c:if> or <c:choose> tags) so that the next page link does not appear if this is the last
page and the previous page link does not appear if this is the first page.

The Cost of Sessions

Since the overuse of HTTP session objects can be prohibitively expensive in environments with
very large numbers of concurrent users, storing these objects in a server-wide cache (either
homegrown or using functionality provided by the application server) is a better alternative
than storing these objects in the session. Many application servers provide mechanisms for

436

constructing and accessing server-wide caches (including the previously mentioned JBoss
Cache). All that needs to be retained in the HTTP session is the key to retrieve the desired
object from the cache. Under certain circumstances, the session ID itself can be used as the
cache key (or as a component of that key).

437

10.7.6 Using XML and XSLT for view presentation

A forward-looking approach to presenting application views is to use XML and XSLT. An incremental
approach to adding XSLT functionality would be to convert the existing HTML templates to XHTML.
Once they are in an XML-compliant format, they can be used as an XML source to which XSLT
transformations can be applied. These XSLT transformations would serve as a post-processing step that
performs final customizations on presented views. This approach is the least intrusive but the most costly in
terms of performance.

A more robust alternative is to construct the model as an XML document and use XSLT style sheets to
transform the model into an appropriate view. The beauty of this approach is its inherent flexibility. The
application can choose a target format (e.g., HTML, SMIL, VoiceXML) based on the type of device or
program making the request. It can then select a specific presentation by choosing a custom XSLT style sheet
appropriate for that target format. This technique fully realizes the promise of MVC: the model is completely
decoupled from the view, and the number of views that can be made available is limited only by the number of
style sheets that developers can construct. (Note: Even this is not a true upper limit, since XSLT style sheets
can be constructed dynamically from embedded fragments, greatly increasing the number of possible
combinations.)

This approach has two shortcomings that have impeded its acceptance in the web application development
community: the sluggish performance associated with XSLT transformations and the overall complexity
historically associated with XML and XSLT processing. XSLT performance has improved dramatically
through mechanisms that allow the compilation and caching of style sheets. There is need for improvement,
but performance is no longer the impediment to XSLT acceptance that it once was.

The complexity of both XML and XSLT processing has been reduced significantly. Early adopters of
XML and XSLT had to deal with cumbersome configuration issues and inconsistent APIs. Now virtually all
commercial frameworks and server products provide native support for XML processing and native support
for XSLT is not far behind.

JSTL’s XML tags represent possibly the most radical simplification in XML and XSLT processing. These
tags provide not only the ability to parse XML documents into a Document Object Model (DOM) tree, but
also the ability to perform direct XSLT transformation on a constructed or imported XML document. Let us
assume that the controller component has constructed an XML document and dropped it into a session, and
that this or another component has imported or constructed an appropriate XSLT style sheet and dropped it
into the session as well. Then, the controller could route processing to a JSP page as follows:

XSLT (covered in Chapter 5) is a powerful mechanism for transforming XML documents into human-
readable presentations, but it is rather complex. It was hoped that web designers would ultimately be the ones

438

who created XSLT style sheets. Unfortunately, most designers have not taken it upon themselves to learn
XSLT. Given its complexity, this is not surprising.

Yet another alternative is to build a DOM tree using the JSTL <x:parse> tag and access individual elements
(or sets of elements) using the <x:out>, <x:set>, and <x:forEach> tags. The select attribute in each of these tags
can be set to an XPath expression that may return an individual element or (with the <x:forEach> tag) a node
set. Using this approach, the results.jsp page could be rewritten as in Figure 10.15.

In this fragment, a variable called listings is constructed as an XML DOM tree from the listingsAsXml
session attribute using the <x:parse> tag. (In a properly segmented MVC application, the controller would
have built this XML document and stored it in the session.) The <x:forEach> tag selects each element
matching the XPath expression /listings/listing and processes it, displaying the values of elements found
within it.

As you can see, there are a number of options available for using XML, XSLT, and XPath functionality to
make the selection and generation of application views more dynamic and flexible.

Figure 10.15 Example of parsing XML documents using the JSTL <x:parse> tag.

439

10.7.7 Tracking user behavior

Keeping track of user actions and recording them for later analysis is another capability that is important for
our application. For example, when customers visit the search page and enter criteria for browsing the listing
database, their entries could be recorded. When a customer views the details of a particular listing, this fact
also could be saved (in a log or in a database table) for future reference.

This recorded data could be used by our application, and other applications, to perform a number of tasks:

• Sending targeted e-mails based on tracked behaviors about the availability of specific kinds of real-
estate properties.
• Reminding customers who have not logged in for an extended time about the application. Such
reminder e-mails are especially useful for subscription web sites, which always want to notify
inactive customers that their subscription or free trial has lapsed or is about to lapse.
• Personalizing customer home pages by showing thumbnails of new property listings that satisfy
their past search criteria.
• Keeping anonymous statistics about the popularity of individual listings based on the results of
searches and detailed views.

To accomplish this, the Action classes need to be modified to record information about tracked events. The
least intrusive approach would be to record these events into a log file. Each log entry would need to contain
all the relevant information, including timestamps, customer ids, listing ids, etc. The format of log records
should be standardized so that those records could be browsed and searched later. Our LoggingService class
simplifies the process of writing records to a log.

A more methodical approach would record tracked events in a database. This means creating tables that
contain records of well-defined events that need to be tracked, e.g., “customer login”, “listing view”, “customer
search”. The main advantage of this approach is that it is much easier to perform analysis by querying a
database than by parsing log entries from a text file.

440

10.7.8 Using an object-relational mapping tool

For this application, we manually created the Java classes associated with the data model and the underlying
database schema into which the data is persisted. In more complex applications with more elaborate data
models, this would be a daunting task. There are GUI-based tools that facilitate database design, which can
produce DDL statements for a variety of DBMSs and code skeletons for major languages including Java.
However, the preferred approach today is the use of object - relational mapping (ORM) packages, such as
Hibernate.

Hibernate uses mapping files that define objects in the data model to produce both Java code and DBMS-
specific DDL. It can also be used to generate DDL from existing Java classes or, conversely, Java code from an
existing database schema. The goal is to correlate database tables directly with Java classes. Where a class
definition includes aggregations of or associations with other classes, this is reflected in the mapping files, so
that Hibernate understands the composition of complex objects and can retrieve or update related data
accordingly.

More importantly, Hibernate circumvents the need to use the JDBC data layer, giving developers higher-
level abstractions to work with for data persistence. The Hibernate “session” is used to manage persistence and
control transactions. Queries can be written in SQL, in Hibernate’s own object-oriented query language
(HQL), or using dynamically generated Hibernate criteria. The results returned from Hibernate queries are
not in the form of JDBC ResultSets or CachedRowSets, they are Lists of Java objects. For example, assuming
the appropriate Hibernate mappings, queries selecting data from the CUSTOMER table would return a List
of Customer objects (List<Customer>).

Other ORM packages (e.g., iBatis) exist, but Hibernate has taken the lead in adoption. The most recent
version of Hibernate fully supports the Java Persistence API (JPA) introduced in Java SE 5.0. Whether you
choose to employ Hibernate or some other ORM package would depend on your environment and your
application requirements. There is a learning curve associated with adopting Hibernate instead of JDBC and
the injection of an additional layer for persistence can introduce issues that lead to a variety of problems. Still,
for sufficiently complex applications with elaborate data requirements, an ORM package can dramatically
improve both developer productivity and application reliability in the long term.

441

10.7.9 Adding DHTML and AJAX for an enhanced user experience

Finally, the application’s user interface can be greatly enhanced through judicious use of DHTML and AJAX
functionality.

Validation of most information entered in HTML forms requires a time-consuming request-response
“roundtrip” to the server. The most prominent example is the customer profile entry page. AJAX-facilitated
remote validation (as described in Chapter 8) can eliminate this lag by invoking a custom JavaScript handler
(onblur or onchange) as form fields are modified. This handler can perform local client-side validation where
appropriate. For example, it can ensure that both entered password fields match, check minimum and
maximum lengths for user names, and verify the e-mail address format. It can also submit AJAX requests to
validate that entered information matches data that can only be found on the server (e.g., confirming that the
entered value for the current password matches the one stored in the database or verifying that the domain
specified in the entered e-mail address corresponds to a real Internet domain).

The user experience could be enhanced by using AJAX to present individual listing details. Clicking a link
on the results page currently submits a foreground request for a new page that contains details about the
individual listing that was selected. Instead, the link could trigger an AJAX request that would fetch the
listing details and populate a hidden page element. Once the listing details have been fetched, the hidden page
element could be made visible in various ways ranging from the mundane (simply making the element appear
on top of other page elements) to the dramatic (fading in the element or having it grow from a pinpoint size
to fill the available screen space). A “close” button would be needed that would return the listing details page
element to its original non-visible state.

The operative word here is “judicious”. You could have the entire application reside on a single JSP page,
with AJAX requests and DHTML functions causing every aspect of the application’s functionality to appear
and disappear magically as needed. This would qualify as an example of going overboard. Consider whether
adding AJAX or DHTML really enhances the user experience, or whether introduction of that functionality
just serves to make the application flashy, sacrificing usability in the process.

442

10.8 Summary

Our goal in this chapter was to walk through the process of designing and implementing a web application.
We reviewed application requirements, made technology selections, and discussed the implementation. We
explained our design decisions, including the use of service classes that implement the Data Access Object
(DAO) pattern and the use of embedded JSPs to support presentation co-branding.

We chose the Java EE platform (specifically J2EE 1.4) as the foundation of our application. Of the
available options, Java EE solutions provide the most flexibility, reliability, and scalability. The list of modern,
open-source Java EE servers includes JBoss, Glassfish, and Tomcat. Since we did not need the full set of Java
EE features (such as EJB support), we chose Tomcat as our Java EE server solution. Tomcat has been around
longer than the other Java EE servers and continues to be well-supported by the Apache community.

Within the Java EE world, we chose Struts, which is an established, well-supported, and stable framework
that provides the functionality required by our application. We used Struts 1.3, the most recent release in the
Struts 1.x line. Struts 2.0 is a new offering that represents a complete overhaul of the Struts architecture to
provide a more event-driven modular approach. While it is gaining support in the community, Struts 1.x is
still the more popular choice.

For the presentation layer, we employed Java Server Pages (JSP) using the Java Standard Tag Library
(JSTL) along with the Struts HTML tags. JSP and JSTL are core components of Java EE and Tomcat
provides built-in support for both. The Struts tag library, like the Struts framework itself, is an additional
component requiring separate download and installation. JSTL and Struts tags provide a more granular level
of functionality than, for example, Java Server Faces (JSF). While JSF provides high-level components (e.g.,
for rendering database query results as an HTML table), JSTL offers fine-grained tags that support iteration
and conditional processing (Section 9.2.12). We found JSTL’s approach to be powerful and flexible in
controlling presentations.

For data persistence, we chose MySQL, a popular open-source relational database management system.
When we first implemented this application, MySQL was the most readily available open source RDBMS on
the market that provided sufficient functionality to fulfill our application requirements. Today, there are other
good, open-source RDBMS options, many of which would suffice for this application.

We provided source code for a complete working application as a starting point for our readers. The
enhancements suggested in Section 10.7 provide readers with the opportunity to build on this
implementation. In Chapter 11, we consider an alternative approach for implementing one of these
enhancements, the administrative interface, using Ruby on Rails.

QUESTIONS AND EXERCISES

1. Install and deploy the sample application. Follow the instructions found on the
web site, at http://www.webappbuilders.com/package/readme.html. (You need to
register and sign in to download the application package.)
2. What changes need to be made to the DataAccessService class to allow the

443

http://www.webappbuilders.com/package/readme.html

application to work in environments that do not support JNDI-lookup for JDBC
DataSources? How could this be done in a way that would still provide runtime
configuration options (i.e., without hard-coding database connectivity parameters)?
3. In Section 10.5.3, we mention that we did not implement a custom tag or an
includable page to display the navigation bar, because the links presented on the
navigation bar would be different on every page (i.e., a page should not present a link
to itself). Remember that a parameter in the request URL identifies the current page.
Thus, it is possible to build a reusable mechanism for presenting the navigation bar
that uses conditional processing to skip the label and link associated with the current
page. Implement this functionality using either an included JSP page or a custom
tag, and modify embedded pages to refer to it.
4. Formulate a plan for building the administrative interface described in Section
10.7.1. Include a separate database table containing credentials for application
administrators.
5. Modify the application to provide the enhancements described in Section 10.7.2.
What changes need to be made to the profile.jsp page to support this? What other
components need to be modified to enable the new functionality?
6. Enhance the application to use a persistent cookie for partner identification as
described in Section 10.7.3. Include the functionality that would also enable
automatic login if customers indicate this as a preference in their profiles. What
changes must be made to the profile.jsp page? What other components need to be
modified to enable this functionality?
7. Modify the application to provide the enhancements described in Section 10.7.4,
providing caching functionality within the service classes. Include the functionality
that would clear the cache on request. Which part of the application should expose
this function?
8. Enhance the application to provide a mechanism for paging through large result
sets using discrete subsets, as described in Section 10.7.5,
9. What difficulties are likely to arise in maintaining an application that makes use of
the “less intrusive” XML support strategy described in the opening part of Section
10.7.6?
10. Modify the application to implement the model as an XML document and use
XSLT style sheets to transform the model into an appropriate view, as described in
Section 10.7.6. What are the maintainability and performance improvements over
the original approach, and over the less intrusive alternative described earlier in that
section? What issues does this approach solve?
11. Describe the advantages and disadvantages associated with using an ORM
package such as Hibernate.
12. The second example offered in Section 10.7.9 (using AJAX to display listing
details) makes an unintentional but significant modification to application behavior

444

that violates the requirements. What can be done to remedy this problem so that the
application operates as originally intended? (Hint: See Requirement 8.)

445

10.9 Bibliography

Bayern, Shawn, 2002. JSTL in Action. Greenwich (CT): Manning Publications.

Brittain, Jason and Darwin, Ian, 2007. Tomcat: The Definitive Guide. Sebastopol (CA): O’Reilly Media.

Chopra, Vivek et al., 2004. Professional Apache Tomcat 5. Wrox Press.

Elliott, James 2004. Hibernate: A Developer’s Notebook. Sebastopol (CA): O’Reilly Media.

Goodwill, James, and Hightower, Rick, 2004. Professional Jakarta Struts. Indianapolis (IN): Wrox Press/Wiley
Publishing, Inc.

Heffelfinger, David, 2007. Java EE 5 Development Using GlassFish Application Server. Birmingham, UK:
Packt.

McGovern, James et al., 2003. Java 2 Enterprise Edition 1.4 Bible. Indianapolis (IN): Wiley Publishing, Inc.

Siggelkow, Bill, 2005. Jakarta Struts Cookbook. Sebastopol (CA): O’Reilly Media.

446

CHAPTER 11

Web Application Primer 2: Ruby on Rails

IN THIS CHAPTER

• Comparison of Ruby on Rails with Java EE approaches
• Application requirements
• Administrative interface as a Rails application
• Benefits and drawbacks of using Rails
• Whither Enterprise Java?

OBJECTIVES

• Introduce Ruby on Rails as an alternative to Java EE with Struts/JSTL for web
application development.
• Define the requirements for the VRLS administrative interface application to be
implemented using Rails.
• Demonstrate the advantages of Rails’ rapid application development features
(including automated scaffolding).
• Illustrate customization options by improving default page layouts using lookup
tables.
• Add pagination, validation, and authentication functionality to the application.
• Show how Rails makes use of inheritance in both application code and reusable
page layouts.
• Consider the benefits and drawbacks of using Rails for rapid application
development.
• Discuss Rails’ readiness as an enterprise application platform.
• Examine Java EE responses to the challenges presented by Rails.

In Chapter 10, we built a VRLS application, implemented as a Java EE application using Struts and JSTL.
We also made a strong suggestion that it was not complete without an administrative interface. Without such

447

an interface, seemingly trivial administrative tasks such as adding new listings, resetting customer passwords,
and configuring settings for participating realtors would all require intervention by developers or database
administrators. In the end, we left the development of this interface using Java EE and Struts as an exercise
for our readers.

In this chapter, we implement that administrative interface using Ruby on Rails. We describe the process of
designing, developing, and deploying the VRLS administrative interface as a Rails application. In essence, we
are reversing the case study by implementing the administrative interface and leaving the core application as
an exercise for the readers. For reasons that we hope to make clear as you read this chapter, the administrative
interface is better suited as a case study for Ruby on Rails development than the core VRLS application.

Like the previous chapter, this is an illustration of application development principles for Ruby on Rails
applications rather than an in-depth tutorial. In the course of our discussion, we draw comparisons between
Ruby on Rails and the more traditional approach based on Java EE, Struts, and JSTL.

448

11.1 Comparing Rails with Java EE

We chose Ruby on Rails because, as we were working on this edition of the book, Rails was the up-and-
coming rapid application development framework of choice. There has been a lot of on-line buzz about Rails,
and its advocates have done much to publicize and evangelize it on blogs, in journals, and at conferences. Our
goal was to learn Rails and contrast its strategy with the more formal enterprise development approach
associated with Java EE.

449

11.1.1 Similarities

The Rails framework has much in common with Java EE, in general, and with Struts in particular.
Like Struts, Rails is an MVC framework. Rails applications are structured as Model, View, and Controller

components making it hard not to use the MVC paradigm. Struts uses a struts-config.xml file to configure the
“actions” that an application can perform. Rails uses an app/controllers/application_name_controller.rb file for
the same purpose. In Rails, default routing strategies can be overridden in the config/routes.rb file.

Struts applications use Action classes as controllers, ActionForm beans and Plain Old Java Objects
(POJOs) to support the data model, and JSPs for the view components. Similarly, Rails employs controller
classes that inherit from a common ActionController::Base class, data model classes that are as simple to
construct as POJOs, and templates for HTML views and dynamic JavaScript components.

The Rails framework supports direct access to relational databases. The object-relational mapping (ORM)
features associated with external packages, such as Hibernate, are built into Rails as part of its ActiveRecord
functionality, which conforms to the original Active Record design pattern described in (Fowler 2002).
Similarly, starting with Java EE 5, the Java Persistence API (JPA) incorporates the ORM functionality
associated with Hibernate. Some Java EE 5 containers, such as JBoss, use Hibernate as their underlying
implementation of JPA.

Included within Rails are built-in mechanisms for testing and deployment of applications. Rake is a multi-
purpose tool (much like Ant in the Java world) that performs a variety of tasks, including the execution of unit
tests, management of database schemas, and the packaging and deployment of applications using Capistrano, a
package written in Ruby that manages remote application deployments. Java EE’s deployment strategies
employ standardized application packaging formats (WAR and EAR files). Although integrated tools for
building, deploying, and testing applications are absent from both the Java EE specification and the Struts
framework, Ant and JUnit are open source tools that support these functions and are widely used and easy to
install.

450

11.1.2 Differences

Although Ruby on Rails provides many of the same benefits and features associated with Java EE and Struts,
there are important differences between the approaches.

Ruby is a loosely-typed interpreted language, while Java is a strictly-typed compiled language. It may boil
down to a matter of personal taste and programming style, but Rails advocates claim that the looser structure
associated with Ruby makes for a faster and more robust development process.

Rails provides integrated support for AJAX, with built-in tags that employ the Prototype/ Scriptaculous
toolkit. For Java EE applications, there are many alternatives for AJAX integration. The field is cluttered with
numerous options, from DWR to Google Web Toolkit, none of which has emerged as a standard and none of
which is seamlessly integrated into Java EE and Struts.

Perhaps the most critical of all differences is Rails’ use of scaffolding. Setting up a basic application skeleton
is the normal first step in the Rails application development process. The rails command creates the
underlying directory structure for a complete Rails application and the generate script builds skeletons for the
controller, model, and view classes. Although add-on packages, such as EasyStruts, attempt to provide similar
services for Struts applications, scaffolding is an integral part of the Rails framework.

451

11.2 Application Requirements

In the previous chapter, we outlined the requirements associated with the administrative interface:

• Customer administration: select customer, reset customer password, change customer status
(active, suspended, etc.), remove customer;
• Partner administration: add new partner, specify custom markup (logos, background colors, etc.),
specify partner selection rules, remove partner;
• Listing administration: add a new listing, modify listing (change summary and detail information,
add or remove image), remove listing;
• Authentication and authorization: access to the administrative interface should be restricted to
designated administrators with proper credentials and restricted to IP addresses within the company
firewall.

452

11.3 Building the Administrative Interface as a Rails Application

In this section, we go through the process of building and deploying a Rails application implementing our
VRLS administrative interface.

453

11.3.1 Downloading and installing Ruby and Rails

Rails is available for all major computing platforms and operating systems. The Ruby on Rails wiki contains
pointers to instructions for installing Rails on a wide variety of platforms
(http://wiki.rubyonrails.org/rails/pages/GettingStartedWithRails). Make sure that you obtain an installation
package for the most recent version of Rails, which was version 2.0.2 as we were writing this chapter.

454

http://wiki.rubyonrails.org/rails/pages/GettingStartedWithRails

11.3.2 Building an application skeleton

Before we get started on the administrative interface, let’s implement a simple “Hello world” application.
To establish a proper environment for Rails development, it is recommended that you create a directory

specifically for Rails projects. In our example, we assume an environment with a command shell (Unix, Linux,
or Mac OS X). We create a rails_apps directory under the home directory. In that directory, we run the rails
command to initiate the automated creation of a Rails project (see Figure 11.1).

The argument example passed to the rails command is both the name of the application and the name of
the directory that is created to contain it. The listing in Figure 11.1 shows only some of the output produced
by the rails command. The critical directories created under ~/rails_apps/example are listed in Table 11.1.

After running this command, we run the script/server command in the example directory to start the
Mongrel Web server, which is included with the Rails installation. Once the server is running, we open the
http://localhost:3000/ URL in the browser. Note that we must execute script/* and other commands from the
project’s root directory (in this case, ~/rails_apps/example). Once we confirm that the server is running, we
can stop it for now by typing CTRL-C.

Figure 11.1 Output from executing the rails example command.

Table 11.1 Directories and Files Created by the rails Command

Now we can create basic controller components by executing the script/generate command:

455

A Case of Case Sensitivity

Rails is smart enough to realize that some operating systems use case-sensitive file names,
where AbC.txt is a different file from abc.txt, while others treat those two names as references
to the same file. To make Rails interoperable across these different operating systems, the
internal names associated with classes may use camel-case notation (e.g.,
ExampleAppController), but notice that the generated file names use the convention of lower-
case plus underlining (e.g., example_app_controller.rb).

The stubs and skeletons are all in place, but the application doesn’t do anything yet. To get it to perform a
simple “Hello World” function, we need to edit some files and restart the server.

In the app/controllers directory, example_app_controller.rb is a Ruby class file specifying the
ExampleAppController class which inherits from ApplicationController (a class defined in application.rb).
We can edit example_app_controller.rb to add “action paths” to the application. For the sake of simplicity and
tradition, we add a “Hello World” function with the URL path example_app/hello:

Figure 11.2 Browser error when example_app/hello.html.erb does not exist.

The inserted lines in this file identify the example_app/hello path to the application, which will route
processing to the default view component for that path. Remember that Rails emphasizes “convention over
configuration,” and the convention is that the URL path example_app/hello routes to the default view
component found at app/views/example_app/hello.html.erb. We have to create this file because it is not built
by the scaffolding script when invoked with the script/generate controller option. If we restart the server
without creating that file, we see the error in Figure 11.2 when we try to access

456

http://localhost:3000/example_app/hello.
Let’s create this file as a simple HTML page that says “Hello, World!”:

After refreshing the browser window, we see the output shown in Figure 11.3.

Mongrel and its Pedigree

Mongrel is a web server written in Ruby with C extensions. Rails uses Mongrel as its default
underlying web server. You can still opt for the older options (WEBrick and LightTPD with
FastCGI) through arguments passed to script/server, but Mongrel is increasingly the web
server of choice. It runs faster than its predecessors and is easier to configure.

Mongrel, WEBrick, and LightTPD are lightweight HTTP servers that do not scale well for
use in a real-world production environment. For this reason, it is recommended that Apache be
used as a front-end to whatever server Rails is actually running on. Apache Web Server 2.2
supports simple configuration directives (using the mod_proxy_balancer module) to load-
balance requests routed to Mongrel servers running Rails applications. Apache can take care of
static resources and makes Rails more configurable and scalable than older solutions.

Figure 11.3 Browser display after creating example_app/hello.html.erb.

Now we can begin building the real functionality we want in our VRLS application.

