

STACK

FROM Adams Drozdek
and
Allen Weiss books

* New plates are put on the top of
the stack and

 \We take plates from the top.

A stack 1s LIFO structure:

last in/first out.

STACK

« A stack is a linear data structure
* |t is accessed only at one of its ends for storing and

retrieving data.

Unlike queue, In stack both ends are not used N

Puech ibem

Page:4
QUEUE

STACK OPEATIONS

clear() -

ISEmpty() §&
push(x) -
pop() -
topltem() §

Clear the stack.

Check to see if the stack is empty.

Put the element x on the top of the stack.

Take the topmost element from the stack.

Return the topmost element without removing it.

push 10 push 5

L

pop push 15 push 7 pop

Co0 O
ST it 5 I

Page:6
QUEUE

IMPLMENTATION OF STACK

« Which data structure should we use to implement stack?

— Arrays
— Linked List (SLL, DLL, CLL)

(b) 7 7
5 5 15 15 15
0 | 10 2 10 | 10 2 10 3 10 2 10
s1ze pool
head head head head head head

10 0 e T 013 15 TR BE 10
\ _‘K \ \ ,7K \ M7§ _{ \ -K \
\ \ ! \ \ - - - -

Page:7
QUEUE

STACK OPS

If we restrict the operations allowed on a list, those
operations can be performed very quickly.

The big surprise, however, is that the small number
of operations left are so powerful and important.

APPLICATIONS OF STACK

The stack is useful in situations when data must be stored
and then retrieved In reverse order.

_ Go Back and Forward in a Browser
— Undo-Redo In a Text Editor

— Adding Large Numbers

— Matching delimiters in a program.
— Evaluation of Fully Parenthesized Expression
— System Stack

— Converting Infix notation to PostFix

_— — —

APPLICATION 2 — UNDO AND REDO

UNDO

Add elements (operations performed) on the stack and to Undo POP

REDO

 Put the popped items from UNDO stack to another stack
REDO stack

« When asked to REDO: simply pop from REDO stack and
push on the UNDO stack

Page:10
QUEUE

APPLICATION 3 — ADDING LARGE NUMBERS

592
+ 3784 -
4376

O‘IJ—‘-I\)

operand-
Stack|

operand-
Stack2

result-
Stack

~l|oe O

APPLICATION 3 — ADDING LARGE NUMBERS

e AddingLargeNumbers()

operand-

Store First input number on Stackl Al
Store Second input number on Stack2
Carry =0; "
while (!Stack1.isEmpty() | | 'Stack2.isEmpty()){ Stk
//Pop a number from each non-empty stacks and add them to Carry
o if(!Stackl.isEmpty()) n1=Stackl.pop()
if(1Stack2.isEmpty() n2=Stack2.pop() iy
res = nl+n2+ Carry

Push unit_part of res on ResultStack

Set Carry equal to tens_part of res

}
If (carry !=0) ResultStack.push(Carry)

while((! ResultStack.isEmpty())
e Print ResultStack.pop

2
9
5

|'.;.>\IOC-L‘-

Page:12
QUEUE

APPLICATION 4 - MATCHING DELIMITERS

« Matching delimiters in a program.

— Delimiter matching is part of compiler: No program is
considered correct if the delimiters are mismatched.

— In C++ programs, delimiters are

» parentheses “(” and “)”,

 square brackets “[”” and *“]”,
 curly brackets “{” and “}”, and

. .. TILLL sk /99 . . .
comment delimiters “/*” and * */”. Find in which statement

are delimiters not

g[10]
a=>b +
gl[1l0] =

(¢ - d) * (e - £); properly matched
h{i[9]] + (3 + k) * 1;

(e =@y * (e~ E)):
h[{i[9]] + j + k) *
while (m < (n[8] + o)) { p
while (m < (n[8) + o]) { p = 7; /* initialize p */ r = 6; }

7; /* initialize p */ r = 6; }

MATCHING DELIMITERS

* How to match delimiters in while (m < (n[8] + 0)) ?

Page:14
QUEUE

PROCESSING STRING WITH DELIMITER

MATCHING ALGORITHM USING STACK

S =t[5] + u/(v* (W+Y));

Page:15
QUEUE

APPLICATION 3 - MATCHING DELIMITERS

» The basic idea of delimiter matching algorithm
* Input a character

« If Input character is an opening delimiter store it on a
Stack

o else if it is a closing delimiter,

— Then compare it to a delimiter popped off the stack.

