
CC-213L

Data Structures and Algorithms

Laboratory 09

Binary Trees

Version: 1.0.0

Release Date: 20-10-2023

Department of Information Technology

University of the Punjab

Lahore, Pakistan

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 2 of 15

Contents:

• Learning Objectives

• Required Resources

• General Instructions

• Background and Overview

o Pointers and Dynamic Memory Allocation

o Self-Referential Objects

▪ Representation

▪ Implementation

o Non-Linear Data Structure

▪ Tree

▪ Graphs

▪ Heaps

▪ Hash Tables

o Binary Trees

▪ Binary Trees

▪ Binary Search Tree

▪ Complete Binary Tree

▪ Full Binary Tree

▪ Perfect Binary Tree

▪ Balanced Binary Tree

▪ Pathological Binary Tree

o Binary Tree Implementation

▪ Array Binary Tree

▪ Linked Binary Tree

• Activities

o Pre-Lab Activity

▪ Task 01: Array Binary Tree implementation

o In-Lab Activity

▪ Task 01: Tree traversal

▪ Task 02: Linked Binary Tree implementation

o Post-Lab Activity

▪ Task 01: Add Member functions to Linked Binary Tree Class

• Submissions

• References and Additional Material

• Lab Time and Activity Simulation Log

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 3 of 15

Learning Objectives:

• Pointers and Dynamic Memory Allocation

• Self-Referential Objects

• Non-Linear Data Structure

• Array Binary Tree

• Linked Binary Tree

Resources Required:

• Desktop Computer or Laptop

• Microsoft ® Visual Studio 2022

General Instructions:

• In this Lab, you are NOT allowed to discuss your solution with your colleagues, even not

allowed to ask how is s/he doing, this may result in negative marking. You can ONLY discuss

with your Teaching Assistants (TAs) or Lab Instructor.

• Your TAs will be available in the Lab for your help. Alternatively, you can send your queries

via email to one of the followings.

Teachers:

 Course Instructor Prof. Dr. Syed Waqar ul Qounain swjaffry@pucit.edu.pk

 Lab Instructor Madiha Khalid madiha.khalid @pucit.edu.pk

 Teacher Assistants

 Muhammad Nabeel bitf20m009@pucit.edu.pk

 Abdul Rafay Zubairi bcsf20a032@pucit.edu.pk

mailto:swjaffry@pucit.edu.pk
mailto:azka.saddiqa@pucit.edu.pk
mailto:bsef19m021@pucit.edu.pk
mailto:bcsf20a032@pucit.edu.pk

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 4 of 15

Background and Overview

Pointers and Dynamic Memory Allocation: Pointers and dynamic memory allocation are

important concepts in programming, particularly in languages like C and C++. Pointers allow you to

work with memory addresses, while dynamic memory allocation allows you to manage memory at

runtime.

Pointers: A pointer is a variable that stores the memory address of another variable. It allows you to

indirectly access the value of the variable stored at that address. Pointers are often used for various

purposes, such as dynamically allocated memory, working with arrays, and passing functions as

arguments.

Figure 1(Pointers)

Explanation: In this example, ptr is a pointer to an integer, and it is assigned the memory address of

the variable x. You can access and modify the value of x through the pointer using the dereference

operator (ptr).

Figure 2(output)

Dynamic Memory Allocation: Dynamic memory allocation allows you to allocate memory for

variables at runtime. In C++, you can use new and delete operators to allocate and deallocate memory

for objects on the heap.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 5 of 15

Figure 3(Dynamic Memory)

Explanation:

In this example, dynamicArray is allocated on the heap with space for 5 integers. After using it, it is

essential to deallocate the memory using delete[] to prevent memory leaks. Note that in modern C++

(C++11 and later), it is recommended to use smart pointers like std::unique_ptr and std::shared_ptr

for better memory management, as they automatically handle memory deallocation.

 Figure 4(Output)

Self-Referential Objects (Single Self Reference): Classes that have capability to refer to their

own types of objects are called Self Referential Classes/Structs. Objects of such classes are called

self-referential Objects.

Self-referential structure in C++ are those structure that contains one or more than one pointer as their

member which will be pointing to the structure of the same type. In simple words, a structure that is

pointing to the structure of the same type is known as a self-referential structure.

Example in C++

Figure 5(Self Referencing)

Explanation:

In Figure 5 we have declared a struct Node. It has three data members info, left and right pointers to

Node. Info Represents the information data part. Enables the object to store relevant information in it.

There can be more than one identifier of same/different datatypes depending upon the application

/situation.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 6 of 15

left and right Represents the link part. Enables the object to a self-referential object. There can be

more than one such references used for different purposes in different applications /situations.