457

11.3.3 Creating a new project and configuring the database

First, we create a new Rails application for the VRLS administrative interface. We execute the rails command
from the rails_apps directory, specifying a particular database adapter, namely the one for MySQL:

Before Rails 2.0, MySQL was the default database platform. With Rails 2.0, SQLite version 3 has become
the new default. SQLite is an even lighter database system than MySQL, advertising itself as “a self-
contained, serverless, zero-configuration, transactional SQL database engine.” If we do not specify a database
adapter using the -d adapter option, Rails constructs the config/database.yml file based on the default SQLite
adapter.

For our new application, the config/database.yml file is tailored for use with MySQL, using the standard
default names for development (vrlsadmin_development), test (vrlsadmin_test), and production
(vrlsadmin_production) databases. Since we already have a production database, called vrls, that was created
for the core VRLS application, we need to edit the config/database.yml file (Figure 11.4) to enter the proper
database names and credentials.

In conjunction with this step, we have to create the vrls_dev and vrls_test databases in MySQL. Note that
the vrls database was created when we built the core VRLS application. We also have to run the SQL scripts
provided with the VRLS application to define and populate the vrls_dev and vrls_test databases, mirroring the
vrls database.

Figure 11.4 Modified config/database.yml file.

How Does Rails Know Which Database to Use?

It all depends on how you start the server.

458

By default the script/server command uses the development environment. This means that
the server uses the development database and reads its environment settings not only from the
global file config /environment.rb but also from config/environments/development.rb. In
production mode, Rails uses the production database defined in config/database.yml and the
production settings found in config/environments/production.rb.

Rails configures appropriate default settings in the config/environments/*.rb files (e.g., the
debugger is enabled in development but not in other environments), but you can edit these files
to customize the settings.

459

11.3.4 Scaffolding for the model, view, and controller classes

The next step is to take advantage of Rails’ scaffolding to build model, view, and controller classes. Because we
are working with an existing database schema, the usefulness of the data model scaffolding features is limited.
We need to override a significant amount of information in the generated model classes and edit some default
Rails configuration settings.

Rails defaults correlate model classes with table names, making use of a feature known as pluralization . It is
assumed that the names of model classes are singular (because each instance of a class refers to a single object
of a specific type), while the table name is plural (because it contains a collection of items of the specified
type). Thus, Listing is the name of a class (contained in a file called listing.rb) that corresponds to a database
table called listings.

Unfortunately, the main VRLS application already defines a table for listings called vrls_listings.
Additionally, its primary key column is called listing_id, rather than the default primary key column name (id)
that Rails expects. To address this situation, we have to override the default setting for database table name
pluralization. The following line must be added at the bottom of the global config/environment.rb file:

Next, we have to generate default files for the model, view, and controller classes and modify these classes
to override defaults. We can create the files for the Listing class by executing a different flavor of the
script/generate command (see Figure 11.5).

Among the files produced by this command is app/models/listing.rb, which contains the definition for the
Listing class. We edit this file to add directives that override the defaults and explicitly define the table name
and the primary key column name (Figure 11.6).

We now have a fully functional Rails application for performing create-read-update- delete (CRUD)
functions against the vrls_listings table. Once we have run the database creation and population scripts for the
vrls_dev database, we can start the server using the script/server command. Once the server is up and running,
visiting http://localhost:3000/ listings would produce a “listing of Listings” (see Figure 11.7) based on the
content of the app/views/entity/index.html.erb file.

We can see the listings stored in the vrls_listings table. We can click the “Show”, “Edit”, and “Destroy”
links for individual listings, or the “New listing” link at the bottom of the page, to see some of the other pages
that Rails scaffolding has built for us:

• The “Show” links point to http://localhost:3000/listings/id, which displays attributes of the
selected listing as static text (see Figure 11.8).

460

Figure 11.5 The script/generate scaffold command.

Figure 11.6 Modified contents of app/models/listing.rb.

Figure 11.7 Displaying http://localhost:3000/listings.

461

Figure 11.8 Displaying http://localhost:3000/listings/1.

Figure 11.9 Displaying http://localhost:3000/listings/1/edit.

• The “Edit” links point to http://localhost:3000/listings/id/edit, which displays a form page with
fields containing attributes of the selected listing (see Figure 11.9). We can edit the form fields and
press the Update button at the bottom of this page to save the modified listing.
• The “Destroy” links invoke a JavaScript function, which prompts us for confirmation of deleting
the listing. Upon confirmation, the entry is deleted and the page is re-rendered.

462

• The “New listing” link at the bottom of the page points to http://localhost:3000/listings/- new. It
takes us to a similar form page with blank fields, making it possible to fill in the blanks and create a
new listing.

No Trailing Slash

There is a good reason why URLs generated by Rails do not have trailing slashes. While these
URLs may appear to reference directories (because they lack a file name suffix such as .html),
they are actually RESTful URLs that reference discrete web resources (see Section 5.3.2).

Table 11.2 illustrates the default URL mapping scheme, using the word “entity” (and its plural, “entities”)
for a hypothetical class named Entity.

Table 11.2 URL Mapping Scheme for the Entity Class

To complete the application, we have to generate scaffolding for the remaining tables or objects, update the
model classes to support foreign keys and form validation, customize the view components, build additional
functionality based on our requirements, and add authentication and authorization.

Scaffolding in Rails 2.0

If you are familiar with Rails 1.x scaffolding commands, the example we provided may look
strange to you. Many of the scaffolding features changed radically with the advent of Rails 2.0.
The proper way to generate scaffolding now is to execute the script/generate scaffold
command, supplying it with a class name and the names and data types of fields associated
with that class.

You would think that, since we are working from a pre-existing database schema, Rails
would be smart enough to make use of database metadata and would not need explicit field
definitions. Unfortunately, this is not the case. Because our table names do not conform to
Rails naming conventions, we have to alter our model file to specify the real table name and
primary key column name as shown in Figure 11.6. When the set_table_name directive is
employed, Rails has no way of inferring the table name as the basis for defining fields for
models.

463

Sadly, this is true even if we were to preemptively create a “draft” model class that includes a
set_table_name directive and then run the script/generate scaffold command. Although this
functionality would certainly make Rails scaffolding more robust with respect to legacy
database schemas, the developers of Rails have indicated that they do not consider this to be a

bug and would not change the codebase to enable this functionality.1

This attitude toward scaffolding in Rails 2.0 has raised concerns among developers about the

direction in which Rails is moving.2 Some defenders of the new scaffolding approach try to
diminish the importance of scaffolding as a prominent feature of Rails, even though it is a
feature (if not the feature) that attracted many developers to Rails in the first place. Hopefully
the Rails community will recognize how important scaffolding really is and will ensure that it is
made as robust as possible in the future.

464

11.3.5 Enhancing the application

While the application pages we discussed are functional, they have only bare-bones functionality. Rails has
automatically built and configured controller classes with an organized routing infrastructure not unlike Struts.
It has created model classes and rudimentary view components.

Still, a simple default CRUD application is hardly production-worthy. In its current state, the application
presents data that may have to be hidden (e.g., the primary key ID values for objects). It presents numeric
codes instead of their corresponding lookup values (e.g., in displaying a listing, the referring partner’s ID is
displayed rather than their name). The layout of the pages is raw and primitive.

Completing the data model

First, we need to add scaffolding for the other domain objects that are administered by this interface. This
includes customers, partners, and images that accompany real-estate listings. We also need to add model
classes for auxiliary objects used for lookups and cross-references: listing status (active, inactive, etc.), listing
type (house, townhouse, apartment, etc.), and listing offer type (buy, rent, etc.). Since the last three only
require model definitions, we use the script/generate model command.

Once the additional scaffolding is in place, we can visit the pages for displaying and editing customers and
partners. (See the URL scheme described in Table 11.2 for details.) Next, we need to edit the model
definitions in /app/models: to insert set_table_name and set_primary_key directives, and to establish foreign
key relationships. Since we already set the table name and primary key column in app/models/listing.rb, only
the relationships to other tables need to be established:

We need to specify the foreign key column explicitly, because our database schema does not abide by Rails’
naming conventions for primary and foreign key columns. The other model definition files will require
corresponding modifications.

Customizing views and using lookup tables

Next, we can customize view components, for both aesthetics and usability. By default, the app/
views/*/index.html.erb components display all the columns for each entity. The application employs a master-
detail pattern, in which the list page displays only columns needed for identification of an item, allowing the
user to “drill down” to details on another page. With this in mind, we remove all but a few columns from this
view. This means editing the app/views/*/index.html.erb files to remove the <td> and <th> tags that define
those columns in the table’s body and header. We can also make changes to CSS directives to enhance the

465

layout and edit the column labels (see Figure 11.10).
The app/views/*/show.html.erb pages display details about an individual entity. Unfortunately, these details

are displayed in their “raw” state - without accounting for lookup tables that translate codes into readable text.
For example, the referring_partner_id field is displayed as a number, referring to the primary key found in the
vrls_partners table. Obviously it would be considerate to our users to display names of partners instead of “id”
numbers.

Figure 11.10 Enhanced display using modified app/views/listing/index.html.erb.

Fortunately, it’s not complicated to add this lookup into the page. Inspecting the app/
views/listings/show.html.erb file, we notice that each field in the object defined by the variable @listing is
displayed on the page via an h tag:

This tag simply presents the HTML-escaped value of the field. Hence, we see the numeric partner id. To
present the name of the partner instead, we change this line to the following:

This line is a tribute to just how effective Rails can be. It executes the find_by_partner_id() method of the
Partner class, passing the value of the listing’s referring_partner_id field as an argument, extracts the
partner_name field from the retrieved Partner object, and displays the name instead of the numeric id value.

Where’d That Method Come From?

There’s just one problem: the Partner class does have a find method, which it inherited from
the ActiveRecord: : Base class and which can take arguments in the form of generic selection
criteria:

466

but we didn’t define a find_by_partner_id method ... did we?
Fortunately, Rails’ ActiveRecord classes use a feature called dynamic finders. In the Ruby

language, all classes inherit a method called method_missing, which is invoked whenever an
object receives a message referring to a method name it does not know about. In the
ActiveRecord: : Base class (and its subclasses), this method is overridden to react to unknown
method names that begin with find_by, by translating them dynamically into calls to the find
method as described above. This means you don’t need to go to the trouble of tediously writing
a long list of custom finder methods.

We can make corresponding changes to the code for displaying the referring_partner_id field in
app/views/listings/show.html.erb, and for the listing_status, listing_type, and listing_offer_type fields as well.
We should also change the labels displayed with each field from the database column name to something
more meaningful. These changes are reflected in Figure 11.11.

We can make corresponding changes in the app/views/listings/index.html.erbfile (assuming fields that we
want to change are still displayed on this page after the previous step). The remaining
app/views/*/index.html.erb and app/views/*/show.html.erb files can be modified similarly.

The page for editing real estate listings, which displays an HTML form consisting of editable text boxes,
poses a different problem. We could inject the correct value for the partner’s name into its corresponding text
box, but allowing free-form text editing on a field defined by a lookup value is not a great idea. We need a
dropdown, using HTML <select> and <option> tags that correlate the partner IDs with their names.
Changing the selected item in the dropdown and clicking the Update button should result in saving the listing
with the newly selected partner ID.

Figure 11.11 Display of http://localhost:3000/listings/1 after customization.

467

Rails can enable this lookup with a single line of code. In the app/views/listings/edit.html. erb file, the
HTML form is defined via a form_for tag:

Each field in the object defined by the variable @listing is displayed on the page via an f.text_field or
f.text_area tag, for example:

This tag presents an <input type=“text”> form field containing the current value of the referring partner’s
numeric ID. To present a dropdown displaying partners by name, with the current partner as the selected
item, we can change this line to the following:

This code associates the referring_partner_id field in the listing object with the selected item in the HTML
dropdown element generated by this tag. The items in the dropdown element will be populated from a list of
all the partners registered in the database, with item values set to the numeric IDs and labels set to partner
names. In the rendered edit page, the collection_select tag is expanded:

When the Update button in the form is clicked, the listing is saved in the database with the
referring_partner_id field set to the selected value.

We can change the number of rows displayed in the <textarea> element associated with the listing_desc
description field:

We can also change the way date fields are presented for editing in this form by adding an argument
specifying the ordering of month, day, and year:

468

Finally, we can change the labels associated with each field to make them more user-friendly. The results of
our efforts can be seen in Figure 11.12. Once again, we can make corresponding changes in the other
app/views/*/edit.html.erb files. Similar changes can be made to the app/views/*/new.html.erb files, which
contain the forms for creating new entities.

Figure 11.12 Display of http://localhost:3000/listings/1/edit after customization.

Form validation

Form validation in Rails can be accomplished by adding simple directives to the underlying model class. For
example, let’s assume that the form for creating or updating customers should validate that the customer’s
login name is unique and that it is between 5 and 12 characters long. It should prompt the user to enter the
password twice and verify that the entered values match. It should also confirm that a valid phone number has
been entered in the appropriate form field and that other required fields contain sensible values.

The validation functionality can be implemented by adding declarative directives to the
app/models/customer.rb file:

469

The directives indicate the kinds of validation each field requires:

• If the user-provided value for the login name (cust_login field) is not between 5 and 12 characters
long, the validates_length_of directive flags this as an error.
• If the entered login name already exists in the database, the validates_uniqueness_of directive flags
that as an error.
• The validates_confirmation_of directive checks that the password values entered in the
cust_password_hash and cust_password_hash_confirmation fields are the same, and flags it as an
error if they are not.
• The entered phone number is checked against the regular expression in the validates_format_of
directive, which enforces the “999-999-9999” format (with additional restrictions on the digits in
certain positions).
• Finally, the cust_address1 field must not be blank, so the validates_presence_of directive makes
sure that it isn’t.

For each of these error conditions, a custom error message is defined. When the form is submitted, the
validation checks are performed and, if any of them fail, the form is presented back to the user with a list of
errors at the top of the page (Figure 11.13).

The Rails framework supports a number of other declarative validation directives, including:

• validates_acceptance_of (e.g., “By checking this box, I accept this license agreement”);
• validates_inclusion_of (confirms that the value of a form field comes from a defined list);
• validates_numericality_of (confirms that the value of a form field is numeric).

Developers can extend validation processing by adding their own validation directives or by overriding the
validate() method. Rails provides built-in support for the Prototype and Scriptaculous toolkits, but the
automated generation of server-side validation code is not accompanied by the corresponding client-side
validation code (DHTML and AJAX). A third-party plug-in, ActiveScaffold, can be used to generate View
components that incorporate both server-side and client-side validation functionality (and also provide a much
nicer page layout), but it is not a standard component of Ruby on Rails.

470

Figure 11.13 New customer form page with validation errors highlighted.

Pagination

In Rails, it is relatively easy to tailor views to support pagination. First, we update the controller class to tell it
to use pagination:

Since our listings table only has three listings, we set the value of the :per_page argument to 2 so that the

471

results span two pages. Next, we add pagination to the view, near the bottom of the page:

We also add the following line at the very bottom of our config/environment.rb file:

We then restart the server. The result is shown in Figure 11.14.

“Relatively Easy” is Relative

When we said that adding pagination was “relatively easy”, we didn’t tell the whole story ...
We left out the fact that the original pagination functionality available in Rails 1.x was

removed in Rails 2.0. The Rails 1.x pagination examples in print and on-line tutorials no
longer work in Rails 2.0.

After a bit of research, we found that installation of a new plug-in, called will_paginate, was
the key to getting pagination working in Rails 2.0. This installation was not a simple task. It
should have been enough to run script/install plug-in, but attempting to contact the download
server consistently produced a 404 Page Not Found error. Further research indicated that the
plug-in should be downloaded not through script/install plug-in but through the gem
command.

Confused? Frustrated? We certainly were. A commonly used web application feature was
simply removed from the new version of Rails without regard for developers who were actively
using it. The alternatives for Rails 2.0 were difficult to find and, although will_paginate was
purported to be both simpler and more powerful, documentation on it is sparse and no less
difficult to find.

Reusable layout components

Rails provides mechanisms for building page layouts from reusable components. By default, the scaffolding
commands build an html.erb layout file in app/views/layouts for each controller class. Using the principle of
“convention over configuration”, a controller is automatically associated with an appropriately named layout.
For example, the controller for the Listing object (app/controllers/listings_controller.rb) is associated with the
preconfigured layout found in app/views/layouts/listing.html.erb, so all the views presented by that controller
(i.e., app/views/listings/*.Fhtml.erb) are wrapped by that layout.

472

Figure 11.14 Browser display with pagination.

Figure 11.15 shows the content of the generated app/views/layouts/listing.html.erb file. The <%= yield %>
tag (on the third line from the bottom) represents the position within the page layout where the view content
is injected. This layout is used by all views associated with listings. It can be customized, as shown in Figure
11.16.

The change adds a banner and a menu to the layout as shown in Figure 11.17. The link_to tags reference
the listings_path, partners_path, and customers_path variables, all of which were automatically set up during
scaffolding, as links to the respective index pages associated with each class (e.g.,
http://localhost:3000/listings/).

Figure 11.15 Content of generated app/views/layouts/listing.html.erb.

473

Figure 11.16 Content of modified app/views/layouts/listing.html.erb.

Figure 11.17 Browser display for listings page with modified layout.

The banner and menu could be refactored into a reusable partial view, which could be included in each of
the common layouts. The changes to Figure 11.15 could be replaced by the following line in each of the
app/views/layouts/*.html.erb files:

This directive references a partial view file named app/views/_banner_menu.html.erb, which would contain
the banner and menu <div> tags. Here we are simply embedding a static page fragment, but the directive can
include parameters to render its content dynamically (e.g., the way the list of items in the main VRLS
application’s menu bar changes depending on which page is being viewed).

Another approach would be to create one common layout that would be used by all views associated with
the same controller. To do this, we would create one common layout file (e.g.,

474

app/views/layouts/common.html.erb), then add a single line to all of the app/controllers/*.rb files to reference
this common layout:

Authentication and authorization

We’ve seen how Rails makes good use of inheritance in a number of areas (e.g., page layouts). Here we look at
how Rails’ use of inheritance simplifies the process of user authentication.

Because all our controller classes extend the ApplicationController class defined in
app/controllers/application.rb, changes we make to that class are inherited by all controllers. Rails controllers
can make use of filters, so we define a before filter that every controller executes before it performs its
processing. The before_filter defined in the base ApplicationController class references a protected method,
authenticate, which we add to that class:

The authenticate method is executed before a request is processed. Basic HTTP authentication is invoked
using the authenticate_or_request_with_http_basic method which is new to Rails 2.0. The server sends a
response with a 401 (Unauthorized) status code, causing the browser to prompt the user for credentials. If the
method returns true for the supplied credentials, the user is authenticated and processing can continue. If not,
authentication fails, and the browser displays the “Access denied” message.

This example performs very trivial authentication - it employs a single line of code that tests whether or not
the supplied user name and password are both “admin”. That line should be replaced by something more
practical, such as a query against a vrls_administrators table that only returns true if it finds a row where both
the user name and password columns match the entered values:

Moreover, basic HTTP authentication could be replaced with more flexible forms-based authentication.
The acts_as_authenticated plug-in can also be used to provide more sophisticated authentication
functionality. The point of this example is not to prescribe specific methods for performing user
authentication, but to demonstrate how a simple change to a single class can enable authentication for our

475

entire application.
Authorization would need to be performed at the server level. Mongrel is not capable of restricting access

by IP address, but if we add an Apache server front end to our Rails application, it becomes a simple matter to
configure the server to restrict the application to a range of IP addresses.

Replacing the Rails home page

We mentioned earlier that the default home page displayed by Rails could easily be modified by editing the
application’s public/index.html file. Because that page is just a static HTML file, though, it would not be
protected from access by unauthenticated users. The home page URL (http://localhost:3000/) can be
protected by associating it with a controller that extends the ApplicationController class, which was modified
in the previous section to enforce user authentication. Here are the steps that accomplish this task:

1. Run the script/generate controller HomePage index command. It builds the app/
controllers/home_page_controller.rb file (containing the HomePageController class) and the
app/views/home_page/index.html.erb file.
2. Edit the config/routes.rb file to add the following line, which maps the null path (“) to the
HomePageController class.

3. Edit the app/views/home_page/index.html.erb file to provide a customized presentation for the
application’s home page.
4. Delete the public/index.html file.
5. Restart the server.

That’s it. If we visit http://localhost:3000/, we should see the new home page after entering the proper
credentials.

Summary

Let’s review what we have accomplished:

1. We downloaded and installed Ruby on Rails and built an example application.
2. We executed Rails’ scaffolding commands to build the skeletal infrastructure for the VRLS
administrative interface.
3. We fleshed out the application by running additional scaffolding for all the model components.
4. We customized views to enhance application usability, including the use of lookup tables to
display human-readable translations of id numbers.
5. We added form validation, pagination, flexible layouts, authentication, and a custom home page.

There are still a number of features not included in the application, but this should provide a good sense of
what building a Rails application is all about.

476

Compared to the Java EE and Struts approach, Rails enabled us to get things done a lot faster. We were up
and running quickly, in much less time than it took to get a Struts application off the ground. Some
functionality was dramatically easier to implement in Rails. Validation of form fields, pagination of query
results, referencing lookup tables to populate dropdown selection lists, reusable page layout components, and
trivial user authentication were all remarkably simple to introduce into the application.

Although all of these features were available with Java EE and Struts, Rails made it significantly easier to
include them in the application. Adding declarative validation directives to Model classes is simpler than using
the Struts Validator API. Likewise, lookups for populating dropdown selection lists can be accomplished
using JSTL tags, but Rails’ mechanisms are even easier. The Tiles framework provides layout management
functionality for Struts applications, but Rails’ approach is, again, simpler. Other functions including
pagination and authentication require more coding in Java EE and Struts than they do in Rails.

On the other hand, once we have a basic working application, the effort required to customize it, both in
terms of front-end presentation and back-end server-side functionality, is similar. Rails’ scaffolding builds a
complete CRUD application “out of the box”, but customizing that application to fit specific requirements is
just as much work with Rails as it is with Java EE and Struts.

477

11.4 Benefits and Drawbacks of Using Rails

Truth be told, we did not get the opportunity to exercise the full array of features associated with Ruby on
Rails while building our application. We did not examine Rails’ generation of fixtures for unit tests, its
database migration capabilities, or its application deployment functionality. Nonetheless, the experience of
building this application in Rails gives us a solid perspective for evaluating the benefits and drawbacks of this
framework.

478

11.4.1 How rapid is rapid application development?

Rails’ use of scaffolding is supposed to be one of its most prominent features. Setting up Rails application
projects through automated scaffolding represents a welcome change from the tedious manual effort employed
in setting up Java EE projects. Eclipse and other Integrated Development Environment (IDE) tools have taken
some of the pain out of creating new Java EE applications, but smart scaffolding that builds enough structure
to run a simple application “out of the box” is preferable. When there is an excessive amount of boilerplate
code that needs to be written, coupled with an intimidating number of configuration files that need to be
customized, it becomes difficult to get something running quickly. Developers are naturally frustrated at the
current state of affairs in application development, where tedious initial efforts to set up application projects
do not produce immediately visible results. Overcoming this impediment is an important goal for any new
web development framework.

Is Rails really any faster or better than using an IDE like Eclipse to generate scaffolding? Ultimately, yes,
because Rails builds a functional, well-organized, MVC-based CRUD application that is modifiable and
extensible. As we’ve seen, modifying and extending that application was an easier task than it would be with a
Java EE application. Ruby’s status as a loosely-typed language (compared to the strict typing inherent in Java)
worked to our advantage in effecting genuinely rapid development. Dynamic finders are another useful feature
that eliminated a significant amount of repetitive boilerplate code. Integrated support for JavaScript and
AJAX toolkits made it easier to incorporate Web 2.0 functionality into an application.

On the flip side, it is difficult for IDEs to provide the same level of support for a loosely-typed language,
such as Ruby, that they do for more strictly-typed languages, such as C++ and Java. Good IDEs attempt to
catch potential problems (e.g., type mismatches in code) at the earliest opportunity. They scan through the
application codebase to find problems, prompting developers to correct them before building the application.
With a loosely-typed language, the whole notion of “type mismatches” goes out the window, so many
programming errors are not as likely to be caught early on in the process. Still, there is a good deal of support
for Rails developers. TextMate, a Mac OS X editor, was one of the first programs to provide integrated
support for Rails and has gained traction among developers. Aptana’s RadRails is one of many new IDEs
available and established IDEs, such as Eclipse and Idea, are adding Rails support. Ruby provides an
interactive command-line debugger, irb, which helps to monitor and debug Rails applications.

Overall, we had a positive experience with using Rails. In spite of the learning curve associated with a new
framework and various limitations we encountered during development (see Section 11.4.3), Rails
significantly increased our speed of application development.

