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Preface
This Instructor’s Solution Manual provides solutions (or at least solution sketches) for

almost all of the 400 exercises inArtificial Intelligence: A Modern Approach (Third Edition).
We only give actual code for a few of the programming exercises; writing a lot of code would
not be that helpful, if only because we don’t know what language you prefer.

In many cases, we give ideas for discussion and follow-up questions, and we try to
explainwhywe designed each exercise.

There is more supplementary material that we want to offer tothe instructor, but we
have decided to do it through the medium of the World Wide Web rather than through a CD
or printed Instructor’s Manual. The idea is that this solution manual contains the material that
must be kept secret from students, but the Web site contains material that can be updated and
added to in a more timely fashion. The address for the web siteis:

http://aima.cs.berkeley.edu

and the address for the online Instructor’s Guide is:

http://aima.cs.berkeley.edu/instructors.html

There you will find:

• Instructions on how to join theaima-instructors discussion list. We strongly recom-
mend that you join so that you can receive updates, corrections, notification of new
versions of this Solutions Manual, additional exercises and exam questions, etc., in a
timely manner.

• Source code for programs from the text. We offer code in Lisp, Python, and Java, and
point to code developed by others in C++ and Prolog.

• Programming resources and supplemental texts.

• Figures from the text, for making your own slides.

• Terminology from the index of the book.

• Other courses using the book that have home pages on the Web.You can see example
syllabi and assignments here. Pleasedo notput solution sets for AIMA exercises on
public web pages!

• AI Education information on teaching introductory AI courses.

• Other sites on the Web with information on AI. Organized by chapter in the book; check
this for supplemental material.

We welcome suggestions for new exercises, new environmentsand agents, etc. The
book belongs to you, the instructor, as much as us. We hope that you enjoy teaching from it,
that these supplemental materials help, and that you will share your supplements and experi-
ences with other instructors.
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Solutions for Chapter 1
Introduction

1.1

a. Dictionary definitions ofintelligence talk about “the capacity to acquire and apply
knowledge” or “the faculty of thought and reason” or “the ability to comprehend and
profit from experience.” These are all reasonable answers, but if we want something
quantifiable we would use something like “the ability to apply knowledge in order to
perform better in an environment.”

b. We defineartificial intelligence as the study and construction of agent programs that
perform well in a given environment, for a given agent architecture.

c. We define anagentas an entity that takes action in response to percepts from anenvi-
ronment.

d. We definerationality as the property of a system which does the “right thing” given
what it knows. See Section 2.2 for a more complete discussion. Both describe perfect
rationality, however; see Section 27.3.

e. We definelogical reasoningas the a process of deriving new sentences from old, such
that the new sentences are necessarily true if the old ones are true. (Notice that does
not refer to any specific syntax oor formal language, but it does require a well-defined
notion of truth.)

1.2 See the solution for exercise 26.1 for some discussion of potential objections.
The probability of fooling an interrogator depends on just how unskilled the interroga-

tor is. One entrant in the 2002 Loebner prize competition (which is not quite a real Turing
Test) did fool one judge, although if you look at the transcript, it is hard to imagine what
that judge was thinking. There certainly have been examplesof a chatbot or other online
agent fooling humans. For example, see See Lenny Foner’s account of the Julia chatbot
at foner.www.media.mit.edu/people/foner/Julia/. We’d say the chance today is something
like 10%, with the variation depending more on the skill of the interrogator rather than the
program. In 50 years, we expect that the entertainment industry (movies, video games, com-
mercials) will have made sufficient investments in artificial actors to create very credible
impersonators.

1.3 Yes, they are rational, because slower, deliberative actions would tend to result in more
damage to the hand. If “intelligent” means “applying knowledge” or “using thought and
reasoning” then it does not require intelligence to make a reflex action.
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2 Chapter 1. Introduction

1.4 No. IQ test scores correlate well with certain other measures, such as success in college,
ability to make good decisions in complex, real-world situations, ability to learn new skills
and subjects quickly, and so on, butonly if they’re measuring fairly normal humans. The IQ
test doesn’t measure everything. A program that is specialized only for IQ tests (and special-
ized further only for the analogy part) would very likely perform poorly on other measures
of intelligence. Consider the following analogy: if a humanruns the 100m in 10 seconds, we
might describe him or her asvery athleticand expect competent performance in other areas
such as walking, jumping, hurdling, and perhaps throwing balls; but we would not desscribe
a Boeing 747 asvery athleticbecause it can cover 100m in 0.4 seconds, nor would we expect
it to be good at hurdling and throwing balls.

