
(CC-311)

Operating System
Lecture: 06 & 07

Professor: Syed Mustaghees Abbas

Communication in
Client-Server Systems

Sockets

➢ A socket is defined as an endpoint for communication.

➢ A pair of processes communicating over a network employ a pair
of sockets, one for each process.

➢ A socket is identified by an IP address concatenated with a port
number.

➢ Usually used in client-server architecture. The server waits for
incoming client requests by listening to a specified port.

➢ A port is piece of software which is used as docking point in your
machine, where remote application can communicate. This is
analogy to the physical ports for entering in to a country from
different sea ports.

Sockets (Continue)

➢ Port numbers can vary from 0 to 65535, so total we can get
65536 ports

➢ This is because limitation in TCP/IP stack where the port number
field is just 16bit size. So we get only 216 ports (65536 available
ports)

➢ Well known ports are from 0 to 1023 (total 210 = 1024 ports)

➢ Servers implementing specific services (such as telnet, ftp, and
http) listen to well-known ports (a telnet server listens to port 23,
an ftp server listens to port 21, and a web, or http server listens
to port 80).

Sockets (Continue)

➢ Well known port is a designated port for particular well-known
service such as web server, mail server, ftp server etc.

✓ 20 – FTP Data (For transferring FTP data)

✓ 21 – FTP Control (For starting FTP connection)

✓ 80 – HTTP/WWW(apache)

✓ 443 – HTTPS(HTTP+SSL for secure web access)

Sockets (Continue)

➢ When a client process initiates a request for a connection, it is
assigned a port by the host computer. This port is some arbitrary
number greater than 1024.

➢ For example, if a client on host X with IP address 146.86.5.20
wishes to establish a connection with a web server (which is
listening on port 80) at address 161.25.19.8, host X may be
assigned port 1625. The connection will consist of a pair of
sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80) on the
web server. This situation is illustrated in Figure. The packets
traveling between the hosts are delivered to the appropriate
process based on the destination port number.

Sockets (Continue)

Sockets (Continue)

➢ There are two widely used socket types:
1. Stream sockets

2. Datagram sockets.

➢ Stream sockets treat communications as a continuous stream of
characters

➢ Stream sockets use (connection-oriented) TCP (Transmission
Control Protocol), which is a reliable, stream oriented protocol or.

➢ Datagram sockets have to read entire messages at once.

➢ datagram sockets use (connection-less) UDP (User Datagram
Protocol), which is unreliable and message oriented.

Problems with Sockets

➢ Sockets forces us to design our distributed applications using a
read/write (input/output) interface which is not how we generally
think about application design and how different functional blocks
of an application communicate.

➢ In designing single-process applications, the procedure call is
usually the standard, most popular, and most familiar interface
model.

➢ If we want to make distributed computing look like centralized
computing, input-output-based streams are not the way to
accomplish this.

Remote Procedure Calls

➢ RPC was designed as a way to abstract the procedure-call
mechanism for use between systems with network connections.

➢ Messages exchanged in RPC communication are well structured.

➢ Each message is addressed to an RPC daemon listening to a port
on the remote system, and each contains an identifier of the
function to execute and the parameters to pass to that function.

➢ The function is then executed as requested, and any output is
sent back to the requester in a separate message.

➢ The semantics of RPCs allow a client to invoke a procedure on a
remote host as it would invoke a procedure locally.

Remote Procedure Calls (Continue)

Remote Procedure Calls (Continue)

➢ The RPC system hides the details that allow communication to
take place by providing a stub on the client side.

➢ Separate stub exists for each separate remote procedure. RPC
system calls the appropriate stub, passing it the parameters
provided to the remote procedure.

➢ This stub locates the port on the server and then transmits a
message to the server using message passing.

➢ A similar stub on the server side receives this message and
invokes the procedure on the server. If necessary, return values
are passed back to the client using the same technique.

Remote Procedure Calls (Continue)

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way

2. Client stub builds message, calls local OS

3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server

6. Server does work, returns result to the stub

7. Server stub packs it in message, calls local OS

8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10. Stub unpacks result, returns to client

Remote Method Invocation (RMI)

➢ RMI is a Java feature similar to RPCs.

➢ RMI allows a process to invoke a method on a remote object.

➢ Objects are considered remote if they reside in a different Java
virtual machine (JVM).

➢ RPCs support procedural programming, whereby only remote
procedures or functions can be called. In contrast, RMI is object-
based: It supports invocation of methods on remote objects.

➢ Parameters to remote procedures are ordinary data structures in
RPC; with RMI, it is possible to pass objects as parameters to
remote methods.

Remote Method Invocation (Continued)

➢ RMI implements the remote object using stubs and skeletons. A
stub is a proxy for the remote object; it resides with the client.

➢ When a client invokes a remote method, the stub for the remote
object is called. This client-side stub is responsible for creating a
parcel consisting of the name of the method to be invoked on
the server and the marshalled parameters for the method.

➢ The stub then sends this parcel to the server, where the skeleton
for the remote object receives it.

➢ The skeleton is responsible for unmarshalling the parameters
and invoking the desired method on the server.