— If they match, processing continues; if not, processing
discontinues by signaling an error

Page:16
QUEUE

MATCHING DELIMITERS

 delimiterMatching(file)
— ch =file.read()
— while (file.eof())
e ifchis ‘C, ‘[, or ‘{
_ 9
e elseif chis <), 1", <}’
—?
e elseifchis ¢/’
—?

 else other characters
9

» Ch =file.read()
— How do you know if delimiters are matched or not ?

Page:19
QUEUE

MATCHING DELIMITERS

 delimiterMatching(file)
— ch =file.read()
— while (file.eof()){
e ifchis ‘C, ‘[’,or ‘{’
— Stack.Push(ch);
elseif chis °)’, °T°, }’
— if (ch !'= Stack.pop()) report failure
elseif ch is “/°
— ch2 = file.read()
— if ch2 ==**’

» Skip all characters until “*/° is found. Report failure if eof reached before
this is found

— else ch=ch2 continue
else other characters

— ignore
Ch =file.read()
— If (Stack.isempty()) success

- E|Se failure Page:20

QUEUE

Application 5:

Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Page:24
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push

Page:25
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push
a (a push

Page:26
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push
a (a push
+ (a+ push

Page:27
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push
a (a push
+ (a+ push
((a+(push

Page:28
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push
a (a push
+ (a+ push
((a+(push
b (a+(b push

Page:29
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push
a (a push
+ (a+ push
((a+(push
b (a+(b push
/ (a+(b/ push

Page:30
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks
((Push
a (a push
+ (a+ push
((a+(push
b (a+(b push
/ (a+(b/ push
C (a+(b/c Push

Page:31
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

/ (a+(b/ push

C (a+(b/c Push

) (a+2 Pop”(b/c” and evaluate and push the result
back

Page:32
QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Input Symbol | Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

/ (a+(b/ push

C (a+(b/c Push

) (a+2 Pop”(b/c” and evaluate and push the result
back

) 4 Pop”(a+2” and evaluate and push the result
back

Page:33
QUEUE

APPLICATION 6 - SYSTEM STACK

Function Calls

Can a function call another function ?

Can a function call 1tself ?

What happens to the local variables of the calling function? |

iy

« when a call is made to a new function, all the variables local to the
calling routine need to be saved by the system

How to save the local variables of the calling function ?
o Stack

Page:34
QUEUE

APPLICATION 6 - SYSTEM STACK

Address of the next instruction in the
calling program must be saved. Why ?

* In order to resume the execution from the point of
function call.

Can the function calls be nested to an

arbitrary depth?

* Yes,

 hence use of stack Is a natural choice to preserve
the return address.

Page:36
QUEUE

ACTIVATION RECORDS

Parameters and
Activarion local variables
record < Dynamic link
Return address
\ Return value
.

Information about a sub program.

The information stored in an activation record includes

 the address of the instruction to be executed next,

« current value of all the local variables and parameters. i.e. the context of a
subprogram is stored in the activation record. Page:37

QUEUE

ACTIVATION RECORDS

main () { Contents of the run-time stack when
£1()
j}fl (Parameters and
(; { Actiation local variables
£2.() record < Dynamic link
} of £3() Return address
£2() { | Return value
£3() ‘
Parameters and
AT local variables
: w ’” Activation
£f3() {Print “Hello World”} record < Dynamic link
of £2.() Return address
When a Function is called | Return value
[
- its activation record is created and ll)z;’l":r‘;‘asb‘;:g
- pushed into the System stack. Ackipean -
record < Dynamic link
When the Function ends Lk Return address
: S— : Ret 1
* its activation record is popped from the stack ; =
and destroyed- Activation
« The control returns back to the calling record
function restoring its context) \

ACTIVATION RECORDS

» int main()
{

int x,y;
statementl;
AQ;
statement?;
statement3;

BO; C() Return Address: statement 5
statement4;

Parameters & local variables:

¥

void A
C(())'{ Parameters & local variables:

statement 5: A()
} Return Address: statement 2

Parameters & local variables: X,y

Main() Return Address:

Page:40
QUEUE

