
CC-213L

Data Structures and Algorithms

Laboratory 08

Circular and Doubly LinkedList

Version: 1.0.0

Release Date: 14-10-2023

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 2 of 19

Contents:

 Learning Objectives

 Required Resources

 General Instructions

 Background and Overview

o Pointers and Dynamic Memory Allocation

o Self-Referential Objects

 Representation

 Implementation

 Member access operators

o Circular Singly LinkedList

 Insert Node

 Display

 Circular Doubly LinkedList

 Insert Node

 Display

 Activities

o Pre-Lab Activity

 Task 01: Circular Singly LinkedList Implementation

o In-Lab Activity

 Task 01: Doubly LinkedList Implementation

 Task 02: Combine Lists

 Task 03: Shuffle Merge

 Task 04: Split List

o Post-Lab Activity

 Task 01: Sorted List

 Task 02: Remove Last Node

 Task 03: Remove Second Last Node

 Task 04: Remove Kth Node

 Submissions

 References and Additional Material

 Lab Time and Activity Simulation Log

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 3 of 19

Learning Objectives:

 Pointers and Dynamic Memory Allocation

 Self-Referential Objects

 Singly Circular LinkedList

 Doubly Circular LinkedList

Resources Required:

 Desktop Computer or Laptop

 Microsoft ® Visual Studio 2022

General Instructions:

 In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not allowed
to ask how is s/he doing, this may result in negative marking. You can ONLY discuss with your
Teaching Assistants (TAs) or Lab Instructor.

 Your TAs will be available in the Lab for your help. Alternatively, you can send your queries via
email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Lab Instructor Madiha Khalid madiha.khalid @pucit.edu.pk

 Teacher Assistants

 Muhammad Nabeel bitf20m009@pucit.edu.pk

 Abdul Rafay Zubairi bcsf20a032@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:azka.saddiqa@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk
mailto:bcsf20a032@pucit.edu.pk

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 4 of 19

Background and Overview

Pointers and Dynamic Memory Allocation

Pointers and dynamic memory allocation are important concepts in programming, particularly in languages

like C and C++. Pointers allow you to work with memory addresses, while dynamic memory allocation
allows you to manage memory at runtime.

Pointers:

A pointer is a variable that stores the memory address of another variable. It allows you to indirectly access

the value of the variable stored at that address. Pointers are often used for various purposes, such as
dynamically allocated memory, working with arrays, and passing functions as arguments.

Figure 1(Pointers)

Explanation:

In this example, ptr is a pointer to an integer, and it is assigned the memory address of the variable x. You
can access and modify the value of x through the pointer using the dereference operator (*ptr).

Figure 2(output)

Dynamic Memory Allocation

Dynamic memory allocation allows you to allocate memory for variables at runtime. In C++, you can use
new and delete operators to allocate and deallocate memory for objects on the heap.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 5 of 19

Figure 3(Dynamic Memory)

Explanation:

In this example, dynamicArray is allocated on the heap with space for 5 integers. After using it, it is
essential to deallocate the memory using delete[] to prevent memory leaks.

Note: In modern C++ (C++11 and later), it is recommended to use smart pointers like std::unique_ptr and
std::shared_ptr for better memory management, as they automatically handle memory deallocation.

 Figure 4(Output)

Self-Referential Objects (Single Self Reference):

Classes that have capability to refer to their own types of objects are called Self Referential

Classes/Structs. Objects of such classes are called self-referential Objects.

Self-referential structure in C++ are those structure that contains one or more than one pointer as their

member which will be pointing to the structure of the same type. In simple words, a structure that is pointing

to the structure of the same type is known as a self-referential structure.

Example in C++

Figure 5(Self Referencing)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 6 of 19

Explanation:

In Figure 5 we have declared a struct Node. It has two data members info and ptr.

Info Represents the information data part. Enables the object to store relevant information in it. There can
be more than one identifier of same/different datatypes depending upon the application /situation.

ptr Represents the link part. Enables the object to a self-referential object. There can be more than one such
references used for different purposes in different applications /situations.

 Figure 6(Self Referential Objects)

Explanation:

We have declared three Node types variables a, b and stored proper values in their info data member.

 Figure 7(Self Referencing)

Explanation:

We have declared three Node types variables a, b and stored proper values in their info data member.

At line number 14 the ptr variable of type Node* (pointer to Node) is assigned the address of Node b and
similarly at line 15 ptr variable of Node b is assigned addresss of Node c. ptr of Node c is pointing to null.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 7 of 19

Some Important Operators:

 Member Access operators arrow operator () and dot operator (.) have same precedence with

associativity from left to right.