 Figure 6(Self Referential Objects)

 Here we have displayed the values that are stored in those variables that are self-referenced.

Figure 7(Self-Referencing)

Figure 8(Output)

Non-Linear Data structures

Non-linear data structures are data structures in which elements are not arranged in a sequential, linear

manner. Unlike linear data structures (e.g., arrays, linked lists) where elements are stored in a linear

order, non-linear data structures allow for more complex relationships among elements. Here are

some examples of non-linear data structures:

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 7 of 15

1. Trees

o Binary Tree: Each node has at most two children.

o Binary Search Tree (BST): A binary tree where the left subtree of a node contains only nodes

with keys less than the node's key, and the right subtree only nodes with keys greater than the

node's key.

o AVL Tree: A self-balancing binary search tree where the height of the two child subtrees of

every node differs by at most one.

2. Graphs

o Directed Graph (Digraph): A graph in which edges have a direction.

o Undirected Graph: A graph in which edges do not have a direction.

o Weighted Graph: A graph in which each edge has an associated weight.

3. Heaps

o Binary Heap: A complete binary tree where the value of each node is greater than or equal to

(or less than or equal to) the values of its children.

o Max Heap: A binary heap where the value of each node is greater than or equal to the values of

its children.

o Min Heap: A binary heap where the value of each node is less than or equal to the values of its

children.

These non-linear data structures are essential in various applications and are chosen based on the

specific requirements and characteristics of the data and the operations to be performed on them.

Binary Trees

Binary trees are a type of tree data structure in which each node has at most two children, which are

referred to as the left child and the right child. These children are distinguished as being either the

"left" or "right" child. The topmost node in a binary tree is called the root, and nodes with no children

are called leaves. Here are some common types of binary trees:

General Binary Tree: In a general binary tree, each node can have at most two children. However,

there are no strict rules about how the children are organized, making it a more general form.

Figure 9(Binary Tree)

Binary Search Tree (BST): A binary search tree is a binary tree in which each node has a value, and

the values of nodes in the left subtree are less than the value of the root, while the values in the right

subtree are greater. This property makes searching for a specific value more efficient compared to a

general binary tree.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 8 of 15

Figure 10(Binary Search Tree)

Complete Binary Tree: A complete binary tree is a binary tree in which all levels are completely

filled, except possibly for the last level, which is filled from left to right. This makes it a balanced tree

structure.

Figure 11(Complete Binary Tree)

Full Binary Tree: A full binary tree is a binary tree in which every node has either 0 or 2 children. In

other words, every node is either a leaf or has two children.

Figure 12(Full Binary Tree)

Perfect Binary Tree: A perfect binary tree is both full and complete, meaning all levels are

completely filled, and all nodes have either 0 or 2 children.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 9 of 15

Figure 13(Full Binary Tree)

Balanced Binary Tree: A balanced binary tree is a tree in which the height of the two child subtrees

of any node differs by at most one. This property helps maintain a relatively balanced structure,

ensuring efficient operations.

Figure 14(Balanced Binary Tree)

Degenerate (or pathological) Tree: A degenerate tree is a tree where each parent node has only one

associated child node. In this case, the tree essentially becomes a linked list.

Figure 15(Pathological Tree)

Binary trees find applications in various algorithms and data structures. Binary search trees, in

particular, are widely used for efficient searching and sorting operations. The specific type of binary

tree chosen depends on the requirements of the application and the desired characteristics of the tree

structure.

Binary Tree Implementation

Array based Binary Tree: In an array-based implementation of a binary tree, the elements of the tree

are stored in a one-dimensional array, and the relationships between nodes are determined by the

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 10 of 15

indices of the array. The root of the tree is stored at the first position (index 0) of the array. For any

node at index `i`, its left child is located at index 2×i + 1, and its right child is at index 2×i + 2. This

mapping follows a level-order traversal of the binary tree. The array is dynamically resized as needed

to accommodate new elements, ensuring that there is enough space for the growing tree structure.

This approach provides a simple and memory-efficient representation of a binary tree, although it may

not be as suitable for scenarios involving frequent insertions and deletions, as these operations may

require resizing the array and updating indices, potentially leading to performance overhead.

Figure 16(Array Based Binary Tree)

2-Linked Binary Tree

A linked list-based implementation of a binary tree involves using nodes and pointers similar to how a linked

list is structured. In a binary tree, each node has at most two children, often referred to as the left child and the

right child. The linked structure is used to represent these relationships between nodes. Here's a basic structure

for a node in a linked list-based binary tree:

Figure 17(Linked Binary Tree)

Explanation:

In this class: Node type info represents the value stored in the node. left and right are pointers to the

left and right children of the current node, respectively. The absence of a child is indicated by a

NULL pointer. To build a binary tree, you create nodes and link them together using these pointers.

