

CC-213L

Data Structures and Algorithms

Laboratory 03

Stack ADT

Version: 1.0.0

Release Date: 05-10-2023

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 2 of 16

Contents:

• Learning Objectives

• Required Resources

• General Instructions

• Background and Overview

o Pointers and Dynamic memory allocation

o Data Structures

o Types of Data Structures

o Stack ADT

o Types of Stack ADT

• Activities

o Pre-Lab Activity

– Task 01

▪ Code a

▪ Code b

o In-Lab Activity

– Application Of Stack ADT for different Problems

– Task 01: Reverse Array

– Task 02: String palindrome

– Task 03: Balanced Parenthesis

– Task 04: Reverse word of String

o Post-Lab Activity

– Infix Expression

– Prefix Expression

– Post Expression

– Pseudo code to convert infix to prefix

– Pseudo code to convert infix to postfix

– Task 01: Program to convert Infix to Prefix

– Task 02: Program to convert Infix to Postfix

• Submissions

• References and Additional Material

• Lab Time and Activity Simulation Log

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 3 of 16

Learning Objectives:

• Pointers and Dynamic memory allocation

• Stack Data Structure

• Using the concepts of Dynamic Memory Allocation

• Standard Operations on the Stack Data Structure

• Use of Stack ADT in Different Applications

Resources Required:

• Desktop Computer or Laptop

• Microsoft ® Visual Studio 2022

General Instructions:

• In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not

allowed to ask how is s/he doing, this may result in negative marking. You can ONLY discuss

with your Teaching Assistants (TAs) or Lab Instructor.

• Your TAs will be available in the Lab for your help. Alternatively, you can send your queries

via email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Lab Instructor Madiha Khalid madiha.khalid @pucit.edu.pk

 Teacher Assistants

 Muhammad Nabeel bitf20m009@pucit.edu.pk

 Muhammad Subhan bcsf20a033@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:azka.saddiqa@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk
mailto:bcsf20a033@pucit.edu.pk

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 4 of 16

Background and Overview:

Pointers and Dynamic memory allocation

In C++, pointers and dynamic memory allocation are fundamental concepts for managing memory and

creating more flexible data structures. Here's an overview of pointers and dynamic memory allocation in

C++:

Pointers:

Pointer Basics: A pointer is a variable that stores the memory address of another variable. It "points" to

the location in memory where the data is stored. In C++, you declare a pointer using an asterisk (*) before

the variable name.

Dynamic Memory Allocation:

C++ provides the new operator for allocating memory dynamically on the heap and the delete operator for

freeing that memory when it's no longer needed.

Example:

Figure 1 (pointer and dynamic memory)

Explanation:

This C++ program demonstrates the allocation of memory for an integer, a double, and a character. In line

39, we declare a pointer to an integer, and in lines 40 and 41, we declare pointers to a double and a

character, respectively. Starting from line 42 and extending to line 44, we utilize the `new` operator to

reserve memory for these variables dynamically. Subsequently, in lines 45 to 47, we initialize these

memory locations with specific values. After displaying the values, we proceed to deallocate all of these

memory allocations. The `delete` operator is employed for this purpose, ensuring that the allocated

memory is released properly.

Output:

Figure 2 (Pointers and dynamic memory allocation)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 5 of 16

Memory Management Best Practices:

• Always free dynamically allocated memory using delete or delete[] to avoid memory leaks.

• Be cautious when using raw pointers, as they can lead to bugs like null pointer dereferences and

memory leaks. Consider using smart pointers when possible.

• Avoid allocating excessive memory on the heap, as it can lead to fragmentation and reduced

program performance.

• Practice good memory management by deallocating memory as soon as it's no longer needed.

Data Structure:

Data structure refers to the way data is organized, stored, and accessed in a computer system. It provides a

systematic way of managing and manipulating data efficiently. Data structures are designed to optimize

operations such as insertion, deletion, searching, and sorting of data.

Types of Data Structure:

 Figure 3 (Types of Data structures)

Linear Data Structures:

Linear data structures store data elements sequentially, one after another, in a linear fashion. They follow

a specific order or sequence. Examples include arrays, linked lists, stacks, and queues.

Non-linear Data Structures:

Non-linear data structures do not store elements in a sequential manner. They allow elements to be

connected in multiple ways, forming a hierarchical or interconnected relationship. Examples include trees

and graphs.

Stack ADT:

A stack is a linear data structure that follows the Last-In-First-Out (LIFO) principle. It can be visualized

as a stack of plates, where the last plate placed on top is the first one to be removed. The two main

operations on a stack are push (to add an element to the top) and pop (to remove the top element). The

element below the top is inaccessible until the top element is removed. A basic example of a stack is the

call stack in programming, which keeps track of function calls and their local variables. Another example

is the Undo feature in text editors, where the most recently performed action can be undone by popping it

from the stack.