 Dereference /indirection operator (*) address operator (&) have same precedence but associativity

from right to left.

 Member access operators have high priority than indirection and address operators.

Figure 8(Member Access)

Explanation:

On line 17, a pointer of type Node named p is declared. This pointer will be used to reference a node. With

this p pointer, it becomes straightforward to traverse through the linked list, as each node contains a ptr

member that points to the next node in the sequence. We have accessed all the next node as well as
information through the (pointer member access operator).

Figure 9(Output)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 8 of 19

Figure 10(Indirection Operator)

Explanation:

At line number 18,19 and 20 members have been accessing through the indirection and dot operator that is
object member access operator.

Figure 11(Traverse Nodes)

Explanation:

Rather than individually accessing information from each node, a more efficient approach is to employ a

loop for traversing the nodes. This way, you can access the information in each node as long as you haven't

reached a node with its ptr member pointing to nullptr.

 Figure 12(Output)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 9 of 19

Self-Referential Objects (Double Self Reference):

Classes that have capability to refer to their own types of objects are called Self Referential

Classes/Structs. Objects of such classes are called self-referential Objects.

Self-referential structure in C++ are those structure that contains one or more than one pointer as their

member which will be pointing to the structure of the same type. In simple words, a structure that is pointing
to the structure of the same type is known as a self-referential structure.

 Figure 13(Self Reference)

Explanation:

In Figure 8 we have declared a struct Node. It has three data members info, next and prev;

Info Represents the information data part. Enables the object to store relevant information in it. There can

be more than one identifier of same/different datatypes depending upon the application /situation.

next and prev Represent the link part. Enables the object to a self-referential object. There can be more than

one such references used for different purposes in different applications /situations.

Figure 14(Node objects)

Explanation:

At line 12 we have declared five Node objects and next lines we have initialized their info data members
with proper values. At line 18 we have displayed them.

Figure 15(Output)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 10 of 19

Figure 16(Double Link)

Explanation:

In Figure 11 we have initialized each Node next and previous pointer with the addresses of other nodes such
that each node can refers a same node in sequence to a next node as well as previous Node.

Figure 17(Double Links)

Output:

Figure 18(Output)

Figure 19(Previous Link)

Explanation:

In Figure 14 we have access info of a,b,c,d and e nodes through previous links of each node. This is the
facility of Double links.

Some Interesting Scenarios:

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 11 of 19

Figure 20(Doubly Link)

Circular Singly LinkedList

A circular singly linked list is a variation of a singly linked list in which the last node of the list points back

to the first node, forming a circle. In a regular singly linked list, the last node points to `null̀ to indicate the

end of the list. However, in a circular singly linked list, the last node points to the first node, creating a
circular structure.

In a circular singly linked list:

1. The last node's "next" pointer points to the first node in the list.

2. Each node in the list has a "next" pointer pointing to the next node in the sequence.

3. Traversal of the list starts from any node, and you can keep moving to the next node until you reach
the starting node again.

Figure 21(Circular Singly LinkedList)

Figure 22(Node class)

Figure 23(Circular Singly LinkedList)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 12 of 19

Output

 Figure 24(Output)

Circular Doubly LinkedList

A circular doubly linked list is a type of linked list in which each node in the list contains data, a pointer to

the next node, and a pointer to the previous node. The circular doubly linked list is similar to a regular
doubly linked list, but in this case, the last node points back to the first node, forming a circular structure.

In a circular doubly linked list:

Each node has three components: data, a "next" pointer pointing to the next node, and a "previous" pointer
pointing to the previous node.

The "next" pointer of the last node in the list points to the first node, and the "previous" pointer of the first
node points to the last node, creating a circular connection.

Figure 25(Doubly LinkedList Node)

Figure 26(Circular Doubly LinkedList)

Figure 27(Doubly LinkedList)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 13 of 19

Activities

Pre-Lab Activities:

Task 01: Circular Singly LinkedList implementation

In previous Lab you have implemented Singly Linear LinkedList. Modify implementation of that LinkedList
and make it circular Singly LinkedList.

template<class T>
class LinkedList;

template<class T>
class Node

{
public:

 T info;

 Node<T>* next;
 // Methods…

};

template<class T>
class LinkedList

{

 Node<T>* head;

 // Methods…
};

Implement following functions for List class.

