

LECTURE TOPIC

Day 1 Define Software Requirements and its types

Day 2

Sub types of Software Requirements

Day 3 Requirements Elicitation

Day 4 Method of Elicitation

Day 5 Types of Elicitation

Day 6 Types of Elicitation

Day 7 Levels of Requirements

Day 8 Requirement Process / Development and
Management

Day 9

Day 10 Data Flow Diagram

Day 11 ERD

Day 12 Requirement Traceability

Day 13 Requirement Prioritization

Course Outline

2 January 2024 Tuesday

Software Requirements
“A condition are capability needed by a user to solve archive and objective.”

A condition is capability that must be met or processed by a system or system components of satisfy a
contract standard specification or other formally imposed other documents.
There are three types of software requirements in following:

1. Functional Requirements
2. Non-Functional Requirements
3. Domain Requirements

Functional Requirement
These are the requirements that the end users specifically demand as basic facilities that the

system should offer it can be a calculation, data manipulations, business process, user interactions or any
other specific functionality which defined what function a system is likely to perform. Functional
requirements is also known as functional specification.
For Example: A Hospital managements system a doctor should be able to retrieve the information of this
patients.

Non- Functional Requirements
These are basically the quality constrain the system must satisfy according to project constrains.

Non-Functional Requirements are not related to this system functionality but define how the system
perform there are also called non behavioral requirements.
They basically deal with issues like.

• Portability

• Security

• Maintainability

• Reliability

• Scalability

• Performance

• Reusability

• Flexibility

• Availability
NFR (Non-Functional Requirement) are classified to following types.

1. Interface Constraint
2. Performance Constraint (Response, Time Security, Storage/Space)
3. Operating Constraint
4. Life Cycle Constraint (Portability, Maintainability etc.)
5. Economy Constraint

Domain Requirements
Domain requirements are the requirements which are characteristics of a particular domain or

category of projects. Domain’s requirements can be functional or non-functional. The basic functions
that a system of a specific domain must necessarily exhibits come under this category (domain).
For Example
 In an academic software that maintain records of a school or college the functionality of being
able to access. The list of facility and list of the student of each grade is a domain requirement. The
requirements are there for identified from that domain model and not from user specific.

3 January 2024 Wednesday

Sub Types of Software Requirements
There are six (6) sub types of software requirements.

1. User Requirements
2. System Requirements
3. Business Requirements
4. Regulatory Requirements
5. Interface Requirements
6. Design Requirements

• User Requirements
These requirements describe what the end user wants from software system. User

Requirements are usually described in natural language and typically gather through interview,
survey and user feedback.

• System Requirements
These requirements specify the technical characteristics of the software system such its

architecture, Hardware Requirements, Software components and interface.

• Business Requirements
These requirements describe the Business goal and objectives that the software system

expected to achieve. Business requirements are usually expressed in term of revenue, market
share, customer satisfaction and business metrics.

• Regulatory Requirements
These requirements specify the legal or regulatory standard that the software system

must meet. Regulatory requirements many include data privacy, security, accessibility or other
legal compliance requirements.

• Interface Requirements
These requirements specify the interactions between the software and external system

or components. Such as database and web services or other software application.

• Design Requirements
These requirements describe the technical design of the software system. They include

the software architecture data structure, algorithm and other technical aspects of the software.

9 January 2024 Tuesday

Requirements Elicitation
Definition:
 Requirements elicitation is the process of the gathering and defining the requirements for a
software system. The goals of requirements elicitation is to ensure that the software development
process is based on the clear and comprehensive understanding of customers’ needs and requirements.

What is Requirements Elicitation
 Requirements elicitation is perhaps the most difficult most error-prone and most communication
intensive software development phase:

1. It can be succussed only through an effective customer-developer relationship. It is needed
to know what the user is require

2. Requirements elicitation involves identifications, collections, analysis and refinements of the
requirements for a software.

3. It is the critical part of the software development life cycle and are typically performed at
the beginning of the project.

4. Requirements elicitation involves stack holder from different areas of the organization,
including business owner. Endues and Technical experts.