479

11.4.2 Database support

Rails’ built-in support for relational databases is impressive. Scaffolding can generate a workable database
schema and ActiveRecord functionality employs a proven design pattern for object-relational mapping out of
the box.

At the same time, this support has limitations, especially with respect to enterprise applications with
complex database schemas. One such limitation is the lack of support for composite primary keys. It is
common for schemas, especially for tables that support many-to-many relationships, to have primary keys that
are composed of multiple columns. Third-party plug-ins exist to add a measure of support for composite
primary keys, but integrated support as part of the standard Rails distribution is not available.

480

11.4.3 Limitations of scaffolding

As we mentioned earlier, you get the biggest benefit from Rails’ scaffolding functionality if you are starting
from scratch, building a brand new Rails application without an existing database schema. Using Rails with a
legacy schema requires a lot more manual intervention. Fortunately, there is a page on the Ruby on Rails wiki

site1 devoted to using legacy schemas. It is disappointing that scaffolding is only of limited value with legacy
schemas. It is even more disappointing that the developers of the Rails framework do not see enhancing
scaffolding for applications using legacy schemas as important. Since many of the trial applications built by
organizations that are evaluating Rails connect to legacy schemas, it would behoove those developing and
enhancing Rails to pay attention to this issue and provide better support for that scenario.

A schema generated by scaffolding is not likely to be production-worthy. Database administrators (DBAs)
would need to get involved to optimize both the schema and the queries used to interact with it. Though Rails
has made significant strides in automating the design and configuration of databases, it has not eliminated the
need for formal schema design and DBA support.

Despite all of this, it should be said that even though significant manual intervention was required to get
this application going with our existing database schema, the amount of work was significantly less than what
would have been required for, say, a Struts application.

481

11.4.4 Scalability

Although Rails applications can run on a standalone Mongrel web server, for real-world production
applications need to use an external proxy through a more robust web server. Earlier versions of Rails
supported FastCGI under Apache. This mode of operation has been deprecated in favor of using Apache
Web Server 2.2 with the mod_proxy_balancer module to delegate Rails requests to an array of Mongrel
servers. This is workable but no less complicated than configuring Java EE deployments.

482

11.4.5 Performance and clustering

It’s not clear how well Rails performs in comparison to Java EE applications running in a clustered
environment. Solutions exist that provide support for clustering (including persistent sessions), but they are
still in the experimental stage. Employing such solutions is tricky and prone to problems.

Rails’ performance is definitely reasonable enough for small-scale intranet applications with a limited
number of concurrent users, but high-volume production applications will not fare well with Rails.

483

11.4.6 Version 2.0 issues

New frameworks are often quite exciting to work with during their pre-Version 1.0 days. During that phase of
development, new things are tried, new paradigms are developed, and powerful new functionality evolves.
During this phase, it is acceptable to make changes that eschew backward compatibility. After all, that’s what
beta software is all about: you should expect things to change radically. No one in their right mind would build
dependencies on pre-1.0 code that they know is likely to change.

Once the kinks are worked out, Version 1.0 is released and the situation becomes very different. People
start building dependencies on the framework, expecting some degree of stability. For this reason, releases that
follow Version 1.0 need to be backward compatible. If they are not and if existing applications require
significant rework to allow them to execute using the new version, framework developers run the risk of
alienating developers who have used the framework, deployed applications built with it, and evangelized it to
others.

The problem is that the kinks are rarely “all worked out” with the release of Version 1.0. Issues are
discovered that result in design changes that alter how the framework works and backward compatibility
suffers.

Version 2.0 of Rails introduced a number of changes, including new suffixes for template names (changing
from .rhtml and .rjs to .html.erb and.js.rjs), radically modified syntax for executing standard scaffolding
functions, and deprecation of both dynamic scaffolding and pagination functions. Needless to say, a lot of
confusion has arisen in the Rails development community over these changes. Things that used to work no
longer do. On-line tutorials that were clear and informative for Version 1.x caused chaos for people using
Version 2.0. Some people have said that the benefits associated with the original version of Rails are being
eroded as new releases provide improved techniques that are incompatible with the original techniques. How
agile is Rails if migrating a Rails 1.x application to Rails 2.0 is going to be as much of a pain as building a Java
EE application from scratch?

It is one thing for a framework to be successful and popular in its initial release. It is quite another thing for
it to remain successful and popular after it has gone through a major restructuring in a subsequent release. Java
has not been immune to this phenomenon and Sun has been guilty of making changes that break old code.
Microsoft claims to ensure backward compatibility across multiple releases of multiple software products, but
we’ve all experienced the exceptions to that rule. Nonetheless, established software vendors with a grounded
user base have much less to lose from this phenomenon than the creators of a fledgling framework who want
to expand their audience, not alienate it.

484

11.4.7 Is Rails web-designer-friendly?

An important factor to be considered in examining any new framework is the degree to which web designers
can exercise autonomous control over presentation layout, without requiring assistance from developers. We
have discussed the limitations associated with frameworks that require designers to call upon developers to
make simple modifications to page layouts.

Rails responds to that concern by providing a new set of tags and widgets that perform complex operations.
For example, we have seen the collection_select tag, which constructs an HTML <select> element containing
a list of <option> elements defined by a database table lookup. There are also asset helper tags, such as
image_tag and javascript_include_tag. However, parameter substitution in embedded page content uses the
<%=...%> notation known to cause the kind of problems we see in Figure 11.18. As we mentioned in Chapter
9, this notation violates XML formatting constraints, is hard to read, and is extremely cumbersome for web
designers. Many of Rails’ custom tags seem to exist for the express purpose of circumventing this problem
(e.g., image_tag, stylesheet_link_tag). Rails would do well to follow the lead of JSP 2.0 and use an expression
language that expresses parameter substitution values in a format not delimited by < and > characters (e.g.,
${object.attribute}).

The tags and widgets in Rails may appear to reduce the amount of work for designers, but having to learn a
whole new set of constructs for controlling page presentation may be a step backward. Designers already know
HTML and CSS. More experienced designers have a decent command of JavaScript, understanding at a bare
minimum the injection of <script> tags that reference external JavaScript files and the invocation of JavaScript
functions within the page. It makes sense to provide a small set of simple constructs that perform more
generalized iterative and conditional processing on top of the standard presentation languages with which
designers are already familiar. (This is the approach taken by JSTL.)

Figure 11.18 Nested <...> tags.

Providing a large set of new custom tags each of which performs a narrowly defined task, reminds us of a
custom API for View components. While developers may be comfortable sifting through volumes of
documentation to use complex APIs, designers are not. They are already familiar with HTML, CSS, and
JavaScript. They should not be required to learn a whole new set of custom tags.

This problem is by no means unique to Rails - PHP and JSF are also culprits, which makes it worse
because similarly purposed custom tags in PHP, JSF, and Rails each have radically different formats and
syntaxes. Knowledge accrued from learning specialized tags for one framework is not transferable when
learning those for another framework. This is the very situation we have been trying to avoid in the world of
competing, proprietary application frameworks.

485

A common argument is that providing a small set of generalized tags (the JSTL approach) is too “low
level”, resulting in minimal productivity gains for designers. On the other hand, problems with complex
framework-specific APIs may be far worse. The custom tags generate fixed blocks of HTML over which
designers have little or no control. Designers must learn these new custom APIs as adjuncts (or replacements)
for their existing HTML knowledge, with each framework having its own distinct vocabulary. The road we
ought to be going down lies somewhere between these two extremes.

486

11.5 Whither Enterprise Java?

Does the advent of Rails represent the death knell for Java? This may be a popular sentiment in the
blogosphere, but nothing could be further from the truth. Java, as both a programming language and a web
development platform, still has plenty of life left in it.

For one thing, there is Java EE 5. Compared to its forerunners in the Enterprise Java world, Java EE 5 is
leaner and far less complicated. The new specification for Enterprise Java Beans, EJB 3.0, has eliminated a
significant amount of the baggage associated with earlier versions. EJB 3.0 allows both session and entity
beans to be Plain Old Java Objects (POJOs), rather than requiring them to conform to arcane interface
requirements. The Java Persistence API (JPA) incorporates Hibernate-style ORM functionality that can be
used with or without EJB, giving developers even more flexibility. Use of annotations greatly reduces the need
for manual editing of configuration files (although they do create a tighter coupling between Java code and
deployment descriptors that can inhibit code reuse).

In addition, there is Groovy on Grails. Groovy is a scripting language with Java-like syntax that produces
JVM-compatible bytecode. Though Java purists may scoff at the looseness and informality of the language, its
advocates have found it a welcome enhancement to the Java platform. Grails, unsurprisingly, is a Rails-like
framework that uses Groovy as its underlying programming language, mimicking many of Rails’ most
prominently promoted features. This gives Grails a number of advantages comparable to Rails, while also
providing access to the power of Enterprise Java services (such as JNDI, JDBC, and JMS). Some view Grails
as just a stepping stone, producing prototypes that can be gradually transformed into full-blown production
applications. Grails applications need not be viewed in such a limited way: Grails is a complete Java EE MVC
framework and compiled Groovy code performs comparably to compiled Java code in production. Both
Groovy and Grails have generated a lot of excitement in the Java development community and both have
gained a lot of traction.

Additionally, there is JRuby on Rails, which uses an integrated Java implementation of the Ruby interpreter
within the Rails framework. It is intended to give developers the flexibility of Ruby combined with the power
of Java.

There will be a place both for simpler frameworks that offer rapid application development and for more
complex frameworks that offer scalability, clustering, and advanced transactional processing. In the long run,
neither approach is ideal. The complex frameworks require too much initial effort, and the simple frameworks
get you only so far, rapidly yielding a working application but not one that’s production-worthy. The key is
enabling initial development of an application in a simpler framework, coupled with the ability to migrate this
application iteratively to a more sophisticated environment.

487

11.6 Summary

In conclusion, the Rails experience was for the most part a positive one. Development velocity increased
dramatically and the process of enhancing the application constructed automatically from scaffolding
commands was far less tedious (and far less intimidating) than an equivalent process in a Java EE and Struts
environment.

On the other hand, there are a number of concerns about Rails’ viability in the real world of large-scale
enterprise applications. Even an environment where requests are routed through an Apache server using the
mod_proxy_balancer module connected to an array of Mongrel servers has serious scalability limitations. Our
administrative application is a prime example of a low-volume intranet application that is conducive to a Rails
implementation. However, performance-critical, high-volume applications may still require the robustness of
Java EE or another enterprise framework.

There are also concerns about the limited benefits derived from using scaffolding when working with legacy
applications and databases. Future versions of Rails need to account for the way Rails is often introduced into
new environments - with prototype applications that connect to legacy schemas as a proof-of-concept.
Providing support for that kind of application will be critical to Rails’ success in the long run.

A charge often leveled at Microsoft is that .NET makes simple things simple, at the expense of making
complex things extremely difficult or even impossible. Based on the limitations that were discussed in this
chapter, we have to question whether Rails is just as guilty of this. Rails is a young framework that has
experienced explosive growth in a very short time. We hope that future versions will transcend current
limitations.

QUESTIONS AND EXERCISES

1. Install and deploy the sample Rails application. Follow the instructions found on
the book’s web site, at
http://www.webappbuilders.com/package/railsapp/readme.html.
2. Customize the administrative interface by modifying the view components (the
app/views/ model_name/*.html.erb files), beyond the modifications already suggested
in this chapter. How easy or difficult was this process? What could be done to
improve it? How difficult would it be for a web designer to make the changes you
made?
3. Build the original VRLS application as a Rails application. Work from the ground
up, without the benefit of an existing database, and make use of Rails’ database
scaffolding features. Use default names wherever possible.
4. Enhance the pages that list entities (the app/views/model_name/index.html.erb
files) to add search functionality enabling administrators to find entities based on
user-specified criteria. (Hint: The paginate method can take an optional :conditions
parameter. See the webcast at http://railscasts.com/episodes/51 for more

488

http://www.webappbuilders.com/package/railsapp/readme.html
http://railscasts.com/episodes/51

information.)
5. Try adding an xml suffix to a URL for displaying an individual object (e.g.,
http://localhost:3000/ listings/3.xml) and visit that URL in your browser. Where can
you override this behavior?
6. As a developer, what advantages have you found in using the Rails approach?
What drawbacks?
7. Assuming that Rails represents the current generation of web application
frameworks, what could the next generation of frameworks do to improve on the
current generation?

489

11.7 Bibliography

Bini, Ola, 2007. Practical JRuby on Rails Web 2.0 Projects. New York: APress/Springer-Verlag.

Halloway, Stuart and Gehtland, Justin, 2007. Rails for Java Developers. Raleigh (NC): Pragmatic Bookshelf.

Holzner, Steve, 2006. Beginning Ruby on Rails (Wrox Beginning Guides). Indianapolis (IN): Wrox Press/Wiley
Publishing.

Orsini, Rob, 2007. Rails Cookbook. Sebastopol (CA): O’Reilly Media.

Rocher, Graeme, 2006. The Definitive Guide to Grails. New York: APress/Springer-Verlag.

490

11.8 Web Links

Bates, Ryan, 2007. Railscasts: will_paginate. Available at http://railscasts.com/episodes/51.

Fowler, Martin, 2002. Patterns of Enterprise Application Architecture. New York: Addison-Wesley.

Harms, Steven G., 2008. Scaffolding has changed in Rails 2.0: Has it become un-Agile?. Available at
http://stevengharms.com/scaffolding-has-changed-in-rails-20-has-it-become-un-agile.

Ruby on Rails wiki. How to Use Legacy Schemas. Available at
http://wiki.rubyonrails.org/rails/pages/howtouselegacyschemas.

491

http://railscasts.com/episodes/51
http://stevengharms.com/scaffolding-has-changed-in-rails-20-has-it-become-un-agile
http://wiki.rubyonrails.org/rails/pages/howtouselegacyschemas

11.9 Endnotes

1 http://wiki.rubyonrails.org/rails/pages/howtouselegacyschemas

2 http://stevengharms.com/scaffolding-has-changed-in-rails-20-has-it-become-un-agile

492

http://wiki.rubyonrails.org/rails/pages/howtouselegacyschemas
http://stevengharms.com/scaffolding-has-changed-in-rails-20-has-it-become-un-agile

CHAPTER 12

Search Technologies

IN THIS CHAPTER

• Web search
• Search applications
• Search engine optimization

OBJECTIVES

• Introduce and illustrate basic search algorithms.
• Examine common enhancements to search algorithms.
• Discuss Google’s Page Rank and other web search techniques.
• Analyze web spider architecture and principles of operation.
• Analyze the architecture of modern search applications.
• Examine techniques used in search engine optimization, including “Black Hat”
techniques.

People use the web for many different reasons: to shop, to be entertained, to read news, and to perform
research. As the exponential growth of the web continues, new on-line resources are constantly appearing,
while old resources move, change and sometimes disappear. Search engines have become the primary means
for finding relevant information. It is not enough for web site owners simply to offer content and applications
that people want; they must make sure that global search engines find their offerings and attract visitors to
their sites.

The importance of search technology is not limited to the global search engines like Google, Yahoo, and
Ask.com. It is just as critical for local applications that provide search functionality for a single site or a set of
related sites. The global search engines make use of proprietary search technologies, which are not available to
the general application development community. The most popular of the publicly available technologies are
Fast, Google Enterprise (which includes a limited subset of Google’s proprietary search functionality), Lucene
(which is a popular, open-source search library written in Java), and Solr (which is an open-source enterprise

493

http://Ask.com

server based on Lucene).
In this chapter, we cover a variety of topics related to search technology:

• We open the chapter with a discussion of algorithms for indexing and searching plain text
documents. Our objective is to provide our readers with insights into the inner workings of the
search engine. We also aim to give readers enough information to make good design decisions when
building their own search applications.
• Next, we concentrate on challenges and solutions that are specific to two kinds of search
application - global applications for searching the entire web and applications that enable site
search. In the course of discussing web search, we provide an overview of Google’s Page Rank
algorithm. In the course of discussing local search applications, we provide a brief summary of
Lucene.
• We conclude the chapter by discussing how site owners can use their insights into the inner
workings of search engines to make their pages easier to find. The set of measures that allows a site
to maximize search engine traffic is called Search Engine Optimization (SEO).

What Is (and Isn’t) a Search Engine?

The term “search engine” is overloaded - it can refer both to the technologies behind full text
search and to applications and services that index and search content across many unrelated
sites. To avoid ambiguity, we apply the term “search engine” only to applications that provide
search capability across the entire web.

494

12.1 Overview of Algorithms

This section provides an overview of the main principles underlying search technologies. We start with the
vanilla algorithm based on the vector space representation of documents and queries, and discuss the most
common simplifications and enhancements. The objective is to provide readers with insights into the inner
workings of open source and commercial search technologies. Such insights are invaluable, both in building
local search applications and in devising SEO strategies.

495

12.1.1 Historical perspective

The history of search technologies predates the Internet. It goes back to the 1960s, when Gerald Salton and
his team of Cornell scientists created Salton’s Magic Information Retriever of Text (SMART). SMART
pioneered the vector-space model and other critical innovations, which influenced future evolution of search
technologies, including the relevance feedback algorithm (personalized reweighting of query terms based on
the user history of queries and selections). Later developments in search technologies included Latent Semantic
Indexing (LSI), which was patented in 1988 by S. Deerwester, et al. LSI is based on conceptual grouping of
documents and the terms contained in these documents. An example of term grouping is a word cluster that
contains the words “train” and “plane”. A search for “train” would yield documents containing either of the
terms.

The first Internet search engines (such as Archie and WAIS) used straightforward implementations of the
vector space models. Their followers (such as AltaVista and Excite) all built their own heuristics that
augmented the same basic algorithms. These proprietary heuristics were behind the search experiences of the
1990s; it was common to get no intersection between top search results for queries posted to different search
engines. Google was first to systematically take advantage of the additional information hidden in the
hyperlinked nature of web resources.

496

12.1.2 Basic vector-space algorithm

Before we get to modern search technologies, let us discuss the vanilla search algorithm, which you can
implement simply and quickly. It can be used to build and support your own search engine, which provides a
good feel for search engine behavior. This comes in handy when using open source and commercial search
engines.

We start by building an index for three short documents (see Figure 12.1). We are not attempting to
implement semantic search (search based on the meaning of queries). In this simple algorithm, we disregard
both the sentence structure and any meaning that spans multiple words. We implement keyword search and
ignore words that might otherwise be considered to be search modifiers (e.g., “not” or “and”). This means that
we can discard “this”, “their”, “is”, “not”, “and”, “or”, “of”, and other so-called stop words that do not have
meaning out of context (see Figure 12.2). For sophisticated algorithms, the criteria for designating stop words

can be much more stringent and they depend on the language in which the stop words are written.1

Our next step is to remove punctuation marks and to reduce words to their root form or stem (see Figure
12.3). This process is called stemming. It is commonly implemented as a combination of suffix and prefix
reduction rules (e.g., from “students” to “student” and from “technologies” to “technology”) and table lookups
for irregular stem transformations (e.g., “swam” to “swim”). The same rules that are applied when indexing
documents need to be applied when processing search requests. Modern commercial search engines use more
sophisticated techniques - from lemmatization (varying transformation and reduction rules for different parts
of speech) to stochastic algorithms, which are based on trainable probabilistic models. Since we want to keep it
simple, we stick to stemming.

Figure 12.1 Documents to be indexed.

497

Figure 12.2 Documents with stop words identified for removal.

Figure 12.3 Documents with stemming changes identified.

Should “science” and “scientist” both be reduced to the same stem? If they are, it helps to reduce complexity
but also adds “noise” to search results. We err on the side of simplicity.

Now that we have removed stop words and performed stemming, it is time to construct the vector space of
terms, which is the core of our index. We start by building the dictionary; adding a new word when it first
occurs in one of the documents. In Figure 12.4, the numbers in brackets indicate references to entries in the
dictionary with italics indicating repeat word occurrences:

Now we have the dictionary of stemmed words that occur in the three documents in our repository (Figure
12.5). Note that the words are referenced by the order of their occurrence in the documents. This way,
references do not have to change when adding new documents.

We can represent a document as a 40-dimensional vector (one dimension per unique word in our
dictionary). The values in the <dictionary reference>:<number of occurrences> format represent the number of
each word’s occurrences in respective documents (Figure 12.6).

498

Figure 12.4 Documents with unique words identified.

Figure 12.5 Search dictionary.

Figure 12.6 Representation of documents as 40-dimensional vectors.

Now that we have the vector space, which consists of the three documents, we can use it to find the most
relevant documents for any free-form query. The idea is simple; represent a query as a vector in our document
space, compute the distance between the query vector and the document vectors, and rank documents in
reverse order of their distance from the query vector. We do not discuss vector operations here. There are
well-known algorithms as well as commercial and open source libraries that support these computations.

Example

Let us consider the following sample query:

499

As when building the document space, we start by eliminating the stop words and stemming. This leaves us
with the following query:

Notice that “search” and “technology” are present in the dictionary and “promise” is not. If we were adding
a document to the vector space, we would have added the word “promise” to the dictionary. Strictly speaking,
we would have had to update document vectors. In practice, this can be avoided if we establish the convention
that missing vector arguments are always set to “0”. This way, existing vectors would not need to change -
newly added words could not have occurred in these documents, otherwise these words would already be in
the dictionary.

A query vector is only a transient addition to the vector space (for the duration of the query). Hence, there
is no reason to account for words that do not occur in the dictionary. After dropping the word “promise”, the
surviving terms are:

The following vector represents this query:

According do our convention, this is equivalent to:

Now it remains to compute distances between the query vector and document vectors accounting for
dimensions present in the query vector. The shortest distance means the best match. The result is unexpected
and counterintuitive - we find that the shortest distance is between doc-q and doc3 instead of doc-q and
doc1, and doc2 is not even in the running.

Enhancement 1: weighting for multiple occurrences

Clearly, this is not a good result. Intuitively, more occurrences of the query terms in the document should
make it a better match. We can achieve this by introducing a heuristic multiplier (e.g., 1000) to the vector
representation of query terms:

500

Now the results are intuitive - the multiplier is large enough to ensure documents with multiple occurrences
of query terms get precedence. We find that the shortest distance is between doc-q and doc1, the second
shortest is between doc-q and doc3, and the longest is between doc-q and doc2.

Enhancement 2: weighting for phrases

This is better but not good enough - the third document relates to using police technologies to search for
serial killers. It is not relevant to the spirit of our query while the second document belongs to the same
domain as the first and is semantically relevant. However, the words “search” and “technology” occur in the
third document, but not in the second, which uses terms “information retrieval”.

We need to find a simple way to give more weight to phrases as opposed to individual terms and create
connections between phrases that are semantically similar. The simplest path is to add a human processing
step - analyze the document domain, define common phrases, and establish connections between them.

In our example, we define the following phrases:

We establish a connection between “search technology” and “information retrieval” so that these phrases are
synonymous within our vector space. We have to update the dictionary to accommodate our multi-word terms
(see Figure 12.7). Our document vectors are different as well (see Figure 12.8).

The query vector also changes to account for the occurrence of the phrase:

Note that we are applying the heuristic multiple introduced in Enhancement 1 to both word and phrase
terms.

Before we try our query again, let us consider the relative impact of word and phrase matches. The distance
between query and document vectors should reflect the higher selective power of phrase matches. A simple
solution is to assign a higher weight to the occurrence of a phrase by introducing a heuristic multiple. For
example, we can say that an occurrence of a phrase is equivalent to 10 occurrences of an independent term.
(The number 10 is arbitrary-aproper setting would require much experimentation and analysis.) Resulting
document vectors are shown in Figure 12.9.

Computing the distances from the query vector to document vectors, the best match is for document 1 and
the second best match is for document 2.

501

Figure 12.7 Search dictionary with synonymous phrases.

Figure 12.8 Vector space with synonymous phrases.

Figure 12.9 Vector space with heuristic multiple for phrases.

502

12.1.3 Common enhancements

The enhancements we discussed in the previous section require much analysis and tuning to be effective.
More sophisticated algorithms use a wide range of techniques to automate this analysis.

The goal of the first enhancement (a heuristic multiple for query terms) is to ensure that the query vector is
“closer” to document vectors representing a higher number of repeated occurrences of terms found in the
query. Instead of selecting an arbitrary “large enough” multiple (e.g., “1000”), we can set it to the maximum
number of occurrences of a single dictionary term in any document. Since the multiple is used to compute the
query vector in the context of a particular collection of documents, the magnitude of any of its projections
would never be lower than that of a document vector within the same collection. This ensures the desired
property of rewarding the largest number of occurrences of the query terms in indexed documents.