Types of Stacks:

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 6 of 16

Fixed Size Stack:

As the name suggests, a fixed size stack has a fixed size and cannot grow or shrink dynamically. If the

stack is full and an attempt is made to add an element to it, an overflow error occurs. If the stack is empty

and an attempt is made to remove an element from it, an underflow error occurs.

Demonstration:

Figure 4 (Fixed sized Stack)

Explanation:

Line 40 statically allocates a fixed-size stack using an array of 10 elements. Each time an object of the

"Stack" class is created, it will have a pre-allocated array of 10 elements in memory, and this size remains

constant.

Dynamic Size Stack:

A dynamic size stack can grow or shrink dynamically. When the stack is full, it automatically increases

its size to accommodate the new element, and when the stack is empty, it decreases its size. This type of

stack is implemented using a linked list, or dynamically allocated Array as it allows for easy resizing of

the stack.

Demonstration:

Figure 5 (Dynamic Stack)

Explanation:

In line number 40 there is pointer to generic type. In constructor we have allocated memory of 10 size

array. Stack of any size can be allocated at run time by passing any size of array to the constructor of

Stack. In below figure in line 66 Stack of size 10 is allocated which was the default size. In line 20 Stack

of 20 size is allocate and at line number 68 Stack of size 100 is allocated.

Figure 6 (Stacks of Different sizes)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 7 of 16

Activities

Pre –Lab activities:

Task 01: Stack ADT

Code a

You have understood in details about the array and memory representation of Array as well as Access and

Operation on the Array Class. Keeping in mind all those tasks Implement ADT of fixed sized stack. In

this case the size of the Array should be constantly defined at array will be statically allocated at stack

memory.

Code b

Now modify your above program in such a way that should take size of Stack at run time and allocate

memory at heap. For this purpose, Implement dynamic sized stack ADT.

Figure 7 (Dynamic Stack)

Explanation:

At line number 4, a class called "Stack" is defined. In line 6, this class encapsulates private data

representing the essential components of a Stack Abstract Data Type (ADT). In line 8, a member variable

is introduced, which is a pointer capable of referencing objects of any generic type. Within the public

section of the class, various operations associated with the Stack ADT are defined. These member

functions are specialized methods tailored to the behaviors expected from a stack ADT.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 8 of 16

Example Run:

Figure 8 (Example run of Stack)

Explanation:

On line 6, we've declared two instances of the Stack class. Between lines 7 and 9, we've pushed three

elements onto the stack named st1. On line 10, we've removed the top element from st1 using a pop

operation. Subsequently, we've tested the isFull() and isEmpty() member functions in the following

lines.On line 23, the assignment operator is invoked, and on line 22, we've displayed the top element. On

line 24, the copy constructor is utilized. Finally, on line 25, the destructor for the st1 instance of the Stack

class is called, freeing up the allocated memory.

Output:

Figure 9 (Output)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 9 of 16

In–Lab Activities:

Utilize the implemented Stack Abstract Data Type (ADT) to tackle various programming challenges

and solve problems. Apply problem-solving skills by harnessing the power of the stack data structure to

address a wide range of programming challenges effectively.

Task 01: Reverse Array

Implement a template function which receives an array and reverses its elements using stack.

void reverseArray(T* arr, int size);

Example runs

Figure 10 (Reverse Array)

Explanation:

At line 19, we declare an array with a size of 5, initializing its values. Line 20 is where we display this

array. Moving to line 23, the reverseArray function is invoked, which takes the array's size and a pointer

to the array as parameters. Inside this function, the array's elements are reversed using a stack data

structure. Subsequently, on the line following the function call, the array is displayed once more. When

this function is executed, it effectively reverses the order of all elements within the array.

Output:

Figure 11 (Output)

Task 02: String Plindrome

A string is called palindrome if it remains the same even if it is reversed. For example, the string

“racecar” is a palindrome because its reversed string is also “racecar”. Your task is to implement a

function that receives a string and tells whether it is palindrome or not using stack.

bool isPalindrome(const string& str);

Example Runs

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 10 of 16

First Example:

Figure 12 (string Palindrome)

Explanation:

In line 25 a string named str is initialized with a string that is already a palindrome. If statement header

calls isPlidrome function by passing str to it. As string is palindrome so true will be returned and “racecar

is palindrome” will be displayed.

Output:

Figure 13 (Output)

Second Example:

Figure 14 (Palindrome)

Output:

Figure 15 (Output)

Task 03: Balanced Parenthesis

Your task is to implement a function that receives a string and returns true if the parentheses in the

expression are balanced otherwise returns false.