5. The output of requirements elicitation Process is a set of clear, concise and well-defined
requirements that serve the basic of the design and developments of software system.

Requirements Elicitation Methods
These are numbers of Elicitation method few of them listed below:

1. Interview
Objective of conducting an interview understand for customer expectation from the software. It
is Impossible to interview every stack holder hence representatives from groups are selected
based on their expertise and credibility, interview may be open ended or structure.

• In open ended interview these is no preset agenda. Context free questions may be asked to
understand the problem.

• In structured interview and agenda of fairly open questions is prepared. Sometime proper
questions are designed for the interview.

10 January 2024 Wednesday

2. Brain Storming Session
→ It is group technique

→ It is intended to generate new idea, hence provide a platform to share views.

→ A highly trained facilitators is required to handle group bias and group conflict.

→ Every idea is documented and hence everyone can see it.

→ The output of this session is list of ideas and their priority if possible.

3. Facilitated Application Specification Technique (F.A.S.T) (important)
Its objective is to bridge the expectation gap-the difference between what the developer

think. They are supposing to build and what customer think they are going to get. A team-
oriented approach is developed for requirement gathering. Each attendee is asking to make a list
of objectives that are.

➢ Part of the environment that surrounded the system.
➢ Produced by the system
➢ Used by the system
Each participants purpose his/her list, different lists are the combined, redundant entities

are them eliminated and finally a draft of specification is written down using the input from
meeting.

4. Quality Function Deployment
In this method customer satisfaction is prime concern hence it emphasizes on the requirements
which valuable to the customer.
There are three types of requirements are identified

I. Normal Requirements
In this objective and goals of the proposed software and discussed with the customer.
Example: Normal requirements for a results management system may be entry of masks,
calculation, results.

II. Expected Requirements
These requirements are so obvious that the customer need but not explicitly state them.
Example: Protection from unauthorized access.

III. Exciting Requirements
It is the features that are beyond the customers expectations and prove to be very
satisfying when present.
Example: When authorized access is detected. It should backup and shutdown all
process.

15 January 2024 Monday

5. Workshops
Workshops encourage stack holders’ collaboration in defining requirements. A workshop

is a structional meeting in which carefully selected group of stack holders and content expert
work together to define, create, refine and reach closure on deliverable that represents user
requirements.
Following are a few Tips for conducting effective elicitation workshop many of which may also
applied on interview.

i. Established and Enforce ground Rules
The workshop participates should agree on some basic operating principles.

Example Include starting and ending time. Returning form break promptly expecting
everyone to contribute and focusing comments and criticisms or issue rather than
induvial.

ii. Fill All of the Team Roles
A facilitator must make sure that the following tasks are covered by people or the
workshop:
NOTE: Taking time, keeping, Ground Rule Management and make sure everyone heard.

iii. Plan an agents
iv. Time Box discussion.
v. Keep the team small but include the right stack holders.

6. Observations
Users are so familiar with executing a task that they cannot articulate what they do.

Perhaps the tasks are so habitual that they do not even think about it. Sometimes you can learn
a lot by observing directly how users perform their task. observation is time consuming so they
are not suitable for every user or every task. If you use observation in the Agile project you have
to demonstrate only the specific task related to the forthcoming iteration.
There are two types of Observations

i. Silent observation (non-participatory) is appropriate when busy user cannot be
interrupted

ii. Iterative observation (participatory) allowed to interrupt the user mid task and ask
questions some time to participate (if possible) in a field work.

16 January 2024 Tuesday

7. Questioners
Questioners is a way to survey large group of users to understand their needs. They are
inexpensive making them a logical choice for eliciting information for large user
population and they can be administered easily across geographical boundaries. The
analyzed result of questioner can be used as a input to other elicitation techniques.

8. System Interface Analysis
Interface Analysis is an independent elicitation technique that entail examining the
system to which user system connects system interface analysis reveals functional
requirements regarding the exchange of data and services between system.

9. User Interface Analysis
User interface (UI) analysis and independent elicitation technique in which you study
existing systems to discover users and functional requirements. If there is no existing
system, you might be able to look at the user interface similar to your desired system.

