
Page:1

QUEUE

QUEUE

Page:2

QUEUE

Queue

A queue is simply a waiting line that grows by adding elements
to its end and shrinks by taking elements from its front.

A queue is a FIFO structure: first in/first out.

Page:3

QUEUE

Queue Operations

• ■ clear()—Clear the queue.

• ■ isEmpty()—Check to see if the queue is empty.

• ■ enqueue(el)—Put the element el at the end of the queue.

• ■ dequeue()—Take the first element from the queue.

• ■ first()—Return the first element in the queue without

removing it.

Page:4

QUEUE

QUEUE using Link List

• Design a Queue class so that following functions are

efficient

– enqueue(el)—Put the element at the end of the queue.

– dequeue()—Take the first element from the queue.

• What will you use

– SLL

– DLL

– CLL
8 10 12

tailhead

Page:5

QUEUE

QUEUE using Linked List

• In the singly linked list implementation of Queue,

– dequeuing requires O(n) operations if tail pointer is not kept.

– With tail point dequeue in single link list will take O(1) time

• Queue can be implementation using doubly linked list.

– The enqueuing and dequeuing can be done in constant time

O(1)

Page:6

QUEUE

QUEUE using Arrays

• Can we use Arrays to implement Queue class?

– Not a best choice …why ?

• Elements are added to the end of the queue, but they may

be removed from its beginning, thereby releasing array

cells.

• These cells should not be wasted.

• They should be utilized to enqueue new elements.

3 4 5 8

First last

Page:7

QUEUE

QUEUE using Circular Array

• Picture Queue as a circular array

– The queue is full if either the first element is in

• the first cell and the last element is in the last cell or

• if the first element is right after the last

• Or keep current size of the queue

Page:8

QUEUE

0
1

2

3

MaxSize-1

Queue using Circular Array

First Last

template <class T>
class Queue {
public:

Queue() {};
bool enqueue(int e1);
bool dequeue(int &e1);
bool isFull();
bool isEmpty();

private:
int first;
int last;
const int MaxSize
int CurrentSize;
T array[MaxSize];

};

Page:9

QUEUE

0
1

2

3

MaxSize-1

bool Queue::enqueue(int e1) {
if (!isFull()) {

last++;
if (last == MaxSize)

last = 0;
QueueArray[last] = e1;
if (CurrentSize == 0)

first = last;
CurrentSize++;
return true;

}
else return false;

}

Queue using

Circular Array

last = (last+ 1) % MaxSize;

Page:10

QUEUE

0
1

2

3

MaxSize-1

bool Queue::dequeue(int &e1) {
if (!isEmpty()) {

e1 = QueueArray[first];
first++;
if (first == MaxSize)

first = 0;
CurrentSize--;
if (CurrentSize == 0)

first = last = -1;
return true;

}
else return false;

}

Queue using

Circular

Array

first = (first + 1) % MaxSize;

Page:11

QUEUE

0
1

2

3

MaxSize-1

bool Queue::enqueue(int e1) {
if (!isFull()) {

last++;
if (last == MaxSize)

last = 0;
QueueArray[last] = e1;
if (CurrentSize == 0)

first = last;
CurrentSize++;
return true;

}
else return false;

}

bool Queue::dequeue(int &e1) {
if (!isEmpty()) {

e1 = QueueArray[first];
first++;
if (first == MaxSize)

first = 0;
CurrentSize--;
if (CurrentSize == 0)

first = last = -1;
return true;

}
else return false;

}

Queue

using

Circular

Array

Page:13

QUEUE

Queue

• What if some one want to leave the Queue ?

– How to handle in Array implementation?

• (put -1 in the cell to indicate the person has left

– How to handle in Link List implementation?

• In linked list remove the particular node

Page:14

QUEUE

Priority Queue

• Linked List implementation

– You can keep linked list sorted

• Enqueue will take O(n) time

• Dequeue will take O(1) time

– You can keep linked list unsorted

• Enqueue will take O(1)

• Dequeue will take O(n)

• Array Implementation

– Enqueue will take ?

– Dequeue will take ?

Is Linked list a good implementation or array?

Both are not good

