
Page:1

QUEUE

STACK

Page:2

QUEUE

STACK

FROM Adams Drozdek

and

Allen Weiss books

Page:3

QUEUE

STACK

Example: A stack of plates

• New plates are put on the top of
the stack and

• We take plates from the top.

A stack is LIFO structure:

last in/first out.

Page:4

QUEUE

Stack

Unlike queue, in stack both ends are not used

• A stack is a linear data structure

• It is accessed only at one of its ends for storing and

retrieving data.

Page:6

QUEUE

Stack Opeations

• Clear the stack.clear()

• Check to see if the stack is empty.isEmpty()

• Put the element x on the top of the stack.push(x)

• Take the topmost element from the stack.pop()

• Return the topmost element without removing it.topItem()

Page:7

QUEUE

Implmentation of Stack

• Which data structure should we use to implement stack?

– Arrays

– Linked List (SLL, DLL, CLL)

Page:8

QUEUE

STACK OPS

If we restrict the operations allowed on a list, those
operations can be performed very quickly.

The big surprise, however, is that the small number
of operations left are so powerful and important.

Page:9

QUEUE

Applications of Stack

– Go Back and Forward in a Browser

– Undo-Redo in a Text Editor

– Adding Large Numbers

– Matching delimiters in a program.

– Evaluation of Fully Parenthesized Expression

– System Stack

– Converting Infix notation to PostFix

The stack is useful in situations when data must be stored

and then retrieved in reverse order.

Page:10

QUEUE

Application 2 – UNDO and REDO

UNDO

Add elements (operations performed) on the stack and to Undo POP

REDO

• Put the popped items from UNDO stack to another stack

REDO stack

• When asked to REDO: simply pop from REDO stack and

push on the UNDO stack

Page:11

QUEUE

Application 3 – Adding Large Numbers

Page:12

QUEUE

Application 3 – Adding Large Numbers

• AddingLargeNumbers()
– Store First input number on Stack1

– Store Second input number on Stack2

– Carry =0;

– while (!Stack1.isEmpty() || !Stack2.isEmpty()){

//Pop a number from each non-empty stacks and add them to Carry

• if(!Stack1.isEmpty()) n1=Stack1.pop()

• if(!Stack2.isEmpty() n2=Stack2.pop()

• res = n1+n2+ Carry

• Push unit_part of res on ResultStack

• Set Carry equal to tens_part of res

– }

– If (carry !=0) ResultStack.push(Carry)

– while((! ResultStack.isEmpty())

• Print ResultStack.pop

Page:13

QUEUE

Application 4 - Matching delimiters

• Matching delimiters in a program.

– Delimiter matching is part of compiler: No program is

considered correct if the delimiters are mismatched.

– In C++ programs, delimiters are

• parentheses “(” and “)”,

• square brackets “[” and “]”,

• curly brackets “{” and “}”, and

• comment delimiters “/*” and “ */”. Find in which statement
are delimiters not
properly matched

Page:14

QUEUE

Matching delimiters

• How to match delimiters in while (m < (n[8] + o)) ?

Page:15

QUEUE

Processing string with Delimiter

Matching Algorithm using Stack

S = t[5] + u/(v* (w+y));

Page:16

QUEUE

Application 3 - Matching delimiters

• The basic idea of delimiter matching algorithm

• Input a character

• If input character is an opening delimiter store it on a

Stack

• else if it is a closing delimiter,

– Then compare it to a delimiter popped off the stack.

– If they match, processing continues; if not, processing

discontinues by signaling an error

Page:19

QUEUE

Matching delimiters

• delimiterMatching(file)

– ch = file.read()

– while (!file.eof())

• if ch is ‘(’, ‘[’, or ‘{’

– ?

• elseif ch is ‘)’, ‘]’, ‘}’

– ?

• elseif ch is ‘/’

– ?

• else other characters

– ?

• Ch =file.read()

– How do you know if delimiters are matched or not ?

Page:20

QUEUE

Matching delimiters

• delimiterMatching(file)

– ch = file.read()

– while (!file.eof()){

• if ch is ‘(’, ‘[’, or ‘{’

– Stack.Push(ch);

• elseif ch is ‘)’, ‘]’, ‘}’

– if (ch != Stack.pop()) report failure

• elseif ch is ‘/’

– ch2 = file.read()

– if ch2 ==‘*’

» Skip all characters until ‘*/’ is found. Report failure if eof reached before

this is found

– else ch= ch2 continue

• else other characters

– ignore

• Ch =file.read()

– If (Stack.isempty()) success

– Else failure

Page:24

QUEUE

Application 5:

Evaluation of Fully Parenthesized Expression

(a+(b/c)) assuming a=2, b=6, c=3

Page:25

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

(a+(b/c)) assuming a=2, b=6, c=3

Page:26

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

(a+(b/c)) assuming a=2, b=6, c=3

Page:27

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

(a+(b/c)) assuming a=2, b=6, c=3

Page:28

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

(a+(b/c)) assuming a=2, b=6, c=3

Page:29

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

(a+(b/c)) assuming a=2, b=6, c=3

Page:30

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

/ (a+(b/ push

(a+(b/c)) assuming a=2, b=6, c=3

Page:31

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

/ (a+(b/ push

c (a+(b/c Push

(a+(b/c)) assuming a=2, b=6, c=3

Page:32

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

/ (a+(b/ push

c (a+(b/c Push

) (a+2 Pop”(b/c” and evaluate and push the result

back

(a+(b/c)) assuming a=2, b=6, c=3

Page:33

QUEUE

Application 5: Evaluation of Fully Parenthesized Expression

Input Symbol Stack Remarks

((Push

a (a push

+ (a+ push

((a+(push

b (a+(b push

/ (a+(b/ push

c (a+(b/c Push

) (a+2 Pop”(b/c” and evaluate and push the result

back

) 4 Pop”(a+2” and evaluate and push the result

back

(a+(b/c)) assuming a=2, b=6, c=3

Page:34

QUEUE

Application 6 - System Stack

Can a function call another function ?

Can a function call itself ?

What happens to the local variables of the calling function?

• when a call is made to a new function, all the variables local to the
calling routine need to be saved by the system

How to save the local variables of the calling function ?

• Stack

Function Calls

Page:36

QUEUE

Application 6 - System Stack

Address of the next instruction in the
calling program must be saved. Why ?

• in order to resume the execution from the point of
function call.

Can the function calls be nested to an
arbitrary depth?

• Yes,

• hence use of stack is a natural choice to preserve
the return address.

Page:37

QUEUE

Activation Records

Activation record is a data structure which keeps important
information about a sub program.

The information stored in an activation record includes

• the address of the instruction to be executed next,

• current value of all the local variables and parameters. i.e. the context of a
subprogram is stored in the activation record.

Page:38

QUEUE

Activation Records

main(){

f1()

}

f1(){

f2()

}

f2(){

f3()

f3(){Print “Hello World”}

Contents of the run-time stack when

When a Function is called

• its activation record is created and

• pushed into the System stack.

When the Function ends

• its activation record is popped from the stack
and destroyed-

• The control returns back to the calling
function restoring its context

Page:40

QUEUE

Activation records

int main()

{

int x,y;

statement1;

A();

statement2;

statement3;

B();

statement4;

}

void A(){

C();

statement 5;

}

Parameters & local variables:

Return Address:

x,y

Parameters & local variables:

Return Address: statement 2

Parameters & local variables:

Return Address: statement 5

Main()

A()

C()