The goal for the second enhancement is to reward phrases more than individual terms. The manual process
works but it requires laborious analysis and selection of term pairs that occur in the documents. A common
approach is to add pairs of terms occurring in the collection to the dictionary automatically. The problem is
the high number of incidental noise pairs. A common way to cut down on such incidental pairs is to define a
threshold for the number of occurrences of such word pairs (usually at least three occurrences). This would not
have worked in our document collection because it is too small.

Even with these two enhancements, our algorithm only takes into account the term frequency (the number
of term occurrences in individual documents); it does not account for the inverse document frequency (IDF).
IDF is the number of documents in the collection in which a term occurs. A higher term frequency is a
positive bias. Higher IDF should have the opposite effect. The more documents contain the same term, the
lower its selective power.

Consider a collection of documents dedicated to mammals. The term “monkey” refers to a broader
classification than “baboon”, which is a specific species. Consequently, “monkey” should occur in more
documents and have a higher IDF than the term “baboon”, and “baboon” should have the higher selective
power. For a query “baboon monkey”, a document about baboons should be rated higher than documents
about other monkeys (no matter how many times the term “monkey” occurs in these documents).

We can account for IDF when computing distances between query and document vectors. Computations
for individual terms are not affected. However, the contribution of these computations in calculating distances
between vectors is not the same. It is determined by the IDF term weighting and has an inverse dependency
on the IDF.

IDF term weighting is heuristic in nature, but it works so well that it has led to many attempts at
theoretical explanations, none of which have been entirely successful. The most common formula for
computing IDF term weights, which is experimentally proven to produce good results, calculates a term
weight as the logarithm of the ratio of the number of documents in the collection to the number of documents
containing the term.

503

504

12.1.4 Word clustering

The two generally accepted measures of quality of search results are precision and recall. Precision is defined as
the ratio of the number of relevant documents retrieved during a search to the total number of documents
retrieved during that search. It measures the amount of “noise” in the results. A precision score of “0.0” means
that the results are all noise. Conversely, a score of “1.0” means that all results are relevant.

Recall is defined as the ratio of the number of relevant documents retrieved during a search to the total
number of relevant documents that exist in the collection. It measures the completeness of search results. A
recall score of “1.0” means that every relevant document in the collection was found.

Enhancements that were discussed earlier in this chapter aimed at increasing both precision and recall. In
this section, we discuss word clustering techniques that are specifically designed to improve document recall,
even at the cost of precision.

In the example in Section 12.1.2, we manually mapped “search technology” to “information retrieval”
because we considered these phrases to be semantically related. There exist statistical methods that make it
possible to discover such semantic relationships. These methods are based on the assumption that two terms
or phrases are semantically similar if they co-occur with the same set of common words. For example, “car”
and “automobile” are likely to occur within the same context. We can successfully apply these methods to
discover semantic relationships between terms that occur in real-world document collections.

Details of the statistical methods for discovering semantic relevance are out of scope for this book. Our
sample document space is too small to apply these methods but we can illustrate their effect by constructing
word clusters by hand. The hand-constructed clusters are too inclusive (include words that are not always
closely related) because we have too few terms to choose from. Consider the following word clusters for our
example:

Now, our documents will have the following form (compare with Figure 12.4):

505

We can rewrite them in the form of document vectors:

As before, we can reduce the query “the promise of search technology” to “search technology”. As discussed
in Section 12.1.3, we set our query term multiple to 3 (the maximum number of occurrences of a single term
in any of our documents). Now we have the query vector:

Documents 1 and 2 remain the best hits but document 1 now has a higher ranking. This is an interesting
result, which is well justified by the meaning of the documents. Word clustering does not capture document
semantics directly. However, constructing word clusters based on the statistical analysis of word context does
introduce the element of semantics. Consequently, we can find documents that otherwise would not be
included in the results. Using information retrieval terminology, this improves the recall rate. These
improvements may come at the cost of precision.

506

12.1.5 Custom biases

Throughout this section, we have used simple solutions to illustrate general ideas behind search technologies.
Real-life commercial and open-source implementations use more sophisticated algorithms than the ones
discussed here. In addition, such implementations use complex heuristics to implement proprietary
enhancements, take advantage of additional information (e.g., classifications and output of data mining tools),
and impose custom biases on search results.

A common example of a custom bias is publishing time for news items. When searching news, the more
recent item is usually more relevant. Finding the right balance between relevancy and publishing time is very
tricky. Combining these and other biases is commonly relegated to custom heuristics.

A simpler approach to searching for news is to use a basic keyword search and prioritize hits based on
publishing time. This works if the hit list is relatively constrained. Algorithms that we have discussed in this
section implement so-called “implied OR”, where the hit list includes documents containing all or some of the
terms in the query. This does not work well with time sorting because marginally relevant documents may end
up at the top. For example, you may search for “General Motors” and the top hit is the most recent news item
about a visit to Turkey by General Petraeus. In practice, time sorting is combined with “implied AND,”
which can be implemented as the intersection of hit lists for individual terms of the query.

507

12.2 Searching the Web

This section covers search engines, which are built to support web-wide search, and the unique issues
associated with their design and operation. It is critical that web application architects have a clear
understanding of the design principles behind web search engines. Insights into search engine operation are
necessary for constructing successful strategies for search engine optimization (SEO). As we discuss in Section
12.4, SEO strategies cannot be an afterthought and have to be considered at the early stages of web site
design.

Searching the web is very different from searching limited collections of static documents. There are
differences both in scale and in the nature of the web resources to be indexed and searched. The scale
associated with web search is in the billions - both billions of documents and billions of queries. This
translates into serious software engineering challenges in indexing, searching, and retrieving content.

508

12.2.1 Google page ranking

In web searches, lower precision results are almost never useful. In practice, only the top 10-20 matches are of
interest to users. Consequently, recall takes a back seat to precision and some of the popular indexing
techniques, such as stemming and word clustering, cannot be used successfully in their original form.

Stemming and word clustering are useful tools in reducing the scale of the vector space and improving
recall, but they reduce precision dramatically. With this in mind, search engines often resort to techniques
more sophisticated than stemming. Word clustering can still add significant value to the quality of search.
What we need is a way to compensate for the imprecise nature of word clustering while retaining its benefits.

Fortunately, the hyperlinked nature of the web holds an opportunity to account for the popularity of pages.
Google’s rise to fame closely relates to the notion of page rank. A page rank is calculated by adding the ranks

of pages that reference it divided by the number of links on these pages:2

Here, A is the page in question, T1 through Tn are documents that reference A, PR is the page rank, C(Ti)

is the total number of links to outside resources on page Ti, and d is a heuristic damping factor, which was set

to 0.85. Google designed the page rank to form a probability distribution, which means that the ranks of all
pages add to 1. It is relatively simple to write an iterative algorithm for computing the page rank.

The idea of page rank is to reward frequently referenced pages by presenting them higher in the search
results. A similar but simpler idea was used in the past to rank research papers by the number of citations.
With the Google page rank, the value of a reference is directly proportional to the rank of the referring page
and inversely proportional to the number of references on that page. Google managed to achieve excellent
results by combining page ranks with results of traditional queries based on full text content and page
metadata.

The algorithms used by real-world search engines are more complex than the vanilla search algorithms
we’ve discussed so far. In the case of page-rank computations, they need to detect circular references and other
deceptive ways of convincing search engines to assign higher ranks than the pages actually warrant. (This kind
of cheating is known as rank spoofing.) The same goes for content indexing - both in using heuristics to assign
different weights to marked up text depending on the markup tags and in detecting and ignoring various
forms of hidden content (e.g., white text on a white background).

509

12.2.2 Web spiders

Because web sites are always changing, it is a challenge for search engines to notice and process new and
updated web pages. The process of automatically following links embedded within HTML and XML pages
and retrieving and indexing HTML, XML, Microsoft Word, Adobe PDF and other documents is called web
spidering . Programs designed for this task are called web spiders (also referred to as web crawlers and robots).

Web spiders start from a set of seed URLs and from there traverse the web without human intervention.
Like browsers, web spiders submit HTTP requests and process HTTP responses, but unlike browsers, they
do not render the pages and retrieve secondary content (such as, images or CSS style sheets). Spiders parse the
bodies of HTTP responses, indexing the content and looking for embedded links. They resolve relative links
(see Section 7.3) and execute JavaScript code embedded within pages to construct dynamic links. Spiders
follow these links and continue the process recursively on subsequent pages that they encounter.

Web spidering serves many purposes. The purpose that concerns us here is the way search engines use
spidering to populate and maintain web-wide databases of HTML, XML, Microsoft Word and other
documents. Single-site search applications may use a spider to maintain their content databases, but this goal
can more easily be achieved by tying index generation and update processes to publishing and content
management systems. In other words, the publication of a new or updated page via a site’s content
management system can trigger an update to the index.

Other applications of spiders include their internal use by web sites to maintain link integrity and to
validate hosted HTML pages. On the less benign side, spammers use spiders to harvest e-mail addresses,
telephone numbers, and other personal information from web pages.

Spiders employed by search engines face unique and very difficult challenges because of the incredible
volume and the extraordinary rate of change that characterize the web document space. The high volume
makes it necessary for the spider to prioritize page retrievals because it can retrieve only a limited number of
web pages within a fixed period. Dynamic page generation, which is controlled by complex combinations of
URL parameters, exacerbates the problem further, forcing spiders to decide between relevant and irrelevant
combinations of these parameters. (A combination is relevant if it produces unique content instead of
rearranging the same content on the page or applying a different style sheet.)

The high rate of change makes the prioritization problem even more difficult. By the time the spider
finishes traversing a site, some of its pages may already have been updated or deleted. Spiders that do not take
into account the frequency of updates would make it impossible for their search engines to maintain any
reasonable measure of the freshness of content. Such spiders may end up revisiting unchanged pages and
failing to update pages that change frequently. Note that it is much more important for search engines to learn
about page deletion than incremental updates. An incremental update to page content may have minimal
impact because the old content used for indexing was close enough not to matter for search results. Clearly, it
is not good practice for content sites to reuse the same URLs for very different content. We come back to this
discussion in Section 12.4.

Spider behavior is controlled by a number of policies:

510

• The selection policy controls page retrieval. Popular selection policies include breadth-first and top-
page-rank-first. Page rank is a great measure of page importance but it is not always available to the
spider. Real search engines use hybrid selection policies that they keep proprietary.
• The re-visit policy controls the frequency of page retrievals. Advanced re-visit policies take into
account the page rank, the frequency of change, the trustworthiness of a site’s declarations about its
change frequency (Section 12.4.1), and the extent of change. For search engines, it is important not
only how often pages change but also how much they change, because small incremental changes
may not have any impact on search results.

Figure 12.10 is a simplified illustration of spider operation. The Spider Client module starts off by
submitting requests to designated seed URLs. It filters responses by their MIME types (text/plain, text/html,
application/xml, application/msword, and other common types). HTML and XML documents that require
additional processing to complete their transformation and assembly are forwarded to the Page Normalizer.
The remaining XML, HTML, plain text, Microsoft Word, Adobe PDF, and other documents are passed
directly to the Markup Stripper, which extracts the text and saves it in the content database.

The Page Normalizer populates IFRAMEs, applies XSLT style sheets and executes JavaScript functions
involved in constructing dynamic URLs. After completing the processing, the Page Normalizer forward
normalized documents to the Markup Stripper. In addition to extracting and saving text, the Markup Stripper
parses HTML and XML documents to retrieve resolved URLs and pass them on to the Scheduler for later
processing. The Markup Stripper also may apply heuristics that assign higher weight to the page title and
headings, by repeating them multiple times in the text version.

Figure 12.10 Spider architecture.

The Scheduler is a multi-threaded program that manages URL queues and communicates with Spider
Clients. It implements the selection and re-visit policies established by the search engine. It retrieves site
policies from the robots.txt files (Section 12.4.1), which may contain important information about URLs to
ignore, location of site maps, etc. Scheduler is responsible for detecting circular references. It may maintain
information about site misbehavior and use it in de-prioritizing requests to that site. Spider Clients submit
requests initially to seed URLs and later to URLs provided by the Scheduler.

511

Commercial and open-source implementations may differ from the outline described in this section but the
main components and their interaction have to be fairly close to perform their intended function. We return
to this discussion in Section 12.4.

512

12.2.3 Summary

The main benefit provided by search engines is in helping users to find the most relevant content and
applications. At the same time, the content sites seek to use search engines as a means of attracting users. In
practice, there is not always a symbiotic relationship between web sites and search engines. Some web site
owners employ tricks that cause their sites to get better positioning in search results than they merit,
sometimes to the point of getting their pages to show up inappropriately in completely unrelated searches.
Most sites, however, are not that duplicitous. They simply want to find legitimate ways to make their pages
visible to the search engines. We cover these mechanisms in Section 12.4.

513

12.3 Site Search Applications

In the previous section, we discussed the challenges associated with implementing search engines, which
provide search capability across the web. In this section, we concentrate on local search applications that
provide search capability within a single site or a related set of sites.

The usability of a web site depends on how easy it is to locate the right function or content. Site navigation
is the subject of many books on front-end design and information architecture. However, you can only
accomplish so much by optimizing traversal of a complex site. Such sites need search applications that provide
users with a friendly way to find the pages they are looking for. Search technology is the heart of such
applications but these applications require other critical components as well.

At a minimum, they have to ensure that newly published pages are indexed and become available through
the search interface. It is the responsibility of the search application to capture publishing events and pass new
or updated pages associated with these events to the indexer. Many search technologies are packaged with
pre-processing components, which are responsible for extracting text from documents in Microsoft Word,
Adobe PDF, HTML, and other popular formats. If the pre-processing components are not available with
search technologies, they become the responsibility of search applications. It is common for text-extraction
modules to implement markup-based awards. For example, a word occurring in the title of an HTML
document may be inserted into the generated text several times, depending on the configuration.

Modern search applications are not limited to full text search. Google’s concept of “OneBox,” which was
first introduced to retrieve stock quotes in concert with full-text queries, is based on a thin layer of query
analysis fronting a wide variety of related applications, from full-text search technologies to custom company
name search and quote retrieval applications. Properly designed OneBox applications can deliver very
rewarding user experiences, but they can be complex and present unique challenges to application designers.

We start this section with an overview of the general architecture of search applications, followed by a
discussion of Lucene, an open-source search technology that is used by major commercial web sites. We
conclude this section with a discussion of OneBox implementations.

514

12.3.1 General architecture

It is common for search applications to maintain separate indexes for different types of content and for
different sources of information describing the same content (Section 12.1.1). Examples of different types of
content include text, pictures, and video, where indexes for pictures and video are constructed from associated
captions, descriptions, or video scripts. For an example of different sources, consider scientific articles, which
can be indexed separately based on their full text, abstracts, and editorial keywords. Advanced search
applications that execute queries against multiple sources are responsible for their own logic in combining the
results of these queries.

In Figure 12.11, HTTP requests initiated by users through their browsers arrive at the Query Processor
hosted at the application server. This module is responsible for analyzing the requests and generating full-text
queries for text, images and video. The Document Query Manager is responsible for executing the text query
against two different indexes (full content and article abstracts) and combining the results. The logic for
combining the results is application-specific. It may compensate for articles that only have their abstracts on-
line or, conversely, articles that do not have abstracts. It may reinforce query results for articles that come out
on top for both queries.

The Query Processor is also responsible for executing queries for images and video. Having received the
results of queries for text, images and video, the Query Processor combines them into a single results page.
Loading the results page may trigger AJAX requests to additional applications that make use of the original
query. In Figure 12.11, the Query Processor applications are responsible for selecting the most relevant
publicly traded companies based on information in the query, finding their ticker symbols and retrieving their
latest available stock quotes. We revisit the method of passing query information to multiple applications in
Section 12.3.3.

If this system were implemented using Java servlets, given the single-threaded nature of servlet execution
flows, the HTTP response carrying the results page would take at least as much time as the all individual
search queries combined plus additional processing time.

The alternative architecture in Figure 12.12 addresses this problem by deferring search queries for images
and video. Here, the Query Processor formats results returned by the Document Query Manager and adds
JavaScript code, which can initiate AJAX requests for the remaining queries (images and video). When the
results page is rendered (the onload condition), the AJAX requests are submitted to the query processing
servlet, which is dedicated to processing queries and search results for images and video. The side-benefit is
the limited impact on user experience if searches for images or video are slow or failing. Users are able to
access search results for text documents without delays or timeouts.

515

Figure 12.11 Structure of a search application.

516

12.3.2 Lucene

Lucene is a scalable Java library of search components, which enables the construction of custom full-text
indexing, search, and retrieval applications. It is not a ready-built technology; you should not make the
common mistake of confusing reference applications with out-of-the-box solutions. Lucene is being

developed as part of the Apache project.3 It was first released in 2000 and has become the most popular
alternative to commercial search technologies.

Figure 12.12 Alternative structure of a search application.

Lucene index construction classes, just like the technologies that were discussed in Section 12.1, require
that all documents be in plain text format. Lucene does not come with a toolbox for extracting text from
Adobe PDF files, Microsoft Word documents, or even HTML and XML files. Fortunately, such tools are

available from other open-source libraries. For example, the PDFBox4 library includes the
org.pdfbox.searchengine.lucene package, which is designed to work with Lucene. It contains the

517

LucenePDFDocument class, which hides the complexities of extracting text from PDF documents. A simple
PDF document can be converted to an indexable Lucene document object with a single statement:

Figure 12.13 Creating indexable Lucene documents for Microsoft Word files.

Text extraction from Microsoft Office documents is supported by the Apache POI project.5 The POI
project provides Java APIs for manipulating file formats based upon Microsoft’s OLE 2 Compound
Document format. It makes it possible to read and write Microsoft Office files (e.g., Word documents and
Excel spreadsheets) using Java. However, we don’t need the full power of POI to manipulate these files. All
we need to enable Lucene indexing is to extract the plain text content and add it to a Lucene document. That
is easily accomplished through the writeAllText() method of the POI WordDocument class (see Figure
12.13).

In this code snippet, wordDoc is a WordDocument object. The writeAllText() method outputs extracted
text to a StringWriter, which stores the accumulated text in a StringBuffer. We retrieve the text by invoking
the toString() method of StringWriter. Once we have the text, we create a Lucene Document object and
assign the extracted text to the body of this object.

There are great many open-source solutions for extracting text from HTML and XML documents.
HTML documents may present a bit of a challenge because a significant number of them are not well-formed

XML documents (see Section 5.1.1). The JTidy parser6 is a good choice for retrieving plain text from
malformed HTML and XML documents. It is a port of the W3C’s Tidy utility, which has been through a
decade of development first at W3C and later by a group of enthusiasts at Sourceforge. It is invoked through
the parseDom() method of the Tidy class, which infers and returns the DOM tree, which corresponds to the
closest well-formed analog of the original document. It is a simple task to retrieve text contained within
individual elements of a well-formed document, potentially giving special treatment to text within <title>,
<meta> and other tags.

The code snippet in Figure 12.14 illustrates the process of extracting the body of the document and adding
it to a Lucene document object. We create an instance of the Tidy class and invoke its parseDom() method,
which returns a DOM Document object. Note that the stream argument of the parseDOM() method is an
InputStream object associated with the HTML document. The Document object is passed to the getText()
function, which traverses the DOM tree and retrieves the text. (The implementation of getText() is not

518

shown.) In the last two lines of the code snippet, we create a Lucene Document object and assign the
extracted text to the body of this object. Our examples so far have assumed that we are only populating the
body attribute. Lucene makes it possible to create multiple attributes and index them independently, which
enables a flexible query mechanism.

Figure 12.14 Creating indexable Lucene documents for HTML files.

Figure 12.15 Creating a Lucene index.

Lucene uses Analyzer classes to process Document objects created from Microsoft Word, Adobe PDF,
HTML, and other kinds of document, as illustrated in Figures 12.13 and 12.14. The Lucene distribution
includes extensions of the Analyzer class that take care of language-specific tokenization, processing stop
words, and stemming (see Section 12.1.2). Many applications further extend these classes to implement the
logic described in Section 12.1.3 as well as custom logic for application domains. Custom Analyzer classes
may take advantage of text structure, affording special treatment to the document title, authors, etc. Such
analyzers can be particularly effective if paired with custom text extraction and parsing components.

The code snippet in Figure 12.15 illustrates how to create a Lucene index. The first step is to create a
Lucene Directory object, which is required by the constructor for the IndexWriter class. The next step is to
create an IndexWriter, passing Directory and Analyzer objects to the constructor. Once an IndexWriter object
is created, we can use it to add Document objects to the Lucene index.

Lucene’s DefaultSimilarity class implements a sophisticated scoring algorithm that is based on vector-space
concepts and accounts for term frequency. Lucene’s scoring algorithm allows for the so-called “boosting
factors”, which are designed to combine scores from querying different fields associated with the same
documents. Of course, that is only possible if these fields are processed separately at the text extraction and
analysis stages and indexed individually. Default boost factors are set to 1.0 and few applications go so far as to
change the defaults. Different values may be well justified based on application logic, but changing the
settings requires deep understanding of scoring algorithms and quite a bit of experimentation and tuning.

519

Figure 12.16 Querying a Lucene index.

A simple code snippet illustrating the querying of a Lucene index is shown in Figure 12.16. Just as with the
IndexWriter class, the constructor for the IndexSearcher class takes as its argument a Directory object. For
IndexSearcher, the Directory object must be associated with an existing Lucene index. Here, body is the name
of an indexed attribute and car AND truck is a query expression that is split into terms by the analyzer. In the
example, the result is a Query object with two required clauses. The result of the query is a Hits object. Its
doc() method takes an integer indicating the rank order of a document in the result set and returns this
document.

Lucene is a powerful library that makes it possible to build applications with different levels of
customization. For simple applications, it can be used effectively even without a deep understanding of search
concepts. At the same time, Lucene provides powerful opportunities for developers who need to implement
sophisticated search applications based on custom logic.

520

12.3.3 OneBox applications

Google uses the term “OneBox” to describe execution patterns where the same search query (and sometimes
the results of its processing) are passed on to multiple applications and the results of their execution are
combined into a single presentation. Figures 12.11 and 12.12 illustrate a search application that combines the
results of querying text, images, and video with stock quotes. The results page is constructed in stages.
Initially, it includes search results for text documents, images, and video (only text documents in Figure
12.11), as well as JavaScript components that fire AJAX requests for stock quotes (plus images and video in
Figure 12.12). To fulfill requests for stock quotes, it is necessary first to match the original query against the
database of company names and descriptions to find the company ticker, and second to submit the quote
request for that ticker. Other examples of OneBox functionality may vary from weather reports to targeted
advertising. Note that while AJAX is a convenient mechanism for implementing OneBox applications, it is
not required. In Figure 12.11, OneBox functionality for querying text, images, and video is supported by
server-side applications.

AJAX requests invoke the stockQuote web application, which implements the Quote Processor, Symbol
Resolution, and Quote Retrieval modules in Figures 12.11 and 12.12. The application uses keywords in the
query string to find the best match with company names or descriptions, identify the company ticker, and
retrieve the stock quote. If there is no match or the quote is not available, the application returns the 400
status code and the AJAX call does not make any changes to the results page. If the quote is retrieved
successfully, the application returns the HTML fragment containing the quote, and the Ajax.Updater
function (part of the Prototype toolkit - see Section 8.5.2) inserts this fragment into the quote’s <div> tag.

Figure 12.17 OneBox quote retrieval using the Prototype toolkit.

Figure 12.18 HTML fragment that enables OneBox quote retrieval.

521

AJAX requests that invoke stockQuote are submitted by the JavaScript function getQuote (Figure 12.17),
which is triggered when the search results page is loaded into the browser. A fragment of the results page is
presented in Figure 12.18. Note that the URL, which is passed as an argument to the getQuote function,
contains the original query (“general motors”). The Query Processor generates both the results page and this
URL. The query string portion of the URL would be different for different queries.

A user would initially see the results page without the quote, which could be added by the AJAX call. As
with AJAX requests to query images and video, the side-benefit of deferring quote requests to the browser is
the minimal impact on the user experience. If the quote is not available, the users can still access search results
pages without delays or timeouts.

Solutions for finding company matches and resolving tickers are application-specific. They vary between
full-text queries for company descriptions and rule-based approaches. Rules may be based on exact matches
(e.g., “match the query consisting of the word ‘apple’ to the ticker for Apple Inc.”) or term occurrences (e.g.,
“match the query containing words ‘Chicago’ and ‘exchange’ to Chicago Mercantile Exchange Holdings”).
Rule-based algorithms commonly use rule hierarchies to aid conflict resolution. Maintaining ticker resolution
rules can be a challenge. Manual rule maintenance is rarely practical due to the scope (hundreds of thousands
of tickers) and frequent updates to company names and ticker symbols. Rule generation algorithms are
complex and out of scope for our discussion.