10. Documents Analysis
Document Analysis entails examining Any existing documentation. for potential software
requirement Most useful documentation include Requirement specification, business
process, lesson, learned collection and manual for existing or similar Application.

17 January 2024 Wednesday

 Levels of Requirements (important long question)
Software requirements include three different level

1. Business Requirements
2. User Requirements
3. Functional Requirements

In addition, every system has an assortment of non-functional

→ Rectangle indicate documents in which to store that information

→ Solid arrow indicates that certain type of information

→ The dotted arrow indicate that one type of information is the origin of other
type of requirements

→ Ovel represents requirements information

Level 1. Business Requirements

Business requirements describe why the organization implementing the system. The
focus is on the business objective the organization or the customer who request the system.

Level 2. User Requirements
User requirements describe goals or tasks the user must be able to perform with the

product that will provide value to someone. The domain of user requirements also includes
description of product, attributes or characteristics that are important to user satisfaction ways
to represents user requirements include usecase, user stories and response table.

Level 3. Functional Requirements
Functional requirements specify the behaviors the product will exhibits under specific

conditions they describe what the developer must implements to enable user to accomplish
their tasks (user requirements), thereby satisfying the business requirements.

22 January 2024 Monday

Requirements Development and Management
We subdivide requirement development into Elicitation, Analysis, specification and validation. These
subdisciplines encompass all the activities involved with exploring, evaluating documented and
confirming the requirements for a product.

Following are the essential actions in each sub discipline.

Elicitation
 Elicitation encompasses all of the activities involved with discovering requirements. Such
as interview, workshops documents analysis prototyping and others. The key action are

➢ Identifying the products expected user class and other stakeholders.
➢ Understanding user tasks and goals and the business objective with which those tasks are align.
➢ Learning about the environment in which new product will be used
➢ Working with individuals who represent each user class to understand their functionality needs

and their quality expectation.

Analysis
 Analysis requirements involve reaching a richer and more precise understanding of each
requirement and representing sets requirements in multiple ways following are principal activities.

→ Analysis the information received from users to distinguish their task goals form the functional
requirements, quality expectation, business rules suggested solution and other information.

→ Documents High level requirements into an appropriate level of details.

→ Driving functional requirements from other requirements information.

→ Understanding the relative importance of quality attributes.

→ Negotiating implementation priorities.

→ Identifying gaps in requirements or unnecessary requirements as they relate to the define
scope.

29 January 2024 Monday

Specification :-

Requirement specification involve representing and storing the collected requirement knowledge in a
persistent and well-organized fashion. The principal activity is :

→ Translating the collected user needs into written requirements and diagram suitable for
comprehension, review and used by their intended audiences.

Validation:-

Requirement validation confirms that you have the correct set of requirements information that will
enable developers to build a solution that satisfies the business objectives. The control activities are:

→ Reviewing the documented requirements to correct set of requirements information before the
development group accept them.

→ Developing acceptance test and criteria to confirm that a product based on the requirements
would meet customer needs to achieve the business objectives.

Requirement Management:-
Requirement management activities involves:

→ Defining the requirement baseline, a snapshot in time that represent agreed-upon reviewed and
approve set of functional and non-functional requirements offen for a specific product release or
development iteration.

→ Evaluating the impact of proposed requirements changes and incorporating approved changes
into a project in a controlled way.

→ Keeping project plan current with the requirements as they evolve.

→ Negotiating new commitments based on the estimated impact of requirement changes.

→ Defining the relationship and dependencies that exist between requirements.

→ Tracking requirements status and change activity throughout the project.

30 January 2024 Tuesday

 Every project has requirements
Frederick Brooks eloquently stated the critical role of requirements to a software project in his classic

1987 essay, “No Silver Bullet: Essence and Accidents of Software Engineering”: The hardest single part of

building a software system is deciding precisely what to build. No other part of the conceptual work is as

difficult as establishing the detailed technical requirements, including all the interfaces to people, to

machines, and to other software systems. No other part of the work so cripples the resulting system if

done wrong. No other part is more difficult to rectify later.

