
CC-213L

Data Structures and Algorithms

Laboratory 06

Singly Linked List

Version: 1.0.0

Release Date: 14-10-2023

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 2 of 17

Contents:

 Learning Objectives

 Required Resources

 General Instructions

 Background and Overview

o Pointers and Dynamic Memory Allocation

o Self-Referential Objects

 Representation

 Implementation

 Member access operators

o Singly LinkedList

 Insert Node

 Delete Node

 Activities

o Pre-Lab Activity

 Task 01: Singly LinkedList Implementation

o In-Lab Activity

 Task 01: Remove Kth Node

 Task 02: Combine Lists

 Task 03: Shuffle Merge

 Task 04: Linked Stack

o Post-Lab Activity

 Task 01: Linked Queue

 Submissions

 References and Additional Material

 Lab Time and Activity Simulation Log

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 3 of 17

Learning Objectives:

 Pointers and Dynamic Memory Allocation

 Self-Referential Objects

 Singly LinkedList

Resources Required:

 Desktop Computer or Laptop

 Microsoft ® Visual Studio 2022

General Instructions:

 In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not

allowed to ask how is s/he doing, this may result in negative marking. You can ONLY discuss

with your Teaching Assistants (TAs) or Lab Instructor.

 Your TAs will be available in the Lab for your help. Alternatively, you can send your queries

via email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Lab Instructor Madiha Khalid madiha.khalid @pucit.edu.pk

 Teacher Assistants

 Muhammad Nabeel bitf20m009@pucit.edu.pk

 Muhammad Subhan bcsf20a033@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:azka.saddiqa@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk
mailto:bcsf20a033@pucit.edu.pk

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 4 of 17

Background and Overview

Pointers and Dynamic Memory Allocation

Pointers and dynamic memory allocation are important concepts in programming, particularly in

languages like C and C++. Pointers allow you to work with memory addresses, while dynamic

memory allocation allows you to manage memory at runtime.

Pointers:

A pointer is a variable that stores the memory address of another variable. It allows you to indirectly

access the value of the variable stored at that address. Pointers are often used for various purposes,

such as dynamically allocated memory, working with arrays, and passing functions as arguments.

Figure 1(Pointers)

Explanation:

In this example, ptr is a pointer to an integer, and it is assigned the memory address of the variable x.

You can access and modify the value of x through the pointer using the dereference operator (*ptr).

Figure 2(output)

Dynamic Memory Allocation

Dynamic memory allocation allows you to allocate memory for variables at runtime. In C++, you can

use new and delete operators to allocate and deallocate memory for objects on the heap.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 5 of 17

Figure 3(Dynamic Memory)

Explanation:

In this example, dynamicArray is allocated on the heap with space for 5 integers. After using it, it is

essential to deallocate the memory using delete[] to prevent memory leaks.

Note: In modern C++ (C++11 and later), it is recommended to use smart pointers like std::unique_ptr

and std::shared_ptr for better memory management, as they automatically handle memory

deallocation.

 Figure 4(Output)

Self-Referential Objects:

Classes that have capability to refer to their own types of objects are called Self Referential

Classes/Structs. Objects of such classes are called self-referential Objects.

Self-referential structure in C++ are those structure that contains one or more than one pointer as their

member which will be pointing to the structure of the same type. In simple words, a structure that is

pointing to the structure of the same type is known as a self-referential structure.

Example in C++

Figure 5(Self Referencing)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 6 of 17

Explanation:

In Figure 5 we have declared a struct Node. It has two data members info and ptr.

Info Represents the information data part. Enables the object to store relevant information in it. There

can be more than one identifier of same/different datatypes depending upon the application /situation.

ptr Represents the link part. Enables the object to a self-referential object. There can be more than

one such references used for different purposes in different applications /situations.

 Figure 6(Self Referential Objects)

Explanation:

We have declared three Node types variables a, b and stored proper values in their info data member.

 Figure 7(Self Referencing)

Explanation:

We have declared three Node types variables a, b and stored proper values in their info data member.

At line number 14 the ptr variable of type Node* (pointer to Node) is assigned the address of Node b

and similarly at line 15 ptr variable of Node b is assigned addresss of Node c. ptr of Node c is

pointing to null.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 7 of 17

Some Important Operators:

 Member Access operators arrow operator () and dot operator (.) have same precedence

with associativity from left to right.

 Dereference /indirection operator (*) address operator (&) have same precedence but

associativity from right to left.

 Member access operators have high priority than indirection and address operators.

Figure 8(Member Access)

Explanation:

On line 17, a pointer of type Node named p is declared. This pointer will be used to reference a node.

With this p pointer, it becomes straightforward to traverse through the linked list, as each node

contains a ptr member that points to the next node in the sequence. We have accessed all the next

node as well as information through the (pointer member access operator).

Figure 9(Output)

Figure 10(Indirection Operator)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 8 of 17

Explanation:

At line number 18,19 and 20 members have been accessing through the indirection and dot operator

that is object member access operator.