The root of the tree is the first node, and each subsequent node is added as a left or right child of

another node.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 11 of 15

Insert into Node:

Figure 18(Linked Binary Tree)

Explanation:

At line 44 a pointer to Node type int declared. head identifier can save address of integer type Node

objects.

Display Node

Figure 19(Display Nodes)

Figure 20(Output)

Delete Node

Figure 21(Binary Tree Deletion)

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 12 of 15

Activities

Pre-Lab Activities:

Task 01:Array Binary Tree

Implement Array Based Binary Tree ADT and add these members function to that ADT.

1. Constructor

2. Destructor

3. Copy-Constructor

4. void setLeftChild (T parentKey, T value)

5. void setRightChild (T parentKey, T value)

6. void preOrder ()

7. void postOrder ()

8. void inOrder ()

9. T getParent ()

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 13 of 15

In-Lab Activities:

Task 01: Tree Traversal

Give pre-order, in-order and post-order traversal of given binary trees.

Figure 22(Binary Trees)

Task 02: Linked Binary Tree Implementation

Implement this templated class of Linked Binary Tree

template <class T>
class Node {
 friend LinkedBinaryTree<T>;
 T info;
 Node<T>* left;
 Node<T> right;
};
template <class T>
class LinkedBinaryTree {
 Node<T>* root;
public:
 // methods
};

Implement following functions for Link class

1. Constructor

2. Destructor

3. Copy-Constructor

4. void setLeftChild (T parentKey, T value)

5. void setRightChild (T parentKey, T value)

6. void preOrder ()

7. void postOrder ()

8. void inOrder ()

9. T getParent ()

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 14 of 15

Post-Lab Activities

Task 01: Add Member Functions

Add these public members function to LinkedBinaryTree class

1. void remove (T node)

2. Node<T>* search (T x)

3. int findBalanceFactor(T val)

This function finds the balance factor of a given node ‘T’. Balance Factor of a particular node

is defined as the difference between the height of its left and right sub-tree.

4. T lowestCommonAncestor(T a,T b)

This function returns the lowest common ancestor of nodes ‘a’ and ‘b’.

5. int isMirror(LinkedBinaryTree<T> & obj)

This function returns true if the *this and receive object are mirror image of each other false.

Two binary trees are called mirror image of each other if left and right children of all non-leaf

nodes interchanged. For Example, in the trees given below, tree-A and tree-B are mirror

image of each other.

CC-213L Data Structures and Algorithms Spring 2023

Laboratory 09–Binary Trees Page 15 of 15

Submissions:

• For In-Lab Activity:

▪ Save the files on your PC.

▪ TA’s will evaluate the tasks offline.

• For Pre-Lab & Post-Lab Activity:

▪ Submit the .cpp file on Google Classroom and name it to your roll no.

Evaluations Metric:

• All the lab tasks will be evaluated offline by TA’s

• Division of Pre-Lab marks: [50 marks]

▪ Task 01: Array Binary Tree [50 marks]

• Division of In-Lab marks: [70 marks]

▪ Task 01: Tree Traversal [20 marks]

▪ Task 02: Linked Binary Tree [50 marks]

• Division of Post-Lab marks: [40 marks]

▪ Task 01: Add member Functions [50 marks]

References and Additional Material:

Array Binary Tree

https://www.geeksforgeeks.org/binary-tree-array-implementation/

Linked Binary Tree

https://www.geeksforgeeks.org/linked-complete-binary-tree-its-creation/

Lab Time Activity Simulation Log:

• Slot – 01 – 02:00 – 00:15: Class Settlement

• Slot – 02 – 02:15 – 02:30: In-Lab Task 01

• Slot – 03 – 02:30 – 02:45: In-Lab Task 01

• Slot – 04 – 02:45 – 03:00: In-Lab Task 01

• Slot – 05 – 03:00 – 03:15: In-Lab Task 02

• Slot – 06 – 03:15 – 03:30: In-Lab Task 02

• Slot – 07 – 03:30 – 03:45: In-Lab Task 02

• Slot – 08 – 03:45 – 04:00: In-Lab Task 02

• Slot – 09 – 04:00 – 04:15: In-Lab Task 02

• Slot – 10 – 04:15 – 04:30: In-Lab Task 02

• Slot – 11 – 4:300 – 04:45: In-Lab Task 02

• Slot – 12 – 04:45 – 05:00: Discussion on Post-Lab

https://www.geeksforgeeks.org/binary-tree-array-implementation/
https://www.geeksforgeeks.org/linked-complete-binary-tree-its-creation/