➢ The skeleton then marshals the return value (or exception, if any)
into a parcel and returns this parcel to the client. The stub
unmarshals the return value and passes it to the client.

Process
Synchronization

Process Synchronization

➢ Concurrent access to shared data may result in data
inconsistency.

Process Synchronization: Problem

➢ Although both producer and consumer routines are correct
separately, they may not function correctly when executed
concurrently.

➢ For example the variable count is currently 5 and that the
producer and consumer processes execute the statements
"count++" and "count--" concurrently.

➢ Following the execution of these two statements, the value of
the variable count may be 4, 5, or 6! .(correct result, though, is
count == 5)

Race Condition

In machine language
➢ count++ could be implemented as

T1 register1 = count

T2 register1 = register1 + 1

T3 count = register1

➢ count-- could be implemented as
S1 register2 = count

S2 register2 = register2 - 1

S3 count = register2

➢ Consider this execution interleaving with “count = 5” initially:
T1: producer execute register1 = count {register1 = 5}

T2: producer execute register1 = register1 + 1 {register1 = 6}

S1: consumer execute register2 = count {register2 = 5}

S2: consumer execute register2 = register2 – 1 {register2 = 4}

T3: producer execute count = register1 {count = 6 }

S3: consumer execute count = register2 {count = 4}

➢ What will be the value of Count=?

Race Condition (Continued)

➢ Notice that we have incorrect state "count == 4", indicating that
four buffers are full, when, in fact, five buffers are full.

➢ This happened because we allowed both processes to
manipulate the variable count (shared) concurrently.

➢ When several processes access and manipulate the same data
concurrently and the outcome of the execution depends on the
particular order in which the access takes place, is called a race
condition.

➢ To guard against the race condition, we need to ensure that only
one process at a time can be manipulating the variable count,
hence the need for processes synchronization.

The Critical-Section Problem

➢ In concurrent programming, a critical section is a piece of code
that accesses a shared resource (data structure or device) that
must not be concurrently accessed by more than one thread of
execution.

➢ The critical-section problem is to design a protocol that the
processes can use to cooperate.

➢ Each process must request permission to enter its critical section.
The section of code implementing this request is the entry
section. The critical section may be followed by an exit section.
The remaining code is the remainder section.

The Critical-Section Problem (Continued)

Solution to Critical-Section Problem

A solution to the critical-section problem must satisfy the
following three requirements:

Mutual Exclusion: If process Pi is executing in its critical section,
then no other processes can be executing in their critical
sections.

Progress: If no process is executing in its critical section and
there exist some processes that wish to enter their critical
section, then the selection of the processes that will enter the
critical section next cannot be postponed indefinitely.

Bounded Waiting: There exists a bound, or limit, on the number
of times that other processes are allowed to enter their critical
sections after a process has made a request to enter its critical
section and before that request is granted.

Peterson’s Solution to Critical Section Problem

➢ A software-based solution to the critical-section problem is
known as Peterson's solution.

➢ It is restricted to two processes that alternate execution
between their CS and remainder sections.

➢ Peterson's solution may not work correctly on modern
architectures because of machine-language instructions (like
example of variable count in producer-consumer in previous
slides).

➢ We present the solution because it provides a good
algorithmic description of solving the critical-section problem
and addresses the requirements of mutual exclusion,
progress, and bounded waiting requirements.

Peterson’s Solution to Critical Section Problem (Continued)

➢ Processes are numbered P0 and P1.

➢ Peterson's solution requires two data items to be shared
between the two processes:

• int turn;

• Boolean flag[2]

➢ The variable turn indicates whose turn it is to enter the critical
section.

➢ The flag array is used to indicate if a process is ready to enter
the critical section. flag[i] = true implies that process Pi is
ready!

Peterson’s Solution to Critical Section Problem (Continued)

➢ To enter the critical section, process Pi first sets flag[i] to be
true and then sets turn to the value j, thereby asserting that if
the other process wishes to enter the critical section, it can do
so.

➢ If both processes try to enter at the same time, turn will be set
to both i and j at roughly the same time.

➢ Only one of these assignments will last; the other will occur
but will be overwritten immediately.

Algorithm for Process Pi

Algorithm for Process P0 and P1

Peterson’s Solution to Critical Section Problem (Continued)

➢ We now prove that this solution is correct. We need to
show that:

1) Mutual exclusion is preserved?

2) The progress requirement is satisfied?

3) The bounded-waiting requirement is met?

Synchronization Hardware

➢ Previously we studied a software based solution to critical
section problem (Peterson solution).

➢ Many systems provide hardware support for critical section code.

➢ Uniprocessors – We could disable interrupts for preamption so
when a shared data is being modified no preamption will occur.
✓ Generally too inefficient on multiprocessor systems.

Disabling interrupts on a multiprocessor is very time
consuming, as the message is passed to all the processors

➢ Modern machines provide special atomic hardware instructions
Atomic = non-interruptable

TestAndSet() instruction

➢ The important characteristic is that this instruction is executed
atomically.

➢ If two TestAndSet() instructions are executed simultaneously
(each on a different CPU), they will be executed sequentially in
some arbitrary order.