Figure 11(Traverse Nodes)

Explanation:

Rather than individually accessing information from each node, a more efficient approach is to

employ a loop for traversing the nodes. This way, you can access the information in each node as long

as you haven't reached a node with its ptr member pointing to nullptr.

 Figure 12(Output)

Singly LinkedList

A linked list is a data structure used in computer science and programming to organize and store a

collection of elements. It consists of a sequence of nodes, where each node contains two components:

Data: This component holds the actual value or information you want to store.

Pointer (or reference): This component points to the next node in the sequence, effectively linking

the nodes together.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 9 of 17

Figure 13(Singly LinkedList)

In a singly linked list, each node points to the next node in the list, forming a linear structure. The last

node typically points to a special value like nullptr or NULL to indicate the end of the list.

Linked lists come in various forms, including singly linked lists (described above), doubly linked lists

(where each node has a pointer to both the next and the previous node), and circular linked lists

(where the last node points back to the first node, forming a closed loop).

Linked lists are particularly useful when you need to efficiently insert or delete elements at arbitrary

positions in the list, as these operations typically involve updating a few pointers. They are often

contrasted with arrays, which have fixed sizes and require elements to be shifted when inserting or

deleting in the middle.

Figure 14(class Node)

Explanation:

A class Node have been declared that is self-referential class.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 10 of 17

Insert Node:

 Figure 15(Linked list)

Explanation:

In this example, a singly linked list with three nodes is created, and then the elements are traversed

and printed.

Figure 16(Output)

Delete Node:

Figure 17(Delete Nodes)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 11 of 17

Activities

Pre-Lab Activities:

Task 01: Singly LinkedList implementation

Create a linked list with following class definitions.

template<class T>

class LinkedList;

template<class T>

class Node

{

public:

 T info;

 Node<T>* next;

 // Methods…

};

template<class T>

class LinkedList

{

 Node<T>* head;

 // Methods…

};

Implement following functions for List class.

1. Constructor, destructor, Copy-constructor.

2. void insertAtHead(T value)

3. void insertAtTail(T value)

4. bool deleteAtHead()

5. bool deleteAtTail()

 6. void printList()

7. Node* getNode(int n)

 This function should return pointer to nth node in the list. Returns last node if n is greater than the

number of nodes present in the list.

8. bool insertAfter(T value, T key)

 Insert a node after some node whose info equals input parameter key and returns true if node is

successfully inserted, false otherwise.

9. bool insertBefore(T value, T key)

Insert a node before some node whose info equals input parameter key and returns true if node is

successfully inserted, false otherwise.

10. bool deleteBefore(T key)

Delete a node that is before some node whose info equals input parameter key and returns true if node

is successfully inserted, false otherwise. Check boundary cases i.e if node to be deleted is last node or

first node in the list.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 12 of 17

11. bool deleteAfter(T value)

 Delete a node that is after some node whose info equals input parameter key and returns true if node

is successfully inserted, false otherwise. Check boundary cases i.e if node to be deleted is last node or

first node in the list.

12. int getLength() returns the total number of nodes in the list.

 13. Node* search(T x)

Search a node with value “x” from list and return its link. If multiple nodes of same value exist, then

return pointer to first node having the value “x”.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 13 of 17

In-Lab Activities

Task 01 Remove KthNode

Implement the following public member function of the LinkedList class:

bool removeKthNode (int k, int& val)
This function will remove the kth element (node) from the linked list.

For example, if the linked list object list contains these 8 values {4 2 8 1 9 5 4 6}, then the

function call:

list.removeKthNode(4,val);

should remove the 4th element (node) from the linked list and the resulting list should contain these

7 values: { 4 2 8 9 5 4 6 } . Before deallocating the node, this function should store the data present in

that node into the reference parameter val.

This function should return false if the linked list contains fewer than k elements; otherwise it should

remove the kth node from the linked list and return true. (Note: You are NOT allowed to modify the

data of any node in the linked list).

Also write a driver main function to test the working of the above function.

Implement the following public member function of the LinkedList class:

Task 02: Combine Lists

void combine (LinkedList& list1, LinkedList& list2)
This function should combine the nodes of the two linked lists (list1 and list2) into one list. All the

nodes of the first list (list1) will precede (come before) all the nodes of the second list (list2).

For example, if list1 contain {7 3 4 2}, list2 contains {5 9}, and list3 is Empty, then after the function

call:

list3.combine(list1,list2);

list3 should contain {7 3 4 2 5 9} and list1 and list2 should be Empty now.

Very Important: You are NOT allowed to create any new node in this function. You are also NOT

allowed to modify the “data” field of any node. You can assume that the LinkedList object on which

this function is called is empty at the start of this function.

Hint 1: Do a lot of paperwork before writing the code. Also, make sure that all the boundary cases

/ special cases are properly handled.

Also write a driver main function to test the working of the above function.