When bad requirements happen to good people

• Insufficient User involvement (pdf page no 53)

• Inaccurate Planning

• Creeping user Requirements

• Ambiguous Requirements

• Gold Plating

• Overlooked Stakeholders

Benefits from a high-quality requirements process

 Some people mistakenly believe that time spent discussing

requirements simply delays delivery by the same duration. This assumes that there’s no return on

investment from requirements activities. In actuality, investing in good requirements will virtually always

return more than it costs. Sound requirements processes emphasize a collaborative approach to product

development that involves stakeholders in a partnership throughout the project. Eliciting requirements

lets the development team better understand its user community or market, a critical success factor.

Emphasizing user tasks instead of superficially attractive features helps the team avoid writing code that

no one will ever execute. Customer involvement reduces the expectation gap between what the

customer really needs and what the developer delivers. You’re going to get the customer input

eventually; it’s far cheaper to reach this understanding before you build the product than after delivery.

12 February 2024 Monday

 Data Flow Diagram

13 February 2024 Tuesday

 ERD

19 February 2024 Monday

Requirements Traceability
Traceability is the ability to trace something as it move through a progress. In product

development it refers to the ability to track an trace requirements to artifacts test, run and anything else
in the product life cycle. Traceability is the important because it create transparently of every step of
development including who completed what task and when.

Purpose of Traceability
 The purpose of traceability is to keep track of record the history of are item which is of ten used
to comply with regulation and minimize risk. More specifically some high-level examples of traceability
include:

• Risk mitigation

• Quality Control

• Faster Ship or Release

• Operational Efficiency

• Proving Compliance with time and Budget

Traceability in Software Engineering
 Traceability in software engineering is the ability to trace work item across the development
lifecycle. It is used to keep track of what’s going on in the development life cycle.

Requirements Traceability
 Traceability works by linking two or more work items application development. This link indicate
a depending between the items. Requirements and test cases are often traced. Requirements are traced
as requirements forwards and backwards in development lifecycle. Requirements are traced forward
through other development artifacts including testcases, test runs and issues. Requirements are traced
back ward to source of the requirements such as a stakeholders or regulatory compliance menilite.

20 February 2024 Tuesday

 Requirements Prioritization (LONG)
An act of giving procedure or priority to one item over another item. Requirements prioritization means

giving procedure to some requirements over other requirements based on feedback from system

stakeholders.

Benefits of Requirements Prioritization

• Stakeholders can decide on the core requirements for the system

• Planning and selection of ordered, optimal set of software requirements for implementation in

successive releases

• Helps in trade-offs of conflicting constraints such as schedule, budget, resources, time to market,

and quality.

• Balances the business benefit of each requirement against its cost

• Balances the implications of requirements on the software architecture and future evolution of

the product and its associated cost.

• Selects only a subset of the requirements and still produce a system that will satisfy the

customers.

Prioritization Process

• Prioritization is an iterative process and might be performed at different abstraction levels and with

different information in different phases during the software lifecycle.

• Prioritization techniques can roughly be divided into two categories:

➢ Methods

➢ Negotiation approaches

Prioritization Methods

• The methods are based on quantitatively assigning values to different aspects of requirements

• Quantitative methods make it easier to aggregate different decision variables into an overall

assessment and lead to faster decision.

Analytical Hierarchy Process (AHP)

• AHP is a systematic decision-making method that has been adapted for prioritization of software

requirements

• It involves comparing all possible pairs of hierarchically classified requirements, in order to

determine which has higher priority, and to what extent 30 Analytical Hierarchy Process (AHP).

• The total number of comparisons to perform with AHP are n * (n-1)/2; where n is the number of

requirements; at each hierarchy level, which results in a dramatic increase in the number of

requirements.

• Studies have shown that AHP is not suitable for large number of requirements.

Cumulative Voting, the 100-Dollar Test

• The 100-dollar test is a very straightforward prioritization technique where the stakeholders are

given 100 imaginary units (money, hours, etc.) to distribute between the requirements

• The result of the prioritization is presented on a ratio scale 32 Cumulative Voting, the 100-Dollar

Test

• One should only perform the prioritization once on the same set of requirements, since the

stakeholders might bias their evaluation the second time around if they do not get one of their

favorite requirements as a top priority