Examples of OneBox functionality are not limited to stock quotes. Other popular examples include
additional searches (article archives, discussion boards, and blogs), custom applications (e.g., weather
summaries for queries containing geographic terms), and context-based advertising. The latter may be as
simple as passing keywords to an ad server or a variation on using the original query to select a pre-defined ad
channel.

The concept behind OneBox functionality is simple. It involves passing input from a single form to
multiple applications or application chains. The example of an application chain that was discussed in this
section is composed of the filter application and the responder application. The filter application takes the
original input, tries to match it to a publicly traded company, and figures out the company ticker if the match
exists. The responder application uses the ticker to retrieve the stock quote and other company information,
format it, and send it back to the browser.

OneBox applications may be architected to execute on the server in response to a single HTTP request. As
we discussed in this section, such a solution may have negative performance implications. It requires very
careful error handling to avoid lengthy timeouts and broken pages if one or more of the OneBox applications
are unavailable. A more popular and easier to implement solution is based on a single master application that
formats and returns the main search results. The results page may include JavaScript calls that are executed
when the page is loaded into the browser. These calls initiate AJAX requests that pass the information
available to the master application to other one-pass applications. As we discussed, this solution has the
benefit of making the main body of information available to users while additional information is being
retrieved. Apart from performance advantages, this solution is more resilient when some of the applications
are not available.

522

523

12.4 Search Engine Optimization

Search Engine Optimization (SEO) refers to the measures web sites can implement to advance their chances
of discovery through search engines. Individual web sites (or clusters of closely related sites) implement SEO
measures to increase their search engine rankings. The higher a site’s ranking, the earlier it appears in search
results, making it more likely for users to visit it. SEO measures may be generalized, they may target specific
subject areas or industries, or they may be designed for specialized search engines (e.g., those that specialize in
images and video).

The most successful SEO strategies stem from insights into the operation of search engines and the
algorithms used by technologies they employ. They are derived from an understanding of search and spidering
technologies, and from insights into the habits of search engine users. Common SEO measures include:

• Simplification of URL structure, with a preference toward short URLs and the elimination of
query string parameters that affect page content.
• Site maps explicitly listing URLs that refer to unique content together with information about last
modification times and update frequencies.
• Elimination of circular references that impede search engines from spidering the entire site.
• Hosting content that is unique to the site and avoiding multiple URLs referencing the same
content.
• Making the site appealing to users to attract link-backs from other sites.

There are other techniques that can improve a site’s ranking, including paid searches, “link-back” deals, and
other “unnatural” means of attracting traffic. These measures represent business strategies rather than
technological ones, so they are not covered in this book.

There are also more shady tactics for improving a site’s ranking. These tactics, often called “Black Hat” SEO
or spamdexing, include the use of “link farms” that exist solely to mislead search engines, as well as various
techniques for stuffing invisible search keywords into pages (e.g., white text on a white background or
inserting inappropriate keywords within HTML metadata). Such tactics obviously detract from the user
experience and they eventually backfire on those who use them. When discovered, search engines blacklist
sites that employ such practices and either downgrade page rankings for these sites or remove them from their
indexes outright.

In this section, we discuss the means available to web sites for communicating information about the URL
structure, content location, its expected change frequency, and other related information to search engines.
We discuss the structure of the robots.txt file, which is the primary mechanism for this communication, as
well as sitemap formats. We provide brief coverage of “Black Hat” tactics along with reasons not to use them.
We conclude the section with a discussion of broad SEO strategies.

524

12.4.1 Robots.txt

Search engines and web sites that serve quality content have the common goal of directing users to what they
are looking for. It stands to reason for both sides to establish a communication mechanism. Such a

communication mechanism is the robots.txt file.7 This file was introduced to establish a convention advising
web spiders against accessing all or parts of a publicly accessible web site. The robots.txt file has to be located
in the document root directory (see Section 6.1.2). Spiders are not supposed to apply specifications found in a
domain’s document root directory to its sub-domains (unless they happen to share the same root directory).

The examples in Figure 12.19 illustrate the use of User-agent and Disallow instructions to limit spider
access. There is no enforcement mechanism associated with robots.txt instructions. It is based on the honor
system and mutual interest on the part of search engines and web site owners.

Figure 12.19 Sample robots.txt configurations.

User-agent instructions define the applicability of Disallow instructions to all or only certain spiders
(SpiderX in the last example). Notice that it is possible to use multiple Disallow instructions and that a
Disallow instruction referencing a specific file does not impose any limitations on other files within the same
directory (all directory paths are defined relative the document root). You may encounter examples of using
the Disallow instruction with the “*” instead of a directory path. In this context, “*” is equivalent to “/”. This is
a non-standard extension and some spiders may not honor it. However, it is legal according to the proposed
extended specification.

Individual HTML pages may use <meta> tags to instruct spiders to forego indexing the page or following
links that occur on the page (see Figure 12.20). The first example in Figure 12.20 instructs spiders to ignore
the links and forego indexing the content. The second example instructs spiders to follow the links but forego
the indexing and the third example instructs spiders to do the reverse - index the file but forego following the
links. Instructions in the last example have no effect because they prescribe the default behavior.

Spiders process meta tag instructions through Markup Stripper modules (see Section 12.2.2), which are

525

responsible for retrieving the links as well as page content. Note that page exclusions in the robots.txt file have
precedence because spiders do not parse excluded files.

Figure 12.21 illustrates extensions to the robots.txt specification, which are supported by spider programs
used by the most popular search engines. The Allow directive specifies exceptions for disallowed directories.
In the first example, all spiders are advised to ignore the /images/ directory and its subdirectories except for
/images/captions/, which contains text files.

Instructions in the second and third examples disallow access to the /images/ directory and all of its
subdirectories. The second example uses the Crawl-delay instruction, which is supported by most major
spiders, to impose a 10-second time interval between successive requests from the same spider. The third
example uses the Request-rate instruction, which is part of the proposed extended specification, to indicate
one request every 10 seconds; it is roughly equivalent to the Crawl-delay setting in the second example. Visit-
time also is a part of the proposed extended specification. In the example, it restricts the permissible time for
spider requests to the period from 1:00 a.m. to 6:00 a.m.

Figure 12.20 Meta tag instructions for spiders.

Figure 12.21 Common robots.txt extensions.

526

12.4.2 Sitemaps

Figure 12.22 illustrates the use of the Sitemap instruction. Sitemaps are XML files that are designed to
provide detailed information about the location and freshness of site content to spiders. They are supported by
all major search engines, including Google, Yahoo!, Ask.com, and Microsoft. Sitemaps afford fine-grained
controls for web sites to inform search engines about resources they want spidered. Some of these resources
may not be reachable through any of the seed pages known to the search engines.

The first instruction in Figure 12.22 references a sitemap located at
http://www.zyxnews.com/test/sitemap.xml. Note that the location of the sitemap imposes limitations on
URLs that it can reference. A sitemap located in the http://www.zyxnews.com/test/ directory cannot
reference URLs that do not have the Http://www.zyxnews.com/test/ prefix. The second instruction references
a compressed file. Use of compression is recommended for large files to reduce bandwidth requirements.
Sitemap instructions are not spider-specific and are not tied to User-agent instructions. They may appear
anywhere within the robots.txt file.

Figure 12.23 is the sample sitemap for the fictitious zyxnews.com site on April 7, 2008. The first item
corresponds to a developing story. The format for the last-modification date allows you to omit the time
portion, but we want it for the developing story. The change frequency for the story is set to always, which
describes a document that cannot be counted on to remain the same between any two accesses. The priority,
which is a value between 0.0 and 1.0, is relative to other items on the same site. It does not affect the relative
importance of items on the zyxnews.com site compared to other sites. It is in the interest of the zyxnews.com
site to assign higher priority to items that are likely to be of more interest to web users.

Figure 12.22 Sitemap instructions in robots.txt.

527

http://Ask.com
http://www.zyxnews.com/test/sitemap.xml
http://www.zyxnews.com/test/
http://www.zyxnews.com/test/

Figure 12.23 Sample sitemap.

The second item in Figure 12.23 corresponds to a story from the day before. It may still change because of
unexpected new developments or corrections. Still, hourly checks are more than enough and the priority is
about half that for the developing story. The third and fourth items correspond to news stories that are one
and 11 months old respectively. The older the story, the less likely it is to change. Consequently, the sitemap
assigns older stories lower relative priorities and change frequencies. Note that search engines consider change
frequencies defined in sitemaps as hints. They take them into account but use their own algorithms to set
crawl frequencies. Note that setting change frequency values in the sitemaps much higher than the actual rate
of changes may have the negative effect of search engines deciding to ignore these settings for your site in the
future.

Sitemap files can grow prohibitively large, which is even more of a problem if they require frequent updates.
Fortunately, the Sitemap specification supports the referencing of multiple sitemap files in a sitemap index file
(see Figure 12.24). It is common practice to maintain separate sitemaps for different areas of the site, as well
as for items with different change frequencies. A sitemap index file can only reference sitemaps on the same
domain. Its format is very similar to the format of sitemap files.

528

Figure 12.24 Sample sitemap index file.

Figure 12.24 illustrates the strategy of splitting sitemaps by purpose and by frequency of update. There are
two groups of sitemaps - one for local and one for international news. Each of the groups is, in turn, split into
three sitemaps. The first sitemap in every group references articles that have been published over the last 24
hours. The second sitemap references articles that have been published over the last 30 days excluding articles
that were published on the current date. Finally, the third sitemap references archived articles that were
published more than 30 days ago.

Figures 12.25 and 12.26 demonstrate sample sitemaps referencing current and recent articles. The sitemap
referencing current articles (Figure 12.25) is updated when a new article is published or when there is a
change to an existing article, in order to add an entry or update the modification date. On every update,
entries that are older than 24 hours are purged. The site map referencing recent articles (Figure 12.26) is
updated once a day, at midnight. At that time, references to articles from the previous day are added and
references to articles that were published more than 30 days previously are purged.

Notice that the same article (the second item in Figure 12.25 and the first item in Figure 12.26) is
referenced in both sitemaps; in Figure 12.26, its modification frequency is shown as daily instead of always.
The reason is to avoid frequent modifications to the potentially much larger sitemap referencing 30 days’
worth of recent articles. As you can see, with this strategy an article may temporarily be referenced by two
sitemaps but it is always referenced by at least one.

529

Figure 12.25 Sample sitemap file for current local news (1sitemap_local_news_current.xml).

Figure 12.26 Sample sitemap file for recent local news (sitemap_local_news_ recent.xml).

We have described one possible strategy for splitting references into different sitemaps. Strategies vary
between sites, depending on the nature of the content, its volume, and frequency of modification. However,
the main principles for designing an efficient sitemap strategy remain:

• Separate references into different sitemaps by modification frequency.
• If necessary, reduce sizes of individual sitemaps through separating references by subject or similar
criteria.
• Avoid referencing the same page from different sitemaps using the same modification frequency.
• Ensure that every page is referenced by at least one sitemap at any time.

530

12.4.3 Sitemap extensions

The sitemap protocol supports proprietary extensions. The most popular and commonly used extension is
Google News (see Figure 12.27). As you can see, a Google News sitemap references a second namespace and
associates it with the news prefix. Figure 12.27 is the evolution of the example in Figure 12.25, which makes
use of Google’s proprietary news tags. Publication date is required and reflects the time of the latest article
update. Note the slight but important difference - the publication date is supposed to reflect the time and date
of the release. It may not be the same as the timestamp associated with the file containing the article in Figure
12.25. For news, the publication date is more important because it reflects the newest version of the story and
ignores file distribution delays.

The <keywords> element contains comma-separated keywords that describe the content of the article. The
<stock_ticker> element contains the comma-separated list of stock tickers for companies, mutual funds and
other tradable entities that constitute the main subject of the article. Not every ticker mentioned in the article
has to appear within the <stock_ticker> element.

531

12.4.4 Site and URL structure

We have discussed two critical components associated with increasing search engine traffic: defining proper
exclusions in the robots.txt files and providing explicit content references through the sitemap mechanism.
However, making content available to spiders is just one side of the coin. It is also important that they find
just one copy of the content. If there are multiple copies of the content available from different URLs, users
might find more than one version of the content and third-party web sites might link to these different URLs.
As you may recall, the page rank depends on the number of links pointing to the page (Section 12.2.1). The
more different paths to the same content spiders can find, the worse the page rank dilution is going to be. In
other words, different paths on the same site to the same content would be competing with each other for the
page rank and neither may come out on top in most searches.

Figure 12.27 Google News sitemap extension.

There are legitimate scenarios when a site may want to provide multiple paths to the same page. One such
situation arises when a news article appears on multiple channels (e.g., political news and business news) and
the site uses different templates to display news articles that come through different channels, where different
templates would yield links that differ in their URL paths.

Maintaining multiple paths to the same content may not be a problem for a site that designs and
implements a consistent SEO strategy. Here are highlights of a sample policy that satisfies these
requirements:

• Select a dedicated path for your articles. Ideally, this path would not depend on a news channel
and use a generic template without ads and extraneous information in iframes.
• Avoid assigning different URLs to versions of the same article with small incremental differences.
• Disallow all article paths (except for the dedicated path above) in the robots.txt specification.

532

• Create pages composed of links to current and archived articles and make sure they are reachable
from the home page and other landing pages.
• Generate and set up update processes for sitemaps pointing to current and archived articles, and
reference these sitemaps in the sitemap index file.
• Reference the sitemap index file from the robots.txt file. As an additional measure, it is advisable
to submit the sitemap index file directly to search engines.
• As a precaution, include the <meta name=“robots” content=“noindex,nofollow”/> tag in channel-
specific templates. This way, even if a spider happens on an article served from an alternate path, it
knows to ignore it.

As we discussed earlier in the chapter, traversing dynamically generated pages is a challenge because of the
endless variations of query string parameters, Sites that use query string parameters to select page content
make it very difficult for search engines to decide which query string parameters should and should not be
ignored. Making life difficult for search engines is contrary to the goal of making your pages easier to find.
Struts and other application frameworks make it easy for application designers to include information about
page content in the path portion of the URLs. That is a good practice: it promotes readable URLs and
improves search engine traffic.

SEO-conscious site and application design keeps the size of the URLs to a minimum, avoids query string
parameters to select page content, reuses URLs for small incremental changes to the content, and prevents
search engines from indexing pages that represent the same content. Effective SEO measures cannot be an
afterthought - they have to be an integral part of application design.

533

12.4.5 Black Hat SEO

“Black Hat” SEO tactics include the use of link farms to improve page ranks, the stuffing of irrelevant
keywords into pages just because these keywords relate to popular queries, and invisible text. A link farm is a
group of sites each of which is composed of pages that reference every other site in the group. Link farms are
commonly created by automated programs in an effort to increase the page ranks of hosted pages (see Section
12.2.1). Invisible text techniques are designed to include text in a page that is invisible to the human eye but is
still “visible” to spiders. They are used to hide both irrelevant keywords “stuffed” into the promoted pages and
links that serve the sole purpose of connecting different sites in the farm. Invisible text was originally
implemented by using a font with the same color as the page background, but spiders learned very quickly to
recognize this. An advanced variation of this technique uses colors for the fonts and page background that are
different but indistinguishable to the human eye.

A more sophisticated tactic, known as doorway pages, employs pages that can be seen by spiders but are not
seen by visitors to the site. The idea is to create dynamic pages stuffed with links and keywords and reference
these pages through cross-links, site maps and other mechanisms to attract spiders. “Doorway” URLs
reference applications that analyze incoming requests and produce keyword-stuffed pages in response to spider
requests while generating 301 permanent redirects (Section 3.3.5) in response to browser requests. These
redirects take users to pages containing the “real” content that webmasters using this tactic want them to view.
Browsers and proxies that cache 301 redirects would bypass these doorway URLs for follow-up requests.

The attraction of this tactic is that the content pages served to real users do not contain bogus links or
keywords, hidden text, or other obvious attributes of “Black Hat” deceptions. An advanced implementation of
doorway pages would coordinate keywords that are stuffed into pages served to spiders, with corresponding
content pages served to real users. Some implementations go even further to take advantage of particular
spider algorithms. Such implementations produce custom pages for individual spiders. Search engines are on
the lookout for doorway pages and routinely blacklist sites that use this tactic. Doorway pages can drive traffic
in the short term but they invariably create problems for sites that make use of this technique in the long run.

There are many creative variations on the tactics we describe here, but webmasters need to ask themselves
whether it is really worth it. Given the amount of work required, and the risks associated with using these
tactics, their time and effort would be better spent making use of legitimate SEO methods.

534

12.5 Summary

We have dedicated a significant part of this chapter to discussing simple full-text indexing and retrieval
algorithms. We also discussed spidering algorithms and the architecture of spider applications. While readers
may never get the opportunity to design and implement such algorithms on their own, an understanding of
the principles behind open source and commercial full-text indexing and search technologies is useful in
building effective local search applications. In addition, an understanding of both full-text indexing and spider
behavior is beneficial to site owners in designing successful SEO strategies.

Lucene is the most popular open source library and is used by many sites to index local content. It would be
very difficult to build and tune effective Lucene applications without a good understanding of underlying
technologies. Many commercial tools are just as demanding, though some sacrifice flexibility for simplicity.

SEO techniques are rarely effective in isolation. It is preferable to avoid multiple URLs referencing the
same content. but if that is necessary, warning spiders away from alternate paths may compensate for the
negative impact of the duplication. Still, even these steps are not fully effective because of link dilution. Link
dilution occurs when third-party sites point to multiple URLs that reference the same content. This
negatively affects page ranks and makes it less likely that these pages appear among the top hits in web
searches. The solution lies in constructing holistic SEO strategies that strive to find the optimal balance in
combining multiple measures. Web sites differ in their purpose and priorities, and no universal SEO strategy
applies to all of them.

We provided brief coverage of “Black Hat” SEO tactics, which rely on unethical techniques to cause pages
to rank higher in search results. They are considered unethical because they employ deception to lure users to
content not directly related to their searches. Ethical concerns are reason enough to avoid these techniques,
but there are also pragmatic considerations for not using them: the use of “Black Hat” tactics ultimately
damages the credibility of sites that employ them. Search engines monitor sites for the use of such techniques
and routinely lower ratings for the sites that engage in them or even drop these sites altogether. The ability to
recognize the use of “Black Hat” tactics by unethical sites, however, is very useful to both webmasters and web
application developers.

Recent advancements in searching are tied to metadata extraction technologies. Such technologies can
classify and analyze text and extract metadata entities related to countries, cities, companies, commodities and
complex concepts related to the content. Extracted metadata often makes it possible to increase the precision
of full-text searches and to build creative OneBox applications.

As the nature of the web changes, links between sites will acquire sophistication and become more complex,
and concepts of the semantic web will take hold. New technologies will emerge that aim to take advantage of
the semantic web. These technologies are one of the topics that we cover in Chapter 13.

QUESTIONS AND EXERCISES

1. What is stemming? Why is it problematic for indexing web resources?
2. Take the first four sentences in this chapter and treat them as separate documents.

535

Build a vector space using the basic vector-space algorithm described in Section
12.1.2. Try processing the query “web search”. What is your document ranking?
How would you improve this ranking?
3. What is word clustering? What impact does it have on recall and precision?
4. What changes do you need to make to the spider implementation in Figure 12.10
to retrieve and follow links from Microsoft Word documents?
5. What is the main idea behind OneBox applications? Compare the search
applications in Figures 12.11 and Figure 12.12. What are the advantages and
disadvantages of these architectures?
6. Name at least three applications that would be good candidates for OneBox
implementations. What common features make these applications good candidates
for such implementations?
7. Name at least five common measures that compose an SEO strategy.
8. What is page rank? What impact does it have on SEO strategies?
9. Propose a modification to the page-rank algorithm to counter the duplicate
content problem. How would you design an SEO strategy to take advantage of your
proposal?
10. What is the relationship between robots.txt files and sitemaps? Are these
mechanisms redundant? Would you use one of them or both in your SEO strategy?
Why?
11. What is the purpose of robot instructions in HTML <meta> tags? Would you
plan to use these instructions in your SEO strategy? Would you use the instructions
in <meta> tags if you already have a robots.txt file and sitemaps? Why?
12. Ethical considerations aside, explain why you would or would not choose to use
“Black Hat” SEO tactics.
13. How would you go about discovering web sites that use “doorway pages”?
14. Implement a basic spider that can traverse the Internet, detect sites that use
“doorway pages”, and compile a report. Produce daily reports for a week and compare
the results. Do the same for a month. How do you explain changes in the report?

536

12.6 Bibliography

Davis, Harold, 2006. Search Engine Optimization: Building Traffic and Making Money with SEO. Sebastopol
(CA): O’Reilly Media.

Dornfest, Rael, Bausch, Paul, and Calishain, Tara, 2006. Google Hacks: Tips & Tools for Finding and Using the
World’s Information, 3rd Edition. Sebastopol (CA): O’Reilly Media.

Gospodnetic, Otis and Hatcher, Erik, 2004. Lucene in Action. Greenwich (CT): Manning Publications.

Hemenway, Kevin and Calishain, Tara, 2003. Spidering Hacks: 100 Industrial-Strength Tips and Tools.
Sebastopol (CA): O’Reilly Media.

Ledford, Jerri, 2007. SEO: Search Engine Optimization Bible. Indianapolis (IN): Wiley Publishing.

Schrenk, Michael, 2007. Webbots, Spiders, and Screen Scrapers: A Guide to Developing Internet Agents with
PHP/CURL. San Francisco: No Starch Press.

537

12.7 Web Links

English Stopwords. Available at http://www.ranks.nl/tools/stopwords.html.

Apache Lucene Project. Available at lucene.apache.org.

Apache POI Project. Available at poi.apache.org.

Brin, Sergey and Page, Lawrence, 2000. “The Anatomy of a Large-Scale Hypertextual Web Search Engine”.
Available at http://infolab.stanford.edu/pub/papers/google.pdf.

PDFBox, Java PDF Library. Available at www.pdfbox.org.

Web Robots Pages. Available at www.robotstxt.org.

538

http://www.ranks.nl/tools/stopwords.html
http://lucene.apache.org
http://poi.apache.org
http://infolab.stanford.edu/pub/papers/google.pdf
http://www.pdfbox.org
http://www.robotstxt.org

12.8 Endnotes

1 http://www.ranks.nl/tools/stopwords.html

2 http://infolab.stanford.edu/pub/papers/google.pdf

3 http://lucene.apache.org

4 http://www.pdfbox.org

5 http://poi.apache.org

6 http://jtidy.sourcefoge.net/

7 http://www.robotstxt.org

539

http://www.ranks.nl/tools/stopwords.html
http://infolab.stanford.edu/pub/papers/google.pdf
http://lucene.apache.org
http://www.pdfbox.org
http://poi.apache.org
http://jtidy.sourcefoge.net/
http://www.robotstxt.org

CHAPTER 13

Trends and Directions

IN THIS CHAPTER

• XML query language
• RDF and the Semantic Web
• Future of web application frameworks
• Current trends

OBJECTIVES

• Examine new and emerging technologies.
• Review XML Query.
• Introduce the Semantic Web and provide an overview of the Resource Description
Framework (RDF) and RDF applications.
• Speculate about the future of web application frameworks.
• Discuss current trends in web technology.

Rapid expansion of Internet technologies has come at the cost of technological incompatibilities and
inconsistencies, which have put much strain on the web application development process. Today, after more
than 15 years of exponential growth, Internet technologies are finally becoming stable and robust. We are
seeing encouraging examples of technology convergence. XHTML has supplanted HTML, WML is being
phased out and replaced with XHTML MP (see Section 5.2.2), and the relationship between XSL, XSLT,
XSLFO, and other style sheet specifications has been clarified (see Section 5). The most recent specifications
from the World Wide Web Consortium and other standards-setting bodies, including the Web Services

Interoperability Organization (WS-I)1 and the Organization for the Advancement of Structured Information

Standards (OASIS),2 concentrate on achieving improvements to accepted and emerging technologies, as well
as convergence between them, as opposed to dramatic new directions.

The first part of this chapter is devoted to the leading specification for querying XML documents, XML
Query, followed by a discussion of the semantic web, which is a major effort on the part of W3C encompassing

540

a suite of emerging technologies:

• Resource Description Framework (RDF), which is currently the leading specification for machine-
understandable metadata;
• Composite Capabilities/Preference Profiles (CC/PP), which is a pioneering RDF application for
serving content across multiple devices and formats;
• RDF Query, a specification that makes it possible to query RDF models and further clarifies the
distinction between RDF models and their XML representation.