1. Constructor, destructor, Copy-constructor.

2. void insertAtHead(T value)

3. void insertAtTail(T value)

4. bool deleteAtHead()

5. bool deleteAtTail()

6. void printList()

7. Node* getNode(int n)

This function should return pointer to nth node in the list. Returns last node if n is greater than the
number of nodes present in the list.

8. bool insertAfter(T value, T key)

Insert a node after some node whose info equals input parameter key and returns true if node is
successfully inserted, false otherwise.

9. bool insertBefore(T value, T key)

Insert a node before some node whose info equals input parameter key and returns true if node is
successfully inserted, false otherwise.

10. bool deleteBefore(T key)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 14 of 19

Delete a node that is before some node whose info equals input parameter key and returns true if

node is successfully inserted, false otherwise. Check boundary cases i.e if node to be deleted is last
node or first node in the list.

11. bool deleteAfter(T value)

Delete a node that is after some node whose info equals input parameter key and returns true if node

is successfully inserted, false otherwise. Check boundary cases i.e if node to be deleted is last node
or first node in the list.

12. int getLength() returns the total number of nodes in the list.

13. Node* search(T x)

Search a node with value “x” from list and return its link. If multiple nodes of same value exist, then
return pointer to first node having the value “x”.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 15 of 19

In-Lab Activities

Task 01 Circular Doubly LinkedList

Give the implementation of a class named CDLLD for a Circular Doubly Linked List (with a dummy

header node) which stores integers in unsorted order.

 Your class definitions should look like:

class CDLLD;

class DNode {

friend class CDLLD;

private:

int data;

DNode* next;

DNode* prev;

};

class CDLLD { // Circular Doubly Linked List with a Dummy header node

private:

DNode head; // Dummy header node

public:

CDLLD (); // Default constructor

~CDLLD (); // Destructor

…

};

Apart from the default constructor and destructor, the CDLLD class should also have the
following public member functions:

1. bool insertAtStart (int val) Time complexity: 𝑶(𝟏)

This function should insert val at the start of the LinkedList

2. bool insertAtEnd (int val) Time complexity: 𝑶(𝟏)

This function should insert val at the end of the linked list.

3. void display ()

This function should display the contents of linked list on screen.

4. int countNodes ()

This function should determine (and return) the count of nodes present in the linked list.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 –Circular Linear LinkedList Page 16 of 19

Task 02 Combine Lists

Implement the following public member function of the CDLLD class:

void combine (CDLLD& list1, CDLLD& list2) Time complexity: 𝑶(𝟏)

 This function will combine the nodes of the two linked lists (list1 and list2) into one list. All the nodes of

the first list (list1) will precede (come before) all the nodes of the second list

(list2). The time complexity of this function must be constant i.e., 𝑶(𝟏).

For example, if list1 contain {7 3 4 2} and list2 contains {5 9}, then after the function call:

list3.combine(list1,list2);

list3 should contain {7 3 4 2 5 9} and list1 and list2 should be empty now.

Very Important: You are NOT allowed to create any new node in this function. You are also NOT allowed

to modify the “data” field of any node. You can assume that the CDLLD object on which this function is
called is empty at the start of this function.

Also write a driver main function to test the working of the above function.

Task 03 Shuffle Merge

Implement the following public member function of the CDLLD class:

void shuffleMerge (CDLLD& list1, CDLLD& list2)

This function will merge the nodes of the two linked lists (list1 and list2) to make one list, by taking nodes
alternately from the two lists.

For example, if list1 contains {2 6 4} and list2 contains {8 1 3}, then after the function call:

list3.shuffleMerge(list1,list2);

list3 should contain {2 8 6 1 4 3} and list1 and list2 should be empty now.

Very Important: You are NOT allowed to create any new node in this function. You are also NOT allowed

to modify the “data” field of any node. You can assume that both lists (which are being merged) contain the

same number of elements/nodes. You can also assume that the CDLLD object on which this function is called
is empty at the start of this function.

Also write a driver main function to test the working of the above function.

Task 04 Split List

Implement the following public member function of the CDLLD class:

void splitList (CDLLD& leftHalf, CDLLD& rightHalf)

This function will split the list (on which it is called) into two halves, and store these halves in the two
linked lists passed into this function. Make sure that all boundary cases are properly handled.

For example, if list1 contains {8 4 2 9 1 5 3} and list2 and list3 are empty, then after the function call:

list1.splitList(list2,list3);

list2 should contain {8 4 2 9} and list3 should contain {1 5 3} and list1 should be empty now. Note that if
the list contains an ODD number of elements, then the one extra element should go into the left half.