Hint 2: Pseudo-code outline of combine function:

if (Both list1 and list2 are EMPTY)
{

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 14 of 17

}

else if (list1 is EMPTY)

{

}

else if (list2 is EMPTY)
{

}

else // Both list1 and list2 contain at least one node

{

}

Task 03: Shuffle Merge

Implement the following public member function of the LinkedList class:

void shuffleMerge (LinkedList& list1, LinkedList& list2)

This function should shuffle-merge the nodes of the two linked lists (list1 and list2) to make one list,

by taking nodes alternately from the two lists.

For example, if list1 contains {2 6 4}, list2 contains {8 1 3}, and list3 is Empty, then after the function

call:

list3.shuffleMerge(list1, list2);

list3 should contain {2 8 6 1 4 3} and list1 and list2 should be Empty now.

Very Important: You are NOT allowed to create any new node in this function. You are also NOT

allowed to modify the “data” field of any node. You can assume that both lists (which are being

shuffle-merged) contain the same number of elements/nodes. You can also assume that the

LinkedList object on which this function is called is empty at the start of this function.

Hint: Do a lot of paperwork before writing the code. Also, make sure that all the boundary cases

/ special cases are properly handled.

Also write a driver main function to test the working of the above function.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 15 of 17

Task 04: Linked Stack

You have already implemented array-based stack that needs resizing after its array is full. But there is

no need of resizing in the linked stack. Implement a linked Stack as provided with the template

classes.

// forward declaration of template class Stack

template <class T>

class Stack;

template<class T>

class StackNode

{

 T data;

 StackNode* link;

 friend Stack<T>

public:

 // methods

};

template<class T>

class Stack

{

private:

 StackNode* Top;

 int Size;

public:

 Stack()

 {

 Top = nullptr;

 Size = 0;

 }

 ~Stack();

 Stack(const Stack<T>&); // copy constructor

 int getTop();

 int pop();

 void push(int Element);

 int currSize();

 bool isEmpty();

 bool isFull();

 T Peek(int nodeNumber);

};

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 16 of 17

Post-Lab Activities

Task 01: Linked Queue

We studied about how to represent queues using sequential organization. Such a representation is

efficient if we have a circular queue of fixed size. However, there are many drawbacks of

implementing queues using arrays. The fixed sizes do not give flexibility to the user to dynamically

exceed the maximum size. The declaration of arbitrarily maximum size leads to poor utilization of

memory. In addition, the major drawback is the updating of front and rear. For correctness of the said

implementation, the shifting of the queue to the left is necessary and to be done frequently. Here is a

good solution to this problem which uses linked list.

Implement following linked Queue.

template <class T>

class Queue;

template<class T>

class QNode

{

 friend Queue<T>;

 T data;

 QNode* link;

public:

 // methods

};

template<class T>

class Queue

{

 QNode* front, * fear;

 int size;

public:

 Queue()

 {

 front = fear = Null;

 }

 Queue(const Queue<T>&);

 void enqueu(int element);

 T dequeue();

 int currentSize();

 int frontElement();

 bool isEmpty();

 bool isFull();

 void display();

 ~Queue();

};

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 06 – Singly LinkedList Page 17 of 17

Submissions:

 For In-Lab Activity:

 Save the files on your PC.

 TA’s will evaluate the tasks offline.

 For Pre-Lab & Post-Lab Activity:

 Submit the .cpp file on Google Classroom and name it to your roll no.

Evaluations Metric:

 All the lab tasks will be evaluated offline by TA’s

 Division of Pre-Lab marks: [40 marks]

 Task 01: Singly LinkedList Implementation [40 marks]

 Division of In-Lab marks: [60 marks]

 Task 01: Remove Kth Node [10 marks]

 Task 02: Combine Lists [10 marks]

 Task 03: Shuffle Merge [10marks]

 Task 04: Linked Stack [30marks]

 Division of Post-Lab marks: [40 marks]

 Task 01: Linked Queue [40 marks]

References and Additional Material:

Singly LinkedList

https://www.geeksforgeeks.org/what-is-linked-list/

Lab Time Activity Simulation Log:

 Slot – 01 – 02:00 – 00:15: Class Settlement

 Slot – 02 – 02:15 – 02:30: In-Lab Task 01

 Slot – 03 – 02:30 – 02:45: In-Lab Task 01

 Slot – 04 – 02:45 – 03:00: In-Lab Task 02

 Slot – 05 – 03:00 – 03:15: In-Lab Task 02

 Slot – 06 – 03:15 – 03:30: In-Lab Task 03

 Slot – 07 – 03:30 – 03:45: In-Lab Task 03

 Slot – 08 – 03:45 – 04:00: In-Lab Task 04

 Slot – 09 – 04:00 – 04:15: In-Lab Task 04

 Slot – 10 – 04:15 – 04:30: In-Lab Task 04

 Slot – 11 – 4:300 – 04:45: In-Lab Task 04

 Slot – 12 – 04:45 – 05:00: Discussion on Post-Lab Task

https://www.geeksforgeeks.org/what-is-linked-list/