In the final part of this chapter, we turn to the immediate concerns of evolving application frameworks
based on existing technologies. We discuss the limitations of existing frameworks and propose solutions to
transcend those limitations.

541

13.1 XML Query Language

As the scope and variety of XML applications have grown, so have the integration requirements associated
with those applications and with them the necessity to query XML-structured information. The convergence
and consolidation of XML specifications made it practical to define uniform query facilities for extracting data
from both real and virtual XML documents, with the ultimate goal of accessing and querying XML
information as a distributed database.

The challenge is that XML documents are very different from relational databases. Instead of tables where
almost every column has a value, we have to deal with distributed hierarchies, and with optional elements that
may or may not be present in a particular document. Relational query languages such as SQL are thus not
suited for XML data.

The XML Query language, XQuery, has reached the status of an official recommendation by W3C. There
are already numerous implementations based on the specification. XQuery borrows and extends concepts from
XPath, which was designed primarily to express traversal patterns in XSLT style sheets (see Section 5.4.1).
XQuery combines the notions of query and traversal. The traversal component serves to define the query
context, which is determined by the current XML element and its location in the DOM tree. The query
component serves to evaluate conditions along different axes (attribute, child, descendant, parent, self, and
descendant-or-self) in the query context. Both components are involved in evaluating an expression.

For example, consider the XML document (sample.xml) from Figure 5.1. We have modified this example
to support unique identifiers for individual books by adding the <isbn> element (Figure 13.1). We make use
of the unique identifiers later in this section to demonstrate multi-document queries.

The XQuery expressions in Figure 13.2 are designed to select books written by Rich Rosen.
The first expression in Figure 13.2 uses full syntax to define traversal from the document root down to the

author element. Notice that the expression is composed of slash-separated criteria for selecting traversal axes.
Here, child: : denotes the child axis, child: : * means that any outgoing element edge should be investigated,
and child: :author limits the traversal paths to outgoing edges that lead to <author> elements. The predicate
enclosed in square brackets establishes selection conditions, limiting acceptable <author> elements to those
that have firstName and lastName attributes set to “Rich” and “Rosen” respectively.

542

Figure 13.1 Modified sample.xml file.

Figure 13.2 Sample XQuery expressions.

The second expression in Figure 13.2 is identical to the first, except that it makes use of the abbreviated
syntax, which includes the default selection of the element axis.

The third expression in Figure 13.2, while producing identical results for sample.xml, has somewhat
different semantics - it results in evaluating all paths along the element axis that originate at the document
root and lead to the <author> element, no matter the number of hops.

Finally, the fourth expression in Figure 13.2 contains very explicit instructions for the evaluation engine to
only consider element edges through the <books> and <book> element nodes. It is easy to see that, in terms of
performance, this expression is optimal for the evaluation engine, while the third expression is potentially the
most expensive option.

Notice that the syntax and semantics of XQuery expressions are closely related to XPath - the simple,
specialized query and traversal language that we discussed briefly in the context of XSLT (see Section 5.4.1).
This is not a coincidence - XQuery designers made every effort to be consistent with existing XML
specifications.

Of course, there has to be more to the XML query language than path expressions. The language has to
provide ways to express complex conditions that involve multiple documents and path expressions, and to
control the format of the result.

543

For example, suppose we want to analyze book sales logs that are collected daily in XML format (Figure
13.3). The sales log, which is stored in the file sales_log.xml, has a very simple format - the root element
<records> contains the date attribute; every individual <record> element corresponds to a single sale and
contains the single attribute of the ISBN reference. We need a report on the sales of books that reach at least
100 copies per day.

The query to generate a sales report from Figure 13.3 is shown in Figure 13.4. The for clause implements
iteration through <book> elements in sample.xml. The $i variable is always bound to the current element in
the set. The let clause defines the join and produces the binding between the <book> element and <record>
elements in the sales_log.xml file. The count($s) > 99 condition in the where clause eliminates all bindings
that do not include at least 100 sales records.

Figure 13.3 Daily sales log in XML format.

Figure 13.4 XQuery statement for the sales log.

The return clause, which determines output format, is executed once for every binding that was not
eliminated by conditions in the where clause. It produces units of output that are sorted according to the
sortby clause. For every execution of the return clause, the $i variable is bound to the current <book> element,
which provides context for path expressions in the return clause ($i/title and $i/isbn).

XQuery is a very complex language. We have not even scratched the surface in our brief discussion. There
are many different kinds of expressions that we have not covered, as well as the whole issue of XQuery types
and their relationship to the XML Schema. Still, the examples should provide a flavor of the language
expressions and query construction.

544

545

13.2 Semantic Web

The semantic web is a major effort on the part of the W3C to create the next generation Internet
infrastructure, where information has a well-defined meaning, making it possible for people and programs to
cooperate with each other. It is about interoperability and about creating a connection between information
on the web and real-world objects.

Berners-Lee (2000) describes the semantic web as “a dream for the web [in which computers] become
capable of analyzing all the data on the web - the content, links, and transactions between people and
computers.” In his vision, the “day-to-day mechanisms of trade, bureaucracy and our daily lives will be
handled by machines talking to machines. The ‘intelligent agents’ people have touted for ages will finally
materialize.”

The challenge in realizing this vision is to make it possible for machines to understand interconnected data.
The critical step is to associate data with meaning, and here the important role belongs to enabling
technologies, the first and foremost of which is the Resource Description Framework (RDF), which we
discuss in this section. In the long term, we expect that RDF, in conjunction with other standards such as
RDF Schema, XML and XML Schema, Dublin Core, and the XML and RDF query languages, serve as the
foundation for semantic web applications.

When RDF first came out a few years ago, people often thought of the semantic web as a collection of
RDF applications. New RDF-based specifications, including the DARPA Agent Markup Language (DAML)
and the Ontology Inference Layer (OIL), strengthened the belief that RDF would be the foundation of the
semantic web.

It is going to be some time until DAML and OIL applications become practical. As a result, more and
more people are taking a wider view of the semantic web, including the possibility of using existing standards
in conjunction with RDF models for building advanced web services. Applications that benefit from the use
of machine-understandable metadata range from information retrieval to system integration.

Machine-understandable metadata is emerging as a new foundation for component-based approaches to
application development. Web services represent an advance in the context of distributed component-based
architecture. Whether applications make use of RDF or are trying to achieve similar goals by using XML,
WSDL, UDDI, SOAP, or XSL, they create fertile ground for the future.

We discussed XML, XML Schema, web services, and other related specifications in Chapter 5. In this
section, we cover RDF and RDF Schema, CC/PP (an RDF application that enables mobile devices to
describe their capabilities), and the emerging RDF query language.

546

13.2.1 Resource Description Framework (RDF)

The next wave of technological advances may very well be powered by machine-understandable metadata.
Metadata technologies are gaining momentum with the consolidation of the base standards and the
emergence of robust metadata extraction technologies using text analysis. RDF is a standard that was designed
to support machine-understandable metadata and to enable interoperability between metadata-based
applications. Early applications of RDF address real problems in the areas of resource discovery, intelligent
software agents, content rating, mobile devices, and privacy preferences. RDF is used to construct metadata
models that may be understood by processing agents.

Strictly speaking, RDF is not an XML application, but XML is a common vehicle for encoding and
transporting RDF models. Natively, RDF models are defined as sets of triples, and may be encoded using
XML, Notation 3 (also known as N3), and other representation mechanisms.

Dublin Core

The Dublin Core (DC) metadata standard predates RDF. It was proposed as an element set for describing a
wide range of networked resources. DC’s initial design goals were very ambitious and not all of them
materialized. What emerged was a set of 15 elements, the semantics of which have been established through
long and painful negotiations within an international, cross-disciplinary group that included librarians and
computer scientists.

The DC elements cover such core notions as Title, Creator, Publisher, Date, Language, Format, and
Identifier. Together with qualifiers, the nouns corresponding to these key concepts can be arranged into
simple statements, which enable simple “pidgin-level” communications. DC elements are easy to use but are
not up to the task of communicating complex concepts.

The emergence of RDF breathed new life into the DC specification. RDF provides the formal mechanism
for describing DC concepts. More importantly, the DC specification provides the necessary “semantic
grounding” for RDF models through atomic concepts that were designed for describing networked resources.

The most basic RDF concept is that of a resource, which is any entity represented with a URI. An RDF
triple is the combination of a subject, an object, and a property (also called a predicate). Both subjects and
properties are RDF resources, while objects may be either resources or literals (constants). The example in
Figure 13.5 is the simplified RDF model for this book. The meaning of the model is obvious - it describes the
book, by specifying creators (authors) and the publisher. RDF models are designed to be machine-
understandable - their meaning may be interpreted and acted upon by computer programs that do not have any
built-in knowledge of the matter (in this case, publishing).

The three triples in Figure 13.5 identify relationships between the book, two authors, and a publishing
company. They establish that the two authors are the creators of the book and the company is its publisher.
The book resource is the object of all three triples and is identified by its URI: http://purl.org/net/waabook.
The resources associated with the authors are identified by http://purl.org/net/shklar and
http://purl.org/net/rlr. Each of these resources is a subject of the Creator property represented by

547

http://purl.org/net/waabook
http://purl.org/net/shklar
http://purl.org/net/rlr

http://purl.org/dc/elements/1.1/creator. The Publisher property is represented by
http://purl.org/dc/elements/1.1/publisher, where the subject of the triple is the resource representing the John
Wiley & Sons publishing company.

Figure 13.5 Sample RDF model.

Figure 13.6 N3 representation of the RDF model in Figure 13.5.

The N3 representation of this model is shown in Figure 13.6. N3 is designed to be a shorter and simpler
alternative to the XML representation of RDF models. It provides for a more concise representation of the
triples in Figure 13.5. Here, dc : creator is equivalent to <http://purl.org/dc/elements/1.1/creator> and
id:shklar is equivalent to <http://purl.org/net/shklar>.

The XML representation of the model is shown in Figure 13.7. The DC vocabulary of atomic concepts is
identified by its URI - http://purl.org/dc/elements/1.1/ - which was defined as a prefix in the N3
representation. The semantic grounding of RDF properties is achieved by mapping them to the DC concepts
Creator and Publisher. The triples in Figure 13.5 all relate to the common object represented by the <rdf :
Description> element. The <dc : creator> and <dc : publisher> elements represent RDF properties and the
content of these elements represents the subjects of their respective triples.

By the nature of XML, the structure in Figure 13.7 is hierarchical, which creates the impedance mismatch
problem for arbitrary RDF models. In the example, the hierarchical nature of XML works to our advantage,
resulting in a very compact representation. It gets a lot more complicated for more advanced models.

548

http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/publisher
http://purl.org/dc/elements/1.1/creator
http://purl.org/net/shklar
http://purl.org/dc/elements/1.1/

Figure 13.7 XML representation of the RDF model in Figure 13.5.

Figure 13.8 Extending the RDF model from Figure 13.5.

The same resource may be the subject of more than one triple. In Figure 13.8, we show the modification of
the original model with two additional triples that describe another book. One triple states that one of the
authors of the original book is also an author for the new book. The other triple describing the new book
states that the resource with the URI www.iospress.com is the subject of the <dc:publisher> property.

The N3 representation in Figure 13.9 is similar to the representation in Figure 13.6. Note that “, ” is the
shorthand notation that indicates multiple objects of the same property with the same subject. The new
prefixes are added for illustration and are simply a matter of convenience.

The structure of the XML representation in Figure 13.10 is not very different from the XML document in
Figure 13.7. However, you can recognize the early signs of trouble - the author resource identified with
http://purl.org/net/shklar is referenced in two different places, which is not the case in the model (Figure
13.8). In XML representations of complex models, there may be numerous references to the same resource,
which is an indication of the impedance mismatch problem we mentioned earlier.

549

http://www.iospress.com
http://purl.org/net/shklar

Figure 13.9 N3 representation of the RDF model in Figure 13.8.

Figure 13.10 XML representation of the RDF model in Figure 13.8.

The hierarchical nature of XML makes it impractical to process XML representations of RDF models
directly. Instead, RDF processors convert such representations to the N3 notation or use them as input for
constructing RDF graphs. In other words, RDF is more than another XML application. It is a separate
specification based on an entirely different, non-hierarchical model. RDF serves the purpose of expressing
complex interrelationships between Internet resources. Its long-term goal is to enable automated reasoning in
the space of resources, their properties, and relationships.

PURLs of Wisdom - Persistent URLs

You may have noticed that addresses of Dublin Core elements refer to purl.org. Remember,
back in Chapter 3, we discussed that a Uniform Resource Identifier (URI) may be either a
Uniform Resource Locator (URL) or a Uniform Resource Name (URN). By definition, URNs
do not change when pages move.

URNs used to be a theoretical notion, but purl.org is an attempt to make it practical. The
name of the site stands for “persistent URL”. It is a free public service site that makes it
possible to assign persistent names to Internet resources.

This is exactly what we did with the book resource, http://purl.org/net/waabook. At the
moment, this URI maps to http://www.wiley.com/WileyCDA/WileyTitle/productCd-
0471486566.html. If www.wiley.comis reorganized, all we need to do is change the mapping
on the purl.org site and the URN will continue to work. As long as we distribute the URN and
not the physical address of the page, and make sure that it stays current, the link will continue
to work.

RDF Schema

The RDF Schema specification aims at constraining the model context by introducing the notion of model
validity. This is quite different from the validity of XML documents-avalid XML document may represent an
invalid RDF model. Remember, XML is just one of many representation vehicles for RDF documents.

550

http://purl.org
http://purl.org
http://purl.org/net/waabook
http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471486566.html
http://www.wiley.comis
http://purl.org

RDF Schema enables the definition of new resources as specializations of the ones that already exist. This
makes it possible to define new concepts by semantically grounding them to existing specifications. For
example, we can take advantage of the Dublin Core Creator property and its meaning in defining two new
properties, firstAuthor and secondAuthor (Figure 13.11).

The new properties are defined as specializations of the dc:creator property through rdfs:subClassOf, which
is defined in the RDF Schema specification. The rdfs:necessity property, which is also defined in the RDF
Schema specification, serves to express occurrence constraints-a book always has at least one author, but may
have two or more; only one author may appear in the particular position on the cover. Note that the order of
triples representing the dc:creator property in Figure 13.7 and Figure 13.10 is arbitrary and not semantically
meaningful.

Figure 13.11 Sample RDF schema.

Figure 13.12 An invalid RDF model according to the schema in Figure 13.11.

Now that we have defined our new properties and specified the authoritative location of the new schema

551

(rdfs:isDefinedBy), we can modify the model in Figure 13.10 to take advantage of the new specification (see
Figure 13.12). As you see, we introduce the additional namespace book and use it to qualify the new
properties. The XML document in Figure 13.12 is valid but the RDF model it represents is not - it violates
the rdfs:necessity constraint imposed on the firstAuthor property in Figure 13.11. This required property
must occur exactly once.

A valid version of the RDF model is shown in Figure 13.13. The firstAuthor property now occurs exactly
once in each description, as mandated by the schema. The original model does not contain information about
the first author of the second book, so we have to use a generic literal (Unknown) to comply with the schema.
To repeat the obvious, RDF Schema is not an alternative to the XML Schema. Figure 13.12 and Figure
13.13 both represent valid XML documents, but the RDF model represented in Figure 13.12 is not valid.
RDF Schema provides the same service for RDF models as the XML Schema does for XML documents - it
enables specialized applications.

Figure 13.13 A valid version of the model according to the schema in Figure 13.11.

552

13.2.2 Composite Capabilities/Preference Profiles

One of the early applications of RDF is the Composite Capabilities/Preference Profiles (CC/PP) specification,
which is a joint effort of W3C and the Wireless Access Protocol (WAP) Forum. The idea is quite simple - let
the devices and user agents describe themselves and make those descriptions available to smart services that
tailor their responses accordingly. User agents that run on different platforms may expect different content
types (e.g., XML, XHTML, XHTML MP) and structures (e.g., different arrangement into tables and cards
or different use of graphics).

The flexibility of RDF makes it possible to create self-describing device specifications based on their screen
size, keyboard (if any), display characteristics, and other parameters. Devices are represented as composites of
features, and properly constructed services do not need to be modified every time a new device comes out.
Services can combine information about devices and user agents with information about connection
bandwidth and use it dynamically to customize output.

Targeted transformations of specialized XML documents to XHTML and XHTML MP formats taking
into account device and platform limitations, lend themselves to the application of XSLT technology. XSLT
style sheets can be composed from parameterized feature-specific components. An efficient server can
optimize style sheet construction by caching XSLT components as well as intermediate composites. For
example, the server could cache device-specific style sheets based on device profiles and combine them with
style sheet components that are determined by the operating system, user agent software, and connection
bandwidth.

Figure 13.14 contains a CC/PP-compliant description of a device (the fictitious 123 from the XYZ
Corporation). In this example, rdf, ccpp, and prf prefixes are bound to URIs for, respectively, RDF Syntax,
CC/PP Structure, and the WAP Forum’s User Agent Profile namespaces. The first element of the
specification is the rdf:Description for our device; it contains only one specification component that describes
the device hardware. The rdf:type element references the schema element that identifies the hardware
platform; prf:CPU defines the default CPU; prf:Vendor defines the default manufacturer of the device;
prf:Model defines the default model designation; prf:ScreenSize defines the default screen size; and
prf:ImageCapable indicates default support for rendering images.

Figure 13.15 contains CC/PP-compliant descriptions of software for the same device. It includes a
component that describes the device operating system (the hypothetical XYZ-OS, in prf:OSName).
Acceptable content is limited to text/plain and text/vnd.wap.xhtml+xml (prf:CcppAccept). A second
component describes the user agent as the version of Mozilla that supports tables (prf:BrowserName,
prf:BrowserVersion, and prf:TablesCapable).

The semantic grounding of CC/PP concepts is based on existing specifications. For example, acceptable
values for prf:CcppAccept are MIME types and acceptable values for prf:Vendor and prf:Model come from
industry registries. This “by reference” approach to defining semantics is well-suited for the real world. There
are a growing number of CC/PP specifications for wireless devices developed and maintained by equipment
manufacturers.

553

Figure 13.14 Sample device description.

Individual devices and user agents often differ from default configurations. For example, my personal
version of the 123 device from the XYZ Corporation may have an optional screen and may be image capable.
Fortunately, it is possible to incorporate default configurations by reference as in Figure 13.16.

The prf:Defaults element references the default profile from Figure 13.14, which is available from
http://www.xyz-wireless.com/123Profile. Here, prf:ScreenSize and prf:ImageCapable override default
properties of the device. The resulting profile is uploaded to the profile registry when the device first goes on-
line or after the profile is modified. The server-side agent that controls the automated assembly of XSLT style
sheets would interpret the profile. Ideally, this style sheet would produce markup that can take advantage of
optional features added to the device.

CC/PP, in combination with XML and XSLT, enables applications that can serve content to a wide variety
of desktop and wireless devices. Most importantly, properly constructed applications would require minimal
or no modification to expand support to new and modified devices and software platforms.

554

http://www.xyz-wireless.com/123Profile

13.2.3 RDF query language

With RDF and RDF-based specifications gaining recognition, the scope and variety of RDF applications
have grown as well. This has created a need for uniform facilities for querying RDF models, with the ultimate
goal of searching the web for semantic information. While XQuery can be used to extract information from
XML representations of RDF models, there are two major problems with this approach:

• XQuery is designed to extract data from XML documents. Queries have to be expressed in terms
of the XML graph, elements, and attributes. Trying to use XQuery to query XML representations
of RDF models is just as painful as using SQL to query XML graphs stored in relational tables.

Figure 13.15 Sample description of device software.

• XML is just one representation for RDF models. There is considerable overhead in applying
XQuery to search RDF models represented as graphs or using the N3 notation.

The SPARQL query language is designed specifically to extract data from RDF models. Most SPARQL
queries contain triple patterns, which differ from RDF triples in that each of the subject, predicate and object
may be a variable. Triple patterns combine into a graph representing an RDF query. A match is a substitution
for variables in the query with RDF terms resulting in a graph equivalent to a subgraph of a queried model.

Consider the RDF model presented in Figure 13.8. We construct the first SPARQL query in Figure
13.17a to retrieve books authored by <http://purl.org/net/shklar>. The WHERE clause contains a triple
pattern with the variable ?book as the object. The pattern matches two triples in Figure 13.8 and the matching
variable substitutions are shown in Figure 13.17b. The purpose of the second query in Figure 13.17 is to

555

http://purl.org/net/shklar

retrieve all authors and their books in the graph in Figure 13.8. The WHERE clause contains a triple pattern
with the variables ?author and ?book as the subject and object, respectively. This query produces the variable
substitutions for the three matching triples shown in Figure 13.17c.

Figure 13.16 Individual hardware profile.

Figure 13.17 Querying the RDF model: a) two SPARQL queries, b) the result of the first query and c) the
result of the second query.

The query in Figure 13.18a consists of two triple patterns. Within a graph pattern, a variable must have the
same value no matter where it is used. In this example, only one book is an object of both the
<http://purl.org/dc/elements/1.1/creator> predicate and the <http://purl.org/dc/elements/1.1/publisher>
predicate, the subject of which is <http://www.wiley.com>. This query produces the variable substitutions for
the three matching triples shown in Figure 13.18b. Notice that only two rows satisfy this query, as opposed to
three rows in Figure 13.17c. The row for the book published by <http://www.iospress.com> is not included
because it does not satisfy the second pattern in the query in Figure 13.18a.

556

http://purl.org/dc/elements/1.1/creator
http://purl.org/dc/elements/1.1/publisher
http://www.wiley.com
http://www.iospress.com

Figure 13.18 a) A multi-pattern SPARQL query and b) its result.

SPARQL is a sophisticated language that makes it possible to match subgraphs in an RDF graph using
triple patterns, which are triples that may contain variables in place of concrete values. The variables act as
“wildcards” that match terms in the RDF model. We discussed the SELECT query, which can be used to
extract data from an RDF graph, returning it as a tabular result set. We have not discussed complex constructs
of the language but, as with XQuery, the examples should provide a flavor of the language expressions and
query construction.

557

13.3 Future of Web Application Frameworks

Although web application frameworks have come a long way during the course of the last few years, there are
still outstanding issues with currently available frameworks that aggravate existing problems in web
application development and deployment.

558

13.3.1 One more time: separate content from presentation

Foremost among the outstanding issues is the difficulty that arises when content and presentation are mixed.
When this mixture occurs, collisions are bound to occur between web page designers and programmers
responsible for the development and maintenance of a web application. We still do not have a framework that
enforces module-level separation of responsibility. This means that input from both designers and
programmers is required to create and modify web application modules. Depending on the framework,
designers must provide input for code modules or programmers must provide input for page view modules.
Even MVC-compliant frameworks, such as Struts, do not have all the answers. The view component in these
frameworks is supposed to be the responsibility of page designers, but the technologies used (e.g., JSPs) are
still too complex and open-ended for non-programmers to handle on their own.

The inefficiency that arises from this situation should not be underestimated. The current state of affairs
dictates that designers first come up with a page layout based on creative input, which programmers then
modify to embed programming constructs. In all probability, such a module becomes a hodgepodge of design
elements and programming constructs that neither programmers nor designers have control over. Efforts
employed by various frameworks to separate these elements within a module have not been entirely successful.
In theory, designers could make direct changes to the module. In practice, a seemingly simple change in page
layout made by a designer may require radical reworking of the module. Programmers must either embed the
constructs they need all over again in the new layout or try to fit new and modified design elements into the
existing module.

Since we have been bringing up the issue of separating content from presentation throughout the book, it is
about time we proposed some solutions. A solution would require a two-pronged approach. First, the next
generation of web application frameworks should enforce a cleaner separation between application code,
representing the Controller in the MVC model, and “pages” representing the View. Application code should
establish a page context that determines discrete display components that can be selected for presentation on
the page. Second, the tools used to develop web applications, especially front-end design tools, need to catch
up with the rest of the technology and support integration and cooperation with these frameworks.

As we suggested earlier, pages should be structured as templates that use markup languages such as
XHTML, XHTML MP, VoiceXML, and SMIL. Style sheet technologies, such as CSS and XSLT should
be used to provide flexible formatting. Page templates should be “owned” and maintained by page designers,
who use display components available within the page context. Programmers should be responsible for making
these components available to designers through standard uniform interfaces. The display components should
support a simple limited set of programmatic constructs for dynamic content generation through iteration,
conditional logic and external resource inclusion. The simplicity is important because it is designers, not
programmers, who own and maintain the templates.