TestAndSet() instruction (Continued)

➢ If the machine supports the TestAndSet () instruction, then we can
implement mutual exclusion by declaring a global Boolean variable
lock, initialized to false.

➢ Solution using TestAndSet()
Shared Boolean variable lock is initialized to false.

Semaphore

➢ Another synchronization tool is called semaphore. A semaphore S is
an integer variable that is accessed only through two standard
atomic operations: wait () and signal ().

➢ Wait is represented by P() and signal by V().

Semaphore (Continued)

➢ Binary semaphore – integer value can range only between 0 and 1;
➢ can be simpler to implement.

• Also known asmutex locks

➢ Counting semaphore – integer value can range over an unrestricted
➢ domain.

• Used to control access to a given resource consisting of a finite
number of instances.

• Semaphore is initialized to the number of resources available.
Each process performs a wait() operation on the semaphore
(thereby decrementing the count).

• When a process releases a resource, it performs a signal()
operation (incrementing the count).

• When the count for the semaphore goes to 0, all resources are
being used. After that, processes that wish to use a resource will
block until the count becomes greater than 0.

Semaphore (Continued)

➢ Mutual Exclusion
➢ We can use binary semaphores to deal with the critical-section

problem for multiple processes. The n processes share a binary
semaphore (mutex lock) initialized to 1.

➢ Each process P, is organized as shown

• Semaphore S; // initialized to 1
• wait (S);

Critical Section
• signal (S);

Semaphore (Continued)

Semaphore (Continued)

➢ Implementation– Main disadvantage of the semaphore definition
given previously is that every process waiting for semaphore loops
continuously in the entry code.

➢ Looping wastes CPU cycles that some other process might be able to
use productively. This type of semaphore is also called a spinlock
(process "spins" while waiting for the lock).

➢ To eliminate busy waiting when a process has to wait for semaphore
it is blocked.

➢ The block operation places a process into a waiting queue associated
with the semaphore. Hence a waiting process is not scheduled so no
CPU cycles are wasted.

Semaphore (Continued)

➢ Implementation– semaphores under this definition is defined
as a "C" struct:

typedef struct {
int value;
struct process *list;

} semaphore;

• Implementation of wait(): • Implementation of Signal():

Semaphore (Continued)

➢ The block() operation suspends the process that invokes it.

➢ The wakeup(P) operation resumes the execution of a blocked
process P. These two operations are provided by the operating
system as basic system calls.

➢ Note that, although under the classical definition of
semaphores with busy waiting the semaphore value is never
negative, this implementation may have negative semaphore
values.

➢ If the semaphore value is negative, its magnitude is the number
of processes waiting on that semaphore.

Deadlock and Starvation

➢ Deadlock – two or more processes are waiting indefinitely for
➢ an event that can be caused by only one of the waiting
➢ processes

➢ Let S and Q be two semaphores initialized to 1

P0
wait (S);
wait (Q);

.

.

.
Signal (S);
Signal (Q);

P1
wait (Q);
wait (S);

.

.

.
signal (Q);
signal (S);

➢ Starvation – indefinite blocking. A process may never be
➢ removed from the semaphore queue in which it is suspended.

	Slide 1
	Slide 2: Communication in Client-Server Systems
	Slide 3: Sockets
	Slide 4: Sockets (Continue)
	Slide 5: Sockets (Continue)
	Slide 6: Sockets (Continue)
	Slide 7: Sockets (Continue)
	Slide 8: Sockets (Continue)
	Slide 9: Problems with Sockets
	Slide 10: Remote Procedure Calls
	Slide 11: Remote Procedure Calls (Continue)
	Slide 12: Remote Procedure Calls (Continue)
	Slide 13: Remote Procedure Calls (Continue)
	Slide 14: Steps of a Remote Procedure Call
	Slide 15: Remote Method Invocation (RMI)
	Slide 16: Remote Method Invocation (Continued)
	Slide 17: Process Synchronization
	Slide 18: Process Synchronization
	Slide 19: Process Synchronization: Problem
	Slide 20: Race Condition
	Slide 21: Race Condition (Continued)
	Slide 22: The Critical-Section Problem
	Slide 23: The Critical-Section Problem (Continued)
	Slide 24: Solution to Critical-Section Problem
	Slide 25: Peterson’s Solution to Critical Section Problem
	Slide 26: Peterson’s Solution to Critical Section Problem (Continued)
	Slide 27: Peterson’s Solution to Critical Section Problem (Continued)
	Slide 28: Algorithm for Process Pi
	Slide 29: Algorithm for Process P0 and P1
	Slide 30: Peterson’s Solution to Critical Section Problem (Continued)
	Slide 31: Synchronization Hardware
	Slide 32: TestAndSet() instruction
	Slide 33: TestAndSet() instruction (Continued)
	Slide 34: Semaphore
	Slide 35: Semaphore (Continued)
	Slide 36: Semaphore (Continued)
	Slide 37: Semaphore (Continued)
	Slide 38: Semaphore (Continued)
	Slide 39: Semaphore (Continued)
	Slide 40: Semaphore (Continued)
	Slide 41: Deadlock and Starvation