Very Important: You are NOT allowed to create any new node in this function. You are also NOT allowed

to modify the “data” field of any node. You can assume that the CDLLD objects being passed into this

function are empty at the start of this function.

Also write a driver main function to test the working of the above function.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 – Circular LinkedList Page 18 of 19

Post-Lab Activities

Task 01 Sorted List

Implement the following public member function of the CDLLD class:

bool isSorted () const

This function should determine whether the linked list is sorted in increasing order or not. It should return
true if the values of the linked list are sorted in increasing order. Otherwise, it should return false .

Task 02 Remove Last Node

Implement the following public member function of the CDLLD class:

bool removeLastNode (int& val) Time complexity: 𝑶(𝟏)

This function will remove the last node from the linked list. Before deallocating the node, this function
should store the data present in that node into the reference parameter val. This function should return false if
the list is empty; otherwise, it should remove the last node of the linked list and return true .

Task 03 Remove Second Last Node

Implement the following public member function of the CDLLD class:

bool removeSecondLastNode (int& val) Time complexity: 𝑶(𝟏)

This function will remove the second last node from the linked list. Before deallocating the node, this function
should store the data present in that node into the reference parameter val. This function should return false

if the list contains fewer than two nodes; otherwise, it should remove the second last node of the linked list and
return true . (Note: You are NOT allowed to modify the data of any node in the linked list).

Task 04 Remove Kth Node

Implement the following public member function of the CDLLD class:

bool removeKthNode (int k, int& val)

This function will remove the kth element (node) from the linked list. For example, if the CDLLD

object list contains these 8 values {4 2 8 1 9 5 4 6}, then the function call:

list.removeKthNode(4,val);

This function should remove the 4th element (node) from the linked list and the resulting list should contain
these 7 values: {4 2 8 9 5 4 6}. Before deallocating the node, this function should store the data present in
that node into the reference parameter val.

This function should return false if the linked list contains fewer than k elements; otherwise it should remove
the kth node from the linked list and return true . (Note: You are NOT allowed to modify the data of any node
in the linked list).

Also write a driver main function to test the working of the above functions.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 08 – Circular LinkedList Page 19 of 19

Submissions:

 For In-Lab Activity:

 Save the files on your PC.

 TA’s will evaluate the tasks offline.

 For Pre-Lab & Post-Lab Activity:
 Submit the .cpp file on Google Classroom and name it to your roll no.

Evaluations Metric:

 All the lab tasks will be evaluated offline by TA’s

 Division of Pre-Lab marks: [50 marks]

 Task 01: Circular Singly LinkedList Implementation [50 marks]

 Division of In-Lab marks: [40 marks]

 Task 01: Doubly LinkedList Implementation [25 marks]

 Task 02: Combine Lists [05 marks]

 Task 03: Shuffle Merge [05 marks]

 Task 04: Split List [05 marks]

 Division of Post-Lab marks: [40 marks]

 Task 01: Sorted List [10 marks]

 Task 02: Remove Last Node [10 marks]

 Task 03: Remove Second Last Node [10 marks]
 Task 04: Remove Kth Nodes [10 marks]

References and Additional Material:

Circular Singly LinkedList

https://www.geeksforgeeks.org/circular-linked-list/

Circular Doubly LinkedList

https://www.geeksforgeeks.org/introduction-to-circular-doubly-linked-list/

Lab Time Activity Simulation Log:

 Slot – 01 – 02:00 – 00:15: Class Settlement

 Slot – 02 – 02:15 – 02:30: In-Lab Task 01

 Slot – 03 – 02:30 – 02:45: In-Lab Task 01

 Slot – 04 – 02:45 – 03:00: In-Lab Task 01

 Slot – 05 – 03:00 – 03:15: In-Lab Task 01

 Slot – 06 – 03:15 – 03:30: In-Lab Task 02

 Slot – 07 – 03:30 – 03:45: In-Lab Task 02

 Slot – 08 – 03:45 – 04:00: In-Lab Task 03

 Slot – 09 – 04:00 – 04:15: In-Lab Task 03

 Slot – 10 – 04:15 – 04:30: In-Lab Task 04

 Slot – 11 – 4:300 – 04:45: In-Lab Task 04

 Slot – 12 – 04:45 – 05:00: Discussion on Post-Lab

https://www.geeksforgeeks.org/circular-linked-list/
https://www.geeksforgeeks.org/introduction-to-circular-doubly-linked-list/