Designers should be the ones who decide how to present the results and they should be able to make these
decisions without requiring programmer assistance. A clean separation between application code and
presentation views is a necessary condition for this to happen.

559

Keeping Complex Processing Out of the Page

The page is not the appropriate container for complex business logic or, arguably, even for
deciding which of several possible views should be presented. If such processing is required, its
place is within the application code.

When an application module produces a discrete atomic result, it can be included in the page
context as a display component that the designer can use in the presentation. For example, a
processing component that determines the “state” of a transaction performed by the application
(e.g., “completed” or “in progress”) should set the value of a display component in the page
context that reports this state. Designers can map different states to messages of their choosing
(e.g., “This transaction is still in progress. Please wait.”) and make use of this in the page
layout. (Note that the actual messages are not in the realm of application code, so modifying
them does not require a code change.)

On the other hand, when the difference between the possible results of such processing is
dramatic enough, the application code should make a choice as to which page should present
the results, rather than deferring the decision between coarse-grained presentation alternatives
to the page itself. In other words, if the presentation to be employed when the state is
“completed” is radically different from the one desired when the state is “in progress”, it may
not be advisable to expose the state to designers within the page context. Doing this would lead
to several alternative presentations embedded in one page. Instead, the application code should
choose between different templates. This way, each presentation is an individual template that
is the designer’s responsibility.

All the aforementioned suggestions are feasible but not enforced within existing frameworks.
We hope to see that changed in the next generation of frameworks.

560

13.3.2 Use the right tools for the job

The second facet of the solution is to make the tools used by page designers functional within these new
frameworks. Today, page designers rarely code HTML by hand; they make use of automated page design
tools such as Adobe Dreamweaver, Microsoft Visual Studio, and the open source Eclipse IDE. In order for
these tools to work properly within the kinds of framework described above, they would need to provide
support for the dynamic constructs that can be embedded within a page.

For example, support for iterative constructs in these tools could be designed to allow creation of a foreach
block where the substitution variables are populated with data dynamically generated by the tool, so that
designers can get an idea of what the final result would look like. A more sophisticated approach would be to
integrate the tool with the development environment, so that the tool has knowledge of what substitution
variable names are available from the page context, and of their data types and likely sizes. Similar support
could be provided for constructs used for conditional logic and inclusion of external resources.

Figure 13.19 shows a page fragment using JSTL tags for iterative and conditional processing. Designers
need to see the results of their work as they progress, but attempting to preview the JSP fragment shown in
Figure 13.19 would not work: browsers would ignore the JSP tags and display the substitution variables (e.g.,
$ {transactionda ta. order_number}), as in Figure 13.20.

To achieve tighter integration between front-end design tools and back-end application frameworks, one
solution is to introduce a browser preview function that understands the iterative and conditional constructs
used in the underlying framework. At the very least, the design tools should mock up an appropriate page
layout, based on heuristic estimates for each of the display components, presenting “dummy” data of the
appropriate type and length so that the browser preview is meaningful to the designer.

Figure 13.21 is a mockup of a dialog box that could be used in a page design tool, to control presenting
results from the foreach tag when the designer previews the page. Figure 13.22 shows how a browser with
framework integration would preview the results. In a more integrated environment, the design tool might
have access to application configuration information and derive the estimates without human intervention.

Advances in web application frameworks indicate that we are moving in the right direction. Smarter
frameworks already provide intelligence in their iteration constructs (e.g., the foreach directives or tags in
Velocity and JSTL) to make them class agnostic. In other words, they don’t care what kind of object is returned
from a data request, as long as it is an object that they can somehow iterate over (e.g., an array, Enumeration,
Iterator, Collection, or Vector). This may enable more seamless integration between front-end design tools
and application frameworks. It would be nice to see these class-agnostic constructs extended to support
tabular objects as well (e.g., RowSets, collections of JavaBeans, or Lists of Map objects).

561

Figure 13.19 Example of page fragment using JSTL foreach and if tags.

Figure 13.20 Browser preview of the page fragment without framework integration.

562

13.3.3 Simplicity

The inordinate complexity of application development frameworks continues to be a problem in the web
development world. Too often, we are willing to complicate simple tasks to achieve maximum flexibility when
developing APIs and tools for other developers. This can make the tools difficult for anyone to use - except
perhaps for the developers themselves! There have even been on-line debates among developers about “civil
disobedience” against overly complicated specifications that make it difficult to do simple things in a simple
way.

Figure 13.21 Dialog box for specifying content to be displayed by an iterative page construct.

Figure 13.22 Browser preview of the page fragment with framework integration.

Spring, Ruby on Rails, and other similar approaches have arisen and flourished in reaction to this
complexity. To a large degree, they are a rebellion against the direction taken by Java Platform, Enterprise
Edition (Java EE). These approaches have demonstrated that power and flexibility need not come at the price
of inordinate complexity. They employ scaffolding (automated construction of application skeletons), greatly
reducing the need for repetitive boilerplate code and the configuration nightmares of “XML hell”. Java EE 5

563

has sought to address many of the concerns about unnecessary complexity in application development and
deployment. Only time will tell which of these approaches, if any, wins out. Suffice to say that it is no longer
reasonable to produce a framework whose power comes at the cost of increased complexity in the development
process.

Part of the problem in the web application framework space is the difference in perspective between
developers and the supposed target audience of the presentation-level tools, the page designers. Developers see
it as “no big deal” to “simply” write a program or script, insert a code snippet, or compile and build a tool.
This is why programmatic approaches appeal more to developers than to page designers. Unfortunately, the
price for using programmatic approaches is that programmers must get involved in the maintenance of the
view component. This means that programmers and not designers must implement even trivial design
changes. Programmers who advocate these approaches don’t seem to realize that they are making extra work
for themselves in the long run.

Creative and business staff may sometimes have good reasons for requesting frequent changes to page
layouts, but programmers see recurring requests to “tweak” page layouts as an intrusion on their time, which
would be better spent developing applications. When the nature of the application development approach
requires that programmers are the ones who make such changes, the application’s flexibility and viability
suffer. Page designers (or even site administrators) should be able to make these changes themselves, without
programmer intervention.

Using programmers to perform trivial tasks is not only a misapplication of staff resources; it is also an
inordinate waste of time for the entire organization. When programmers make changes to code, the code
must go through an entire “build” cycle, where it is recompiled, unit tested, integration tested, packaged for
deployment, deployed to a “test” environment for functional and regression testing, and finally deployed to the
production environment. Changes made at the presentation level (or through an administrative interface) can
bypass a good portion of this process. Designers can preview them locally, approve them, and deploy them to
production.

One More Reason for Separating Content and Presentation

This brings us back to another reason why we do not want programmers creating markup as
part of the application code.

Imagine an application that invokes the Weather Service we described earlier in the chapter.
Suppose this application provides all the information obtained from the Weather Service in a
page fragment that includes formatting:

564

If creative or business people were to decide that this formatting should be changed (e.g., the
temperature should stand out by itself in large red text), this would require a change to the code
rather than to the page template.

By inserting individual data items associated with the Weather Service into the page context
as discrete display components, we bring the layout completely under the control of the page
designers, allowing them to change it themselves.

For example, the following code uses discrete display components in the page context:

The following code is an alternative way to specify the same page fragment using discrete
display components:

This page fragment could be rendered in the following way:

565

Designers want ready-made, user-friendly tools that do not require them to become programmers. Perhaps
the root of this problem is in the question: “Why are people who don’t care about simplicity, ease-of-use, and
user-friendliness building interfaces and tools for people who do?”

Many people in the open-source community have a disdain for Microsoft and the products they offer. In
fairness, Microsoft products have been successful in the marketplace, primarily because they were designed to
keep simple things simple, (e.g., through user-friendly interfaces called “wizards”). The argument that these
products can only do the simple things has some merit. Fortunately, this is not an “either-or” situation. Tools,
APIs, and application development frameworks can be designed to make simple things simple for those who
design, develop, deploy, and administer web applications, while still providing flexibility for those who need
sophisticated functionality. It is not unlike the dichotomy between those who prefer command-line interfaces
and those who prefer GUIs. There is no reason both cannot exist side by side, in the same environment, with
the individual free to choose the mode in which they want to work.

It is easier to keep simple things simple in a web application when the framework is designed to support
such simplicity. Even in the absence of such a framework, it is still the responsibility of web application
architects to employ sound design practices, so that tasks that ought to be easy to perform actually are. They
should rigorously analyze and document application requirements upfront, including use case analysis to
determine the tasks likely to be performed. Web architects have to walk the thin line between excessive
flexibility (and the resulting complexity) and supporting evolutionary changes without rebuilding the entire
application. Proper utilization of these practices should ensure that the application is flexible, extensible, and
viable.

Such goals can be accomplished within existing frameworks (e.g., Struts), but only by following solid
application design and development practices. Existing frameworks do not enforce good design practices; the
best of them simply encourage them. We hope that the next generation of frameworks will make it easier to
follow these practices, so that web applications can be more flexible and can be developed more quickly.

566

13.4 Current Trends

In this section, we consider current trends and enabling technologies in web applications.

567

13.4.1 Everything old is new again

Those of us who have been around the software industry for a while have a first-hand perspective on its cyclic
nature. Trends in software move back and forth like a pendulum. Years ago, hierarchical databases were the
way to go, then relational databases appeared on the horizon and changed all that. More recently, the
complexities and performance issues associated with relational databases have given way to renewed interest in
simpler hierarchical approaches to data management (e.g., LDAP).

Analyzing the history and pre-history of web applications reveals similar patterns. Back in the days of
mainframe systems, end-user applications used block mode terminals (e.g., IBM 3270) that employed
request-response protocols. Entering data into fixed form fields locally and then pressing the ENTER key to
transmit was seen as a limitation, so the next generation of client-server applications, which ran mostly on
PCs, enabled live updates of data. The client-server technology would transmit information to the server as it
was entered and live data updates produced on the server would be displayed simultaneously on the client.

These client-server applications had serious problems. They used non-standard protocols, and the client-
side application components had to be bundled with proprietary protocol stacks, hence the label “fat clients.”
The lack of standardization in communication protocols also meant that deployment and maintenance of
these applications was inordinately complex.

The web browser represented a return to interactive applications that used a request-response protocol,
namely HTTP. The limitations of a simple request-response protocol were readily apparent from the very
inception of the web. The lack of support for state maintenance in the original HTTP protocol led to the
introduction of cookies. JavaScript was added into the mix as a programmatic mechanism for enabling
dynamic page presentations.

HTTP is still the underlying technology supporting web transactions, but over time things have evolved
significantly. Web interactions may once have had more in common with IBM 3270 terminal transactions but
today, thanks largely to AJAX and Web 2.0 technologies, these interactions more closely resemble the
immediacy associated with traditional client-server applications.

Frameworks such as Adobe’s Flex and Microsoft’s Silverlight take this a step further, embedding Rich
Internet Applications directly into web pages. Java applets were an early attempt to provide similar
functionality, but they achieved only limited success. It remains to be seen whether the Rich Internet
Application frameworks will catch on as the next step in the evolution of web applications.

568

13.4.2 Social networking and community web sites

Social networking on the web has also experienced a pendulum swing of sorts. In the early days of the web,
before e-commerce applications had taken hold, personal web pages were a significant aspect of on-line life.
In those days, people manually built their own personal pages, “blogged” (before the word had even been
concocted) by manually updating their pages, and linked to each other through link pages and “web rings”.
Today, millions of people seek to build an on-line presence of their own and most of them don’t have the skill
set to create or manage their own web pages. Web sites that support creation and management of personal
web pages, automated services for blogging, and maintaining interconnections with others have taken off, in
particular MySpace and Facebook. As more of these sites arise, the ability of users to manage and coordinate
profiles on multiple social networking sites becomes critical, and we are already seeing significant development
activity in this area. Privacy issues and concerns about parental controls help to ensure that there will be
ongoing development effort in enhancing these web applications.

The semantic web that Tim Berners-Lee described was actually the second part of his dream for the future
of the web. The first part of that dream was the collaboration between people that the web facilitates, with
“shared knowledge” accessible to “groups of all sizes, interacting electronically with as much ease as they do
now in person.” He imagined the web “as something to which everyone [would have] immediate access, not
just to browse, but to create.” The social networking “community web sites”, along with collaborative web
applications, such as Wikipedia, and collaborative tagging/social bookmarking applications, such as de.licio.us
and Digg, are helping to make that part of the dream a reality.

569

13.4.3 Cloud computing and “Weblications”

The term cloud computing refers to on-line services (sometimes called weblications) that offer functionality
commonly provided by desktop applications. Application data files are managed by web users and stored on
servers running web applications. Users connect to these applications remotely through desktop browsers,
cellular phones, and other web-capable devices. Examples of cloud computing services include:

• photo- and video-sharing applications (e.g. Flickr and YouTube);
• web-based, customer-relationship management (CRM) solutions (e.g. Salesforce.com);
• financial applications, including on-line brokerage (e.g. eTrade), tax preparation (e.g. TurboTax),
and payment-processing services (e.g. PayPal);
• web-based email services (e.g. Gmail);
• remote office-productivity software (e.g. Google Docs);
• other “software-as-a-service” (SaaS) applications, such as Adobe’s “Create PDF” service.

The collaborative editing functionality provided by blog services and wiki applications, as well as the social
networking sites such as MySpace and Facebook, are other examples of cloud computing.

What’s in a Cloud?

The name “cloud computing” is a reference to the fact that, historically, an image of a cloud
has been used to represent unknown external systems in network diagrams. Since the Internet
can be thought of as a nebulous external network outside the boundaries of a local
environment, the cloud has become a natural metaphor for representing the Internet.

One of the best-known examples of a commercial cloud computing service is Google Docs. It provides
through a web browser functionality that is usually associated with office productivity software such as
Microsoft Office (Word, Excel, and PowerPoint). Users can edit text documents, construct spreadsheets, and
create presentations. The Google Docs user interface includes DHTML editing widgets, which provide
functionality closely resembling a word processor, a spreadsheet, or a canvas. The files produced by Google
Docs are stored on Google’s servers and are only accessible by their creators and those to whom they grant
access.

One element common to most cloud-computing services is user-identity management. Users want to
manage access to the on-line content they have created. They may want to be the only ones who can view and
edit that content, they may want to publish that content for all to see, or they may want to share it exclusively
with family members, colleagues, and friends. An authentication mechanism is required to validate user
identities. Such a mechanism implies the presence of a user registration process allowing people to sign up for
access to the service. Users also need a mechanism to define and manage the list of other users that can access
their content. An authorization mechanism that validates access permissions for authenticated users is also
required.

Another feature found in many cloud-computing services is the ability to edit and configure user-supplied
content. User-friendly mechanisms for uploading and editing content via a web client are critical. Laborious

570

http://Salesforce.com

upload processes that do not provide users with immediate confirmation and instant gratification are not a
recipe for success and should be avoided.

The DHTML editing widgets used in services such as Google Docs and Gmail are just one example of
such a mechanism. Drag-and-drop functionality can be used to organize on-line address books and photo
albums. More sophisticated photo-sharing services provide the ability to adjust, crop, and resize photos
through their interfaces. These functions usually employ AJAX and DHTML, but sometimes they are
implemented using Rich Internet Application (RIA) frameworks, such as Adobe Flex, or the Java Applet
mechanism.

A common feature on social networking sites is the live status update (made popular by Twitter). Users can
update their “status” (whatever they happen to be doing at the moment) from anywhere - including their
cellular phones - so that their friends are informed instantaneously about their current activities wherever they
are.

Live status updates and similar forms of real-time interactivity require that cloud-computing services be
accessible via mobile devices (such as cellular phones, smart phones, and network-capable PDAs). To that
end, well-designed services provide customized mobile versions of their web applications, with page layouts
optimized for the smaller screens associated with mobile devices. The User-Agent header found in HTTP
requests submitted to these services tells the application what kind of device is being used, allowing the
application to tailor the presentation accordingly. Applications can employ separate CSS style sheets for
mobile devices or create separate mobile-only versions of their web sites (e.g., m.google.com/). Some services
even provide custom client applications that run only on specific devices (e.g., the iPhone).

571

http://m.google.com/

13.5 Summary

Today, there is growing excitement behind the semantic web. Arguments against RDF are on the decrease
and the RDF specification, which has seen relatively slow uptake, is gaining acceptance. The first RDF
applications are already taking hold (e.g., CC/PP) and more are under development. The development of
SPARQL is a major step in advancing real-world RDF applications.

In the future, web clients will be found in everything from medical monitoring devices to automobiles and
household appliances. An ever-expanding variety of data will be collected and published by all sorts of
currently unimaginable sensors and other devices. We will need the power and flexibility of the semantic web
to make sense out of that brave new world. It is too early to say whether RDF will remain the main power
behind the semantic web, but it is promising.

There is the growing realization in the web community that developers and designers are two distinctly
separate groups with different needs. The next generation of web application development frameworks should
address many of the pressing web application lifecycle problems that currently face developers and designers.
These new frameworks will need to reduce dramatically the complexity associated with developing and
deploying web applications. Frameworks such as Ruby on Rails have been successful in gaining traction in the
web development community, precisely because they provide an environment in which application
development is simplified without sacrificing power and flexibility.

The current generation of web applications, from blogs and wikis to social networking sites and cloud
computing services, demonstrates the ever-changing nature of the web as a platform for software applications.
A decade ago, few would have predicted the ascent of services such as Wikipedia, Facebook, YouTube, and
Google Docs. As web technology continues to advance, the one thing we should expect is the unexpected.

QUESTIONS AND EXERCISES

1. What is RDF? What is the purpose of introducing the RDF specification?
2. What is the relationship between RDF and XML? Since an RDF model can be
represented in XML, is it not enough to use XML Schema to impose constraints on
the model? Why do we need an RDF Schema?
3. What is the relationship between RDF and Dublin Core?
4. What is the purpose of CC/PP? What is the relationship between CC/PP and
RDF?
5. If your cell phone supports web browsing, can you find or define a CC/PP-
compliant description for it?
6. Let us go back to the CarML markup language and XML documents, which
resulted from the exercises in Chapter 5. Define an XQuery-compliant query to
retrieve all red cars that have two doors and whose model year is no older than 2000.
7. Suppose that you have access not only to documents describing cars, but to the
owner records as well (you can make assumptions about the structure of these

572

records). Can you define a query to retrieve all red cars that have a six-cylinder
engine and are owned by a person who is less than 25 years old?
8. What is the purpose of SPARQL? Why is it not enough to apply XQuery to RDF
models represented in XML?
9. Consider the RDF model in Figure 13.8. Define a SPARQL query to retrieve
books authored by both <http://purl.org/net/shklar> and <http://purl.org/net/rlr>.
10. What future advances in web application development approaches would you
consider to be most important? Explain.
11. Imagine that you work for a company that publishes content on its web site. Page
designers build web page layouts, which developers must translate into code
embedded in server-side application components. Any change to a page layout (e.g.,
modifying the color scheme or the heading fonts and sizes or changing the displayed
image containing the company logo) requires that developers update the application
code. A full development cycle (including integration testing, quality assurance, and
staging) must be performed before such changes can be incorporated in the
production environment. What would you suggest to improve this process?

573

http://purl.org/net/shklar
http://purl.org/net/rlr

13.6 Bibliography

Alur, Deepak et al., 2003. Core J2EE Patterns, 2nd Edition. Palo Alto (CA): Sun Microsystems Press
(Prentice-Hall).

Berners-Lee, Tim, 2000. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web.
New York: HarperBusiness.

Fensel, Dieter et al. (eds), 2005. Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential.
Cambridge (MA): MIT Press.

Powers, Shelley, 2003. Practical RDF. Sebastopol (CA): O’Reilly Media.

Vossen, Gottfried and Hageman, Stephan, 2007. Unleashing Web 2.0: From Concepts to Creativity. Burlington
(MA): Morgan Kaufmann.

Walmsley, Priscilla, 2007. XQuery. Sebastopol (CA): O’Reilly Media.

574

13.7 Web Links

Organization for the Advancement of Structured Information Standards. Available at www.oasis-open.org/.

Web Services Interoperability Organization. Available at www.ws-i.org/.

575

http://www.oasis-open.org/
http://www.ws-i.org/

13.8 Endnotes

1 http://www.ws-i.org/

2 http://www.oasis-open.org/

576

http://www.ws-i.org/
http://www.oasis-open.org/

CHAPTER 14

Conclusions

The web has entered a new era in which continued exponential growth is tempered with a new-found
sophistication and maturity. It is impossible to imagine a serious business that does not have at least a basic
web presence, while larger commercial enterprises employ sophisticated web applications for online search and
e-commerce functions. Newspaper and magazine publishers are tripping over each other to cannibalize their
shrinking print businesses in favor of growing their online presence. Technological advances have given rise to
a new breed of “online hangouts”, which have become the centers of an ever-growing social networking
community. The influence of Microsoft’s software monopoly has become less pervasive, thanks to Google’s
advantages in online search, Apple’s advances in the world of mobile entertainment, and the increasing
availability of powerful software from the open-source community.

Modern interactive applications are becoming increasingly complex. Content sharing creates intricate
interdependencies between web sites. The proliferation of application development approaches is staggering,
with new web development frameworks arising on what seems like a daily basis.

This rapidly changing landscape makes it critically important for developers to go back to the basics and
learn core Internet technologies. In complex environments, HTTP remains the common denominator that
ties together .NET, Java EE, PHP, Rails, and other seemingly incompatible approaches. Learning the
underpinnings of HTTP interactions helps developers to understand APIs based on first principles. They can
then apply that understanding to APIs and frameworks that come along in the future. This is a far cry from
what we have seen historically in the web development community, where developers who were not well
grounded in the underlying principles had to learn each new API from scratch.

Without HTTP-level analysis, problem resolution in complex environments may take a very long time and
consume extensive resources. Casually implemented redirects can cause intermittent problems that are very
difficult to diagnose. Browser and proxy caching are examples of functionality that almost never work correctly
out-of-the-box, especially across application frameworks. Often tuning the HTTP headers responsible for
caching responses is what makes the difference in optimizing applications for load and performance.

Understanding server and browser architecture is another critical component in building and maintaining

577

effective web applications. It is essential for managing server and browser processing of HTTP requests,
including URL resolution, content caching, redirects, session management, and access control. Familiarity
with browser architecture is key to building effective presentation components involving XHTML, CSS, and
JavaScript.

The world of web application development is changing at breakneck speed. Even though Web 2.0 is more
of a business label than a technology trend, its emergence has breathed new life into JavaScript, CSS, and
other technologies that have been around since the early days of the web. Web 2.0 has facilitated the advance
of interactive applications that promote information sharing and collaboration between users. These
applications have evolved into an expanding variety of web-based communities including social networking
sites, blogs, and wikis.

Social networking and other modern web applications demand dynamic interactivity in presenting web
pages. Advances in CSS and JavaScript brought about Dynamic HTML and eventually AJAX. Though
AJAX was simply a clever repurposing of existing technology, it produced a critical paradigm shift in web
application design. It gave JavaScript a new lease on life, dismissing the skeptics that predicted its inevitable
demise. The hacks and bad coding practices long associated with JavaScript have given way to a more
disciplined approach to building structured user interfaces.

Rapid growth in the number and diversity of desktop and mobile browsers adds to the complexity, making
it necessary to design applications that can adjust their presentation dynamically. XML and XSL provide
powerful mechanisms for tailoring presentation to address browser limitations. Server applications can consult
HTTP headers for incoming requests to select appropriate XML templates and XSL transformations.

The importance of XML goes far beyond flexible presentations. It has become the enabling technology for
application protocols, data feeds, multimedia packaging, metadata representation, and much more. XML
specifications, including XML Schema, XSL, XSL FO, SOAP Web Services, XPath, and XQuery further the
objective of making XML a mainstream technology. Support for web services is now an integral part of many
commercial products.

The future is getting more interesting and exciting all the time. Imagine all the possibilities that the
semantic web can open for us. Just a few years ago, it seemed both distant and abstract. Now, machine-
understandable metadata is winding its way into real-life applications.

The key technology long associated with the semantic web is RDF. Due to its complexity, RDF has been
relatively slow to gain momentum. However, recent developments show the growing acceptance of this
technology. The first RDF applications are already taking hold (e.g., CC/PP) and more are under
development. The development of SPARQL is a major step in advancing real-world RDF applications.

It is too early to say whether RDF will be the main power behind the semantic web, but the chances are
good that it will. We would not be surprised if, in the next edition of the book, RDF and RDF applications
find their way out of Chapter 13 and into the main body of the book.