You should only consider round brackets “()” as parentheses. Parentheses are considered balanced if each

opening parenthesis has its corresponding closing parenthesis and they are properly nested.

For example:

“(a + b) * (c - d)” -> balanced “(((a + b) * (c - d)))”

-> balanced

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 11 of 16

“((a + b) * (c - d)” -> not balanced (missing closing parenthesis) “(a + b) * (c - d))” -> not

balanced (extra closing parenthesis)

bool isBalanced(const string& str);

Think for a while: Does this task really need to be done with stack?

Task 04: String words Reverse

Your task is to implement a function that receives a string and reverses each word in it using stack. You

can assume that the string only consists of alphabets and spaces. The order of the words should remain

same but characters within each word should get reversed.

For example:

String: “Welcome to DSA”

Modified string: “emocleW ot ASD”

void reverseWords(string& str);

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 12 of 16

Post-Lab Activities

Infix Expression:

An infix expression is a mathematical expression in which operators are placed between operands. In

other words, in an infix expression, you write the operator in between the two operands. This is the

common way mathematical expressions are typically written in human-readable form. For example:

• 3 + 5

• a * (b + c)

• (2 * x) / (y - 1)

In infix expressions, the precedence of operators determines the order of operations, and parentheses are

often used to clarify or change the order of evaluation when needed.

While infix expressions are easy for humans to read and write, they can be more challenging to evaluate

programmatically. In contrast, programming languages and computer systems often use postfix (also

known as Reverse Polish Notation or RPN) or prefix (also known as Polish Notation) expressions, which

are more straightforward to evaluate using a stack-based approach.

To perform calculations with infix expressions in computer programs, they are typically converted to

postfix or prefix notation first, and then a stack-based algorithm can be used to evaluate the expression

efficiently.

Prefix Expression:

A prefix expression, also known as Polish notation, is a mathematical expression in which the operator

precedes its operands. In other words, in a prefix expression, you write the operator before the operands.

This notation eliminates the need for parentheses to indicate the order of operations, as it enforces a strict

order of evaluation.

For example, the infix expression "3 + 5" in prefix notation would be "+ 3 5." Similarly, the infix

expression "(2 * x) / (y - 1)" in prefix notation would be "/ * 2 x - y 1."

To evaluate a prefix expression, you typically use a stack-based algorithm that reads the expression from

left to right, pushes operands onto the stack, and when an operator is encountered, it pops the required

number of operands from the stack, performs the operation, and pushes the result back onto the stack.

Prefix notation is commonly used in computer science and programming, particularly in languages like

Lisp and Forth. It has the advantage of being unambiguous and not requiring parentheses to specify the

order of operations.

Postfix Expression:

A postfix expression, also known as Reverse Polish Notation (RPN), is a mathematical expression in

which the operator follows its operands. In a postfix expression, you write the operator after the operands.

This notation also eliminates the need for parentheses to specify the order of operations because the order

of evaluation is determined by the position of the operators.

For example, the infix expression "3 + 5" in postfix notation would be "3 5 +." Similarly, the infix

expression "(2 * x) / (y - 1)" in postfix notation would be "2 x * y 1 - /."

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 13 of 16

To evaluate a postfix expression, you typically use a stack-based algorithm. You read the expression from

left to right, pushing operands onto the stack, and when an operator is encountered, you pop the required

number of operands from the stack, perform the operation, and push the result back onto the stack.

Postfix notation is commonly used in computer science and programming, particularly in calculators,

some programming languages (e.g., Forth), and certain computer architecture instruction sets. It has the

advantage of being unambiguous and not requiring parentheses to specify the order of operations.

Pseudo code to convert infix to prefix

1. Reverse infix expression & swap ‘(‘to”)’ & ‘)’ to” (‘

2. Scan Expression from Left to Right

3. Print Operands as the arrive

4. If OPERATOR arrives & Stack is empty, PUSH to stack

5. IF incoming OPERATOR has HIGHER precedence than the TOP of the Stack, PUSH it on stack

6. IF incoming OPERATOR has EQUAL precedence with TOP of Stack && incoming

OPERATOR is ‘^’, POP & PRINT TOP of Stack. Then test the incoming OPERATOR against

the NEW TOP of stack.

7. IF incoming OPERATOR has EQUAL precedence with TOP of Stack, PUSH it on Stack.

8. IF incoming OPERATOR has LOWER precedence than the TOP of the Stack, then POP and

PRINT the TOP. Then test the incoming OPERATOR against the NEW TOP of stack.

9. At the end of Expression, POP & PRINT all OPERATORS from the stack

10. IF incoming SYMBOL is ‘(‘PUSH it onto Stack.

11. IF incoming SYMBOL is ‘)’ POP the stack & PRINT Operators till ‘(‘is found or Stack

Empty. POP out that ‘(‘from stack

12. IF TOP of stack is ‘(‘PUSH OPERATOR on Stack

13. At the end Reverse output string again.

Pseudo code to convert infix to postfix

1. Scan Expression from Left to Right

2. Print Operands as the arrive

3. If OPERATOR arrives & Stack is empty, push this operator onto the stack

4. IF incoming OPERATOR has HIGHER precedence than the TOP of the Stack, push it on stack

5. IF incoming OPERATOR has LOWER precedence than the TOP of the Stack, then POP and

print the TOP. Then test the incoming operator against the NEW TOP of stack.

6. IF incoming OPERATOR has EQUAL precedence with TOP of Stack, use ASSOCIATIVITY

Rules.

7. For ASSOCIATIVITY of LEFT to RIGHT –

1. POP and print the TOP of stack, then push the incoming OPERATOR

8. For ASSOCIATIVITY of RIGHT to LEFT –

1. PUSH incoming OPERATOR on stack.

9. At the end of Expression, POP & print all OPERATORS from the stack

10. IF incoming SYMBOL is ‘(‘PUSH it onto Stack.

11. IF incoming SYMBOL is ‘)’ POP the stack and print Operators till ‘(‘is found. POP that ‘(‘

12. IF TOP of stack is ‘(‘PUSH OPERATOR on Stack

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 14 of 16

Task 01: Program to Convert Infix to Prefix Expression

Implement a C++ program that should take an infix expression and convert to Prefix Expression. Finally

display the infix expression as well as Prefix Expression.

Example Run:

Figure 16 (Infix To Prefix)

Output:

Figure 17 (Output)

Task 02: Program to Convert Infix to Postfix Expression

Implement a C++ program that should take an infix expression and convert to Postfix Expression. Finally

display the infix expression as well as Postfix Expression.

Example Run:

Figure 18 (Infix to Postfix)

Output:

Figure 19 (Output)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 15 of 16

Submissions:

• For In-Lab Activity:

▪ Save the files on your PC.

▪ TA’s will evaluate the tasks offline.

• For Pre-Lab & Post-Lab Activity:

▪ Submit the .cpp file on Google Classroom and name it to your roll no.

Evaluations Metric:

• All the lab tasks will be evaluated offline by TA’s

• Division of Pre-Lab marks: [20 marks]

▪ Task 01: Fixed sized stack [10 marks]

▪ Task 02: Dynamic Sized stack [10 marks]

• Division of In-Lab marks: [30 marks]

▪ Task 01: Reverse Array [05 marks]

▪ Task 02: String palindrome [05 marks]

▪ Task 03: Parenthesis Balance [10marks]

▪ Task 04: String words reverse [10marks]

• Division of Post-Lab marks: [40 marks]

▪ Task 01: Infix to Prefix Conversion [20 marks]

▪ Task 02: Infix to Postfix Conversion [20 marks]

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 03 – Stack ADT Page 16 of 16

References and Additional Material:

Stack Data Structure

https://www.geeksforgeeks.org/stack-data-structure/

Infix to prefix conversion

https://simplesnippets.tech/infix-to-prefix-conversion-using-stack-data-structure-with-c-program-code/

Infix to Postfix conversion

https://simplesnippets.tech/infix-to-postfix-conversion-using-stack-data-structure-with-c-program-code/

Lab Time Activity Simulation Log:

• Slot – 01 – 00:00 – 00:15: Class Settlement

• Slot – 02 – 00:15 – 00:30: In-Lab Task 01

• Slot – 03 – 00:30 – 00:45: In-Lab Task 01

• Slot – 04 – 00:45 – 01:00: In-Lab Task 02

• Slot – 05 – 01:00 – 01:15: In-Lab Task 02

• Slot – 06 – 01:15 – 01:30: In-Lab Task 02

• Slot – 07 – 01:30 – 01:45: In-Lab Task 03

• Slot – 08 – 01:45 – 02:00: In-Lab Task 03

• Slot – 09 – 02:00 – 02:15: In-Lab Task 04

• Slot – 10 – 02:15 – 02:30: In-Lab Task 04

• Slot – 11 – 02:30 – 02:45: In-Lab Task 04

• Slot – 12 – 02:45 – 03:00: Discussion on Post-Lab Task

https://www.geeksforgeeks.org/stack-data-structure/
https://simplesnippets.tech/infix-to-prefix-conversion-using-stack-data-structure-with-c-program-code/
https://simplesnippets.tech/infix-to-postfix-conversion-using-stack-data-structure-with-c-program-code/