In the more immediate future, the challenge is in finding better ways to combine different technologies into
a single solution. The best of durable, flexible, and extensible web applications make use of the widely
accepted MVC paradigm, combining a controller-driven framework with template-based views. A robust and
viable approach that satisfies these requirements is the Struts framework, using JSTL tags to support views.
JSTL tags represent a huge step toward making JSPs accessible to page designers. JSP 2.1 further raises the

578

bar, advancing the Expression Language as part of the JSP syntax and opening the door for the declarative
definition of custom tags.

Alternative approaches to page presentation exist, both open source (Velocity) and proprietary (Adobe
ColdFusion and Microsoft ASP.NET). The more flexible approaches strive to fit into the MVC paradigm,
serving as a possible View component architecture for Struts and other similar frameworks.

Struts, however, is not the be-all-and-end-all of enterprise application frameworks. Challengers to Struts’s
supremacy include JBoss Seam, which uses EJB 3.0 coupled with Java Server Faces (JSF). JSF has made
inroads of its own, even though it continues to exhibit significant incompatibilities with the JSP and JSTL
approach.

Until recently, each new specification of Java Platform, Enterprise Edition (Java EE) has offered increased
flexibility and power, but always at the cost of making even the simplest applications difficult to build,
configure, and deploy. Reaction to this increasing complexity has led a significant number of developers to
seek alternatives to Java and Java EE.

Many of them are considering rapid application development approaches such as Ruby on Rails. They tout
Rails’s use of scaffolding to build application skeletons automatically and its use of “convention over
configuration” through intelligent defaults and naming conventions to minimize the need to edit
configuration files manually. Still, Rails is in its infancy, and has competitors of its own in the Java world (e.g.,
Groovy on Grails). Only time will tell which frameworks will flourish.

Of course, the focus of this book is web application architecture, so naturally we wanted to present case
studies that walked through the process of designing, developing, and deploying web applications. We
dedicated an entire chapter to a simple real-estate broker application using Struts and JSTL. We also
implemented a similar application using Ruby on Rails, to compare the benefits and drawbacks of the two
approaches.

Web applications today are living and breathing entities. They have to enable user interactions, support the
publication of new content, and exhibit flexibility in morphing their look-and-feel in reaction to both external
events and internal campaigns (not to mention keeping it fresh to prevent end-user boredom). This works
best if developers do not need to get involved in normal operational changes (e.g., simple page layout
modifications and adding or deleting database entries). If they do have to get involved, things slow down
because the changes need to go through the software lifecycle process. Developers would spend time
implementing, testing, and deploying these changes, drawing resources away from new development.
Moreover, positions involving an excessive amount of routine work tend to scare off more experienced and
skilled developers.

As web applications expand beyond the desktop, the challenges developers face are compounded. Mobile
phones and PDAs are already connected to the web. Very soon, common appliances in our homes and offices
will become web-enabled. We will need a rich web services infrastructure to support this explosion in the
number and variety of web devices. Web-based home automation applications will become more prevalent
and home servers will be needed to coordinate entertainment centers, microwave ovens, backyard sprinklers,
and home-security systems. These applications will access public and commercial web services to retrieve
movies, cooking instructions, weather updates, and security advisories. In the not-too-distant future, people
with health issues could have nanobots running HTTP servers in their bloodstream, instantaneously

579

transmitting information about their current condition to their doctors.
With this explosive growth comes great risk. As web servers and applications move out of IT centers and

into the hands of individuals, security and reliability become even more critical. Designers and developers
must be vigilant in building applications that limit the threat of web-borne viruses, worms, and other forms of
attack. Likewise, systems need to be self-maintaining so that the software can be kept current, ensuring that
both bug fixes and security updates are deployed as soon as possible.

The next generation of web application development frameworks should address many of the pressing
problems faced by developers and designers of web applications. We hope this book has prepared you, not
only to understand the current generation of web technology but also to play a part in the development of the
next generation.

Leon Shklar and Rich Rosen
New York, October 31, 2008

580

Index

581

Accept header (HTTP)
Access Control List (ACL)
accessibility, content
action mappings
Action Script
Active Server Pages see ASP
address mapping, web server
address resolution, web server
Advanced Research Projects Agency (ARPA)
AJAX

auto-completion
content injection
and DHTML
remote validation
response data formats
validation

algorithm
Google Page Rank see Google Page Rank algorithm
information retrieval see information retrieval algorithm
vector-space see vector-space algorithm

Alta Vista
Amazon Associates
America Online (AOL)
American National Standards Institute (ANSI)
American Standard for Coded Information Interchange (ASCII)
anchor
Apache

API
Jakarta
Tomcat
Velocity
Web Server

Application layer (TCP/IP protocol stack)
application programming interfaces (APIs)
approaches, web application development

hybrid see hybrid approaches
programmatic see programmatic approaches
template see template approaches
see also MVC/Model-View-Controller

582

Archie
ARPANET
as-is
Ask.com
ASP
asset helper tags (Rails)
Asynchronous JavaScript and XmlHttpRequest see AJAX
attributes

in SGML
in XML
in XSL

attribute-value pair
authentication

e-mail
HTTP
public key
Ruby on Rails
VRLS application
web browser

authorization
challenge and response
Ruby on Rails
web browser

Authorization header (HTTP)

583

http://Ask.com

BitTorrent
Black Hat (SEO)
blogs
browser, HTTP see Web browser
Bulletin Board Systems (BBS)

584

C (programming language)
C# (programming language)
C++ (programming language)
caching

and HTTP
support in Web browsers
support in Web servers

camel case
Capistrano
Cascading Style Sheets see CSS
CC/PP
CERN
CGI

beyond
environment variables
FastCGI
Perl and

chunked transfers (HTTP)
client-server application

fat clients vs. thin clients
cloud computing
co-branding, content
Cocoon
Cold Fusion (Adobe)
Cold Fusion Markup Language (CFML)
collaborative tagging/social bookmarking
command line interfaces

vs. GUIs
Common Gateway Interface see CGI
community web sites
Composite Capabilities/Preference Profiles see /PP
Compuserve
concrete syntax (SGML)
Content-Encoding header (HTTP)
Content-Type header (HTTP)
CONNECT method (HTTP)
Cookie header (HTTP)
cookies

third-party

585

Core J2EE patterns
Create-Read-Update-Delete see CRUD
CRUD
CSS

a:hover pseudo-class
content visibility
format of rules
hovering behaviors

customer administration (VRLS application)

586

daemons
DARPA Agent Markup Language (DAML)
Data Access Object (DAO)
database management system, relational see RDBMS
Data Link layer (TCP/IP protocol stack)
Date header (HTTP)
DELETE method (HTTP)
de.licio.us
Deja News
dependency injection
design patterns

Factory
Front Controller
Intercepting Filter
Service-To-Worker
Value List Handler

Dexagogo
DHTML

ActiveX
AJAX vs
client-side validation using toolkits
controlling content visibility
hovering behaviors using toolkits
iframe
inner workings
leveraging toolkits
Prototype
widgets

Digg
directory structure (web server)
Document Object Model see DOM
Document Type Definitions see DTDs
Dojo (JavaScript toolkit)
DOM
doorway
Dreamweaver (Adobe)
dropdown field
DTDs

XML

587

dual-homed gateway
Dublin Core
Dynamic HTML see DHTML
dynamic web

588

EasyStruts
EBCDIC
Eclipse IDE
ECMAScript
e-commerce
electronic bulletin board

see also BBS
electronic mail see e-mail
elements

SGML
HTML
XML

e-mail
vs HTTP messages
mailing list
web-based
see also IMAP, POP, SMTP protocols

encryption
Enterprise Java Beans (EJB)

EJB
event handlers (JavaScript)
event model (GUI applications)
Excel (Microsoft)
Excite
expression language (EL)
Extended Binary-Coded Decimal Interchange Code see EBCDIC

589

Facebook
Facelets
Factory (design pattern)
Fast (search technology)
FastCGI
FIDONET
FIFO
File Transfer Protocol see FTP
Firefox web browser

see also Mozilla
firewall
Flash (Adobe)
Flex (Adobe)
Flickr
frameworks (web application development)
Front Controller (design pattern)
FTP protocol

anonymous

590

Generalized Markup Language (GML)
see also SGML

GET method (HTTP)
GIF
Glassfish
Gmail
GML

Google
Google AdSense
Google Docs
Google Enterprise
Google Groups
Google Mail see Gmail
Google News
Google Web Toolkit
page rank algorithm
see also OneBox, search technologies

Gopher
Grails (web application framework)
Graphical User Interface see GUI
Groovy (programming language)

Groovy on Grails see Grails (web application framework)
GUI

vs. command line interfaces

591

HEAD method (HTTP)
headers

HTTP see HTTP headers
POP see POP protocol

helper application, web browser
Hibernate
Host header (HTTP)
hosting, virtual
Hotmail
HTML

anchors
body
content accessibility
dynamic see DHTML
forbidden tags
header
meta-refresh technique
problems
structure and syntax
tags
widgets
rendering
see also XHTML

HTML
HTTP (protocol)

authentication
authorization challenge
body
cookies
evolution
history
persistent connections
request methods
security
servlets
structure of messages
Transport Layer protocol
URL

HTTP headers

592

cache control
content types
entity
general
pipelining requests
security
virtual hosting

HTTP headers (by name)
Accept
Authorization
Content-Encoding
Content-Type
Cookie
Date
Host
Location
Referer
Server
Transfer-Encoding
User-Agent

HTTP methods
CONNECT
DELETE
GET
HEAD
OPTIONS
POST
PUT
TRACE

HTTP proxies
HTTP requests

body
headers
processing
request line
transmission

HTTP responses
body
status codes
1xx

593

2xx
3xx
4xx
5xx
status line

HTTP servers see web servers
HTTP sessions
HTTPS (secure HTTP)
hybrid approaches

division of responsibility
Model-View-Controller (MVC)

Hypersonic database
hypertext
HyperText Markup Language see HTML
HyperText Transfer Protocol see HTTP protocol
HyTime

594

iBatis
ICMP protocol
IDEs (Integrated Development Environments)

Eclipse
Idea

IIS (Microsoft)
image rollovers
IMAP protocol

vs POP
IMAP4

information retrieval algorithm
custom biases
enhancements
frequency
historical perspective
precision
recall
recall rate
searching the Web
word clustering

Instant Messaging (IM)
Integrated Development Environments see IDEs
Intercepting Filter (design pattern)
Internet Activities Board (IAB)
Internet Architecture Board
Internet Assigned Numbers Authority (IANA)
Internet Control Message Protocol (ICMP)
Internet Engineering Steering Group (IESG)
Internet Engineering Task Force (IETF)
Internet Explorer (Microsoft)
Internet Information Server see IIS
Internet layer (TCP/IP protocol stack)
Internet Message Access Protocol see IMAP
Internet Protocol (IP)

see also TCP/IP
Internet Working Group (INWG)
inverse document frequency (IDF)
invisible text (Black Hat SEO)
ISAPI

595

596

J2EE see Java EE
core patterns

Jabber instant messaging protocol
Jakarta (Apache)
Java

JavaBeans
Java EE
future of
Java Native Interface see JNI
Java Persistence API see JPA
Java Platform, Enterprise Edition see Java EE
Java Server Faces see JSF
Java Server Pages see JSP
Java Servlet API
Java Standard Tag Library see JSTL
Java Virtual Machine (JVM)

JavaScript
Document Object Model (DOM)
form validation
hovering behaviors: image rollover
modifying page content
object notation see JSON
cascading style sheets (CSS)
toolkits

JBoss
JBoss Seam
JDBC
JMS
JNDI
JNI
JPA
JPEG image format
JRuby on Rails
JSF
JSON
JSP
JSP Model

Dispatcher View pattern
front controller

597

Service-to-Worker pattern
JSTL
JTidy parser

598

key pair (public key authentication)

599

languages
markup see markup languages
query see query languages
programming see programming languages

Latent Semantic Indexing (LSI)
LaTeX
lemmatization
LightTPD web server
LimeWire
link farms
Linux
listing administration (VRLS application)
LiveWire (server-side JavaScript)
Local Area Network (LAN)
Location header (HTTP)
Lotus Notes
Lucene search libraries
Lynx web browser
LZX (OpenLaszlo)
Mail Retrieval Agents see MRAs
Mail Transfer Agents see MTAs
Mail User Agents see MUAs
mailboxes
markup languages chapters

see HTML; SMIL; VoiceXML; WML’WSDL; XHTML; XML and under names
MathML
message body (HTTP)
message forums

Netnews
message header (HTTP)
metadata
meta-markup language
Microsoft

Active Server Pages (ASP)
ASP.NET
Excel
FrontPage
Outlook
PowerPoint

600

Word
MIME
Model-View-Controller see MVC
Mongrel web server
Mosaic web browser
Mozilla

Firefox web browser
Thunderbird web browser

MQ/MSMQ messaging system
MRAs
MTAs
MUAs
Multimedia Internet Mail Extensions see MIME
multipart messages
MVC
MySpace
MySQL database

601

National Center for Supercomputer Applications (NCSA)
.NET
Netflix
netiquette
Netnews

newsgroups
Netscape

helper
Navigator web browser
plug-in

Network Interface layer (TCP/IP protocol stack)
Network News Transfer Protocol (NNTP)
network topology
Networking module, web browser
newsgroups
Notation(N3)
NSAPI

602

OASIS
object-relational mapping see ORM
Office (Microsoft)
OneBox search applications
on-line communities
Ontology Inference Layer (OIL)
OpenLaszlo
Opera web browser

Mini browser
OPTIONS method (HTTP)
Organization for the Advancement of Structured Information Standards see OASIS
ORM
OSI

vs. TCP/IP

603

P3P
packet-switching technology
page-centric approaches
partner administration (VRLS application)
passphrase (public key authentication)
PayPal
PDF
PDFBox format conversion library
peer-to-peer (P2P)
Perl

and CGI
PHP
ping
Plain Old Java Objects see POJOs
Platform for Privacy Preferences (P3P)
plug-ins (web browser)
pluralization (Rails)
POJOs
POP protocol

message headers
vs IMAP
POP3 (version of the POP protocol)
and IMAP

Portable Data Format (Adobe) see PDF
port (URL component)
POST method (HTTP)
Post Office Protocol see POP protocol
Postscript
PowerPoint (Microsoft)
private key (public key authentication)
programmatic approaches
programming languages see under names
protocol stack (TCP/IP)
protocols (Internet)
Prototype (JavaScript toolkit)
proxies, HTTP see Web proxies
public key authentication
PUT method (HTTP)
Python programming language

604

605

Query languages see SQL; XQuery; XPath and under names
Query Processor
query string (URL component)
QuickTime video format and software

606

RAD
Rails (web application framework) see Ruby on Rails
rank spoofing (Black Hat SEO)
Rapid Application Development approaches see RAD
RDBMS
RDF

composite capabilities/preference profiles (CC/PP)
Dublin core
RDF Query
RDF Schema

realms (HTTP authentication)
Referer header (HTTP)
relational database management system see RDBMS
remote validation (AJAX)
Representational State Transfer see REST
request processing

in web browsers
in web servers

request-response paradigm
Requests for Comments (RFCs)
requests (HTTP) see HTTP requests
Resource Description Framework see RDF
response data formats (AJAX)
response generation
responses (HTTP) see HTTP responses
REST
RFC/Request for Comments
Rich Internet Applications (RIAs)
robots see Web spiders
robots.txt file
Ruby on Rails

asset helper tags
authentication
authorization
benefits and drawbacks
clustering
create-read-update-delete (CRUD) functions
customizing views
data model completion

607

database support
downloading
form validation
home
vs Java EE
lookup tables
new project and data configuration
pagination
performance
rapid application development
reusable layout components
scaffolding
scalability
skeleton building
version.0 issues
web design

608

Safari web browser
Scalable Vector Graphics see SVG
schema

database
RDF
XML

scheme, URL
screened-host gateway
screen-mode programs
Scriptaculous toolkit
scripting approaches see programmatic approaches
search

algorithms
general architecture
site applications

Search Engine Optimization (SEO)
Black Hat

search engines see search technologies
search technologies

see also under names
Secure FTP see SFTP
Secure Shell see SSH
Secure Sockets Layer see SSL
security

dangerous practices
firewall configurations
secure HTTP

semantic search
Semantic Web
Server header (HTTP)
server, HTTP see Web server
Server-Side Includes (SSI)
Service-to-Worker (design pattern)
servlets see Java Servlet API
session

HTTP
browser vs HTTP

SFTP
SGML

609

attribute definitions
concrete syntax
declaration
document character set
Document Type Definition (DTD)
element definitions
entity definitions
feature usage

Silverlight (Microsoft)
Simple Mail Transfer Protocol see SMTP protocol
simplicity
sitemaps

extensions
SMART
SMIL
SMTP protocol

SMTP-AUTH
Snap Shots
SOAP
social networking
Solr search technology
spamdexing
SPARQL query language
SQL
SSH
SSL
Standard Generalized Markup Language see SGML
star rating case study

designing
web server and

status codes (HTTP) see HTTP responses
status line
stemming
stochastic algorithms
stop words
Structured Query Language see SQL
Struts (web application framework)

Action mappings
Validator API

SVG

610

Synchronized Multimedia Integration Language see SMIL

611

tags
asset helper (Ruby on Rails)
Cold Fusion
HTML
JSP custom tags
see also JSTL

tail-matching
Tcl (programming language)
TCP/IP protocol stack

architecture
and applications
FTP
historical perspective
ICMP
layers
vs. OSI

Telnet
Template approaches
TextMate
threads
Tomcat Java EE container
TRACE method (HTTP)
Transfer-Encoding header (HTTP)
Transmission Control Protocol (TCP)

see also TCP/IP
Transport layer (TCP/IP protocol stack)
Transport Layer Security (TLS)
troff
tunneling (SSH)

612

UDDI
and SOAP
and WSDL

UDP
UML
Unified Expression Language for JSP and JSF
Uniform Resource Identifier see URL
Uniform Resource Locator see URL
Uniform Resource Name (URN)
Universal Description, Discovery, and Integration see UDDI
Universal Modeling Language see UML
Unix

and Linux
shells

URL
anchor
dependent
host
and HTTP
path
port
query string
scheme
url-params

URN
Usenet
User-Agent header (HTTP)
User Datagram Protocol (UDP)
user forums
UUCP

613

validation (AJAX)
Value List Handler (design pattern)
VB.NET
vector-space algorithm

weighting for multiple occurrences
weighting for phrases

Velocity Template Language (Apache)
virtual hosting
Virtual Realty Listing Services see VRLS application
Visual Basic
Visual Studio (Microsoft)
VRLS application

Action Mapping Summary
authentication
case study
configuration
controller components
design decisions
enhancements
administrative interface
caching
cookie
DomainService class, adding caching to
e-mail authentication
object-relational mapping tool
paging
tracking user behavior
XML and XSLT for view presentation
model components
CustomerProfile
database schema
Listing
Partner
structure of
view components

614

615

WADL
W3C
WAIS
Wall Street Journal
WAP CSS
WAP Forum
Web
web application architect
Web Application Description Language see WADL
web application development
web application development approaches, comparison

requirements
technology choices

web application frameworks
web browser

architecture
authentication
authorization
caching
complex HTTP interaction
configuration
content interpretation
data persistence mechanisms
functionality
helpers
least-recently-used algorithm
networking
plug-ins
privacy and
processing flow
request generation
request line
response processing
session
state maintenance
supporting data items
user interface

web crawlers
web logs see blogs

616

web proxies
HTTP

web servers
advanced functionality
APIs, native
authentication
basic operation
configuration
directory structure
dynamic content
dynamic content delivery mechanisms
extensions
extensibility
pages
server root
security
state
static content
template processing
see also HTTP requests, HTTP responses

web services
Web Services Definition Language see WSDL
Web Services Interoperability organization (WS-I)
web sites
web spiders
web-based e-mail services
Weblications
WebLogic Java EE container
WEBrick web server
Web surfing
WebSphere Java EE container
widgets
wiki
Wikipedia
WIMPS
Wireless Access Protocol see WAP Forum
Wireless Markup Language (WML)
Word (Microsoft)
World Wide Web Consortium see W3C
World Wide Web see WWW

617

WSDL
WWW

history and pre-history

618

Xanadu project
XHTML
XHTML-compliant inline JavaScript
XHTML MP
XLink
XML

attributes
CDATA
core
documents
DTD
schema see XML Schema
Web Services

XML Linking Language see XLink
XML Query Language see XQuery
XML Schema
XMPP
XPath
XQuery
XSL

attributes
importance

XSL Formatting Objects (XSL-FO)
XSLT

619

Yahoo!
Yahoo! Mail

Yet Another Markup Language (YAML)
YouTube

620

	Title Page
	Copyright Page
	Dedication
	About the Authors
	Preface to the Second Edition
	Acknowledgements
	CHAPTER 1 - Introduction
	1.1 History and Pre-History of the Web
	1.2 From Web Pages to Web Sites
	1.3 From Web Sites to Web Applications
	1.4 Web 2.0: On-line Communities and Collaboration
	1.5 The Brave New World of AJAX
	1.6 Focus of This Book
	1.7 What Is Covered in This Book
	1.8 Bibliography

	CHAPTER 2 - Core Internet Protocols
	2.1 Historical Perspective
	2.2 TCP/IP Architecture
	2.3 TCP/IP Application Services
	2.4 And Then Came the Web ...
	2.5 Bibliography

	CHAPTER 3 - Birth of the Web: HTTP
	3.1 Historical Perspective
	3.2 Uniform Resource Locator
	3.3 Fundamentals of HTTP
	3.4 Better Information Through Headers
	3.5 Evolution of the HTTP Protocol
	3.6 Summary
	3.7 Bibliography

	CHAPTER 4 - HTML and Its Roots
	4.1 Standard Generalized Markup Language
	4.2 HTML
	4.3 HTML Rendering
	4.4 Summary
	4.5 Bibliography

	CHAPTER 5 - XML Languages and Applications
	5.1 Core XML
	5.2 XHTML
	5.3 Web Services
	5.4 XSL
	5.5 Summary
	5.6 Bibliography
	5.7 Web Links
	5.8 Endnotes

	CHAPTER 6 - Web Servers
	6.1 Basic Operation
	6.2 Mechanisms for Dynamic Content Delivery
	6.3 Advanced Functionality
	6.4 Server Configuration
	6.5 Server Security
	6.6 Summary
	6.7 Bibliography

	CHAPTER 7 - Web Browsers
	7.1 Overview of Browser Functionality
	7.2 Architectural Considerations
	7.3 Overview of Processing Flow in a Browser
	7.4 Processing HTTP Requests
	7.5 Processing HTTP Responses
	7.6 Cookie Coordination
	7.7 Privacy and P3P
	7.8 Complex HTTP Interactions
	7.9 Summary
	7.10 Bibliography
	7.11 Web Links
	7.12 Endnotes

	CHAPTER 8 - Active Browser Pages: From JavaScript to AJAX
	8.1 Pre-History
	8.2 JavaScript
	8.3 Cascading Style Sheets
	8.4 DHTML
	8.5 AJAX
	8.6 Case Study: 5-Star Rating
	8.7 Summary
	8.8 Bibliography
	8.9 Web Links
	8.10 Endnotes

	CHAPTER 9 - Approaches to Web Application Development
	9.1 Taxonomy of Web Application Approaches and Frameworks
	9.2 Comparative Survey of Web Application Approaches and Frameworks
	9.3 Summary
	9.4 Bibliography

	CHAPTER 10 - Web Application Primer 1: Struts and JSTL
	10.1 Case Study: Virtual Realty Listing Services
	10.2 Application Requirements
	10.3 Technology Choices
	10.4 Overview of Struts
	10.5 Structure of the VRLS Application
	10.6 Design Decisions
	10.7 Suggested Enhancements
	10.8 Summary
	10.9 Bibliography

	CHAPTER 11 - Web Application Primer 2: Ruby on Rails
	11.1 Comparing Rails with Java EE
	11.2 Application Requirements
	11.3 Building the Administrative Interface as a Rails Application
	11.4 Benefits and Drawbacks of Using Rails
	11.5 Whither Enterprise Java?
	11.6 Summary
	11.7 Bibliography
	11.8 Web Links
	11.9 Endnotes

	CHAPTER 12 - Search Technologies
	12.1 Overview of Algorithms
	12.2 Searching the Web
	12.3 Site Search Applications
	12.4 Search Engine Optimization
	12.5 Summary
	12.6 Bibliography
	12.7 Web Links
	12.8 Endnotes

	CHAPTER 13 - Trends and Directions
	13.1 XML Query Language
	13.2 Semantic Web
	13.3 Future of Web Application Frameworks
	13.4 Current Trends
	13.5 Summary
	13.6 Bibliography
	13.7 Web Links
	13.8 Endnotes

	CHAPTER 14 - Conclusions
	Index