Even for humans, IQ tests are controversial because of theirtheoretical presuppositions
about innate ability (distinct from training effects) adn the generalizability of results. See
The Mismeasure of Manby Stephen Jay Gould, Norton, 1981 orMultiple intelligences: the
theory in practiceby Howard Gardner, Basic Books, 1993 for more on IQ tests, what they
measure, and what other aspects there are to “intelligence.”

1.5 In order of magnitude figures, the computational power of thecomputer is 100 times
larger.

1.6 Just as you are unaware of all the steps that go into making your heart beat, you are
also unaware of most of what happens in your thoughts. You do have a conscious awareness
of some of your thought processes, but the majority remains opaque to your consciousness.
The field of psychoanalysis is based on the idea that one needstrained professional help to
analyze one’s own thoughts.

1.7

• Although bar code scanning is in a sense computer vision, these are not AI systems.
The problem of reading a bar code is an extremely limited and artificial form of visual
interpretation, and it has been carefully designed to be as simple as possible, given the
hardware.

• In many respects. The problem of determining the relevanceof a web page to a query
is a problem in natural language understanding, and the techniques are related to those
we will discuss in Chapters 22 and 23. Search engines like Ask.com, which group
the retrieved pages into categories, use clustering techniques analogous to those we
discuss in Chapter 20. Likewise, other functionalities provided by a search engines use
intelligent techniques; for instance, the spelling corrector uses a form of data mining
based on observing users’ corrections of their own spellingerrors. On the other hand,
the problem of indexing billions of web pages in a way that allows retrieval in seconds
is a problem in database design, not in artificial intelligence.

• To a limited extent. Such menus tends to use vocabularies which are very limited –
e.g. the digits, “Yes”, and “No” — and within the designers’ control, which greatly
simplifies the problem. On the other hand, the programs must deal with an uncontrolled
space of all kinds of voices and accents.
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The voice activated directory assistance programs used by telephone companies,
which must deal with a large and changing vocabulary are certainly AI programs.

• This is borderline. There is something to be said for viewing these as intelligent agents
working in cyberspace. The task is sophisticated, the information available is partial, the
techniques are heuristic (not guaranteed optimal), and thestate of the world is dynamic.
All of these are characteristic of intelligent activities.On the other hand, the task is very
far from those normally carried out in human cognition.

1.8 Presumably the brain has evolved so as to carry out this operations on visual images,
but the mechanism is only accessible for one particular purpose in this particular cognitive
task of image processing. Until about two centuries ago there was no advantage in people (or
animals) being able to compute the convolution of a Gaussianfor any other purpose.

The really interesting question here is what we mean by saying that the “actual person”
can do something. The person can see, but he cannot compute the convolution of a Gaussian;
but computing that convolution ispart of seeing. This is beyond the scope of this solution
manual.

1.9 Evolution tends to perpetuate organisms (and combinationsand mutations of organ-
isms) that are successful enough to reproduce. That is, evolution favors organisms that can
optimize their performance measure to at least survive to the age of sexual maturity, and then
be able to win a mate. Rationality just means optimizing performance measure, so this is in
line with evolution.

1.10 This question is intended to be about the essential nature ofthe AI problem and what is
required to solve it, but could also be interpreted as a sociological question about the current
practice of AI research.

A scienceis a field of study that leads to the acquisition of empirical knowledge by the
scientific method, which involves falsifiable hypotheses about what is. A pureengineering
field can be thought of as taking a fixed base of empirical knowledge and using it to solve
problems of interest to society. Of course, engineers do bits of science—e.g., they measure the
properties of building materials—and scientists do bits ofengineering to create new devices
and so on.

As described in Section 1.1, the “human” side of AI is clearlyan empirical science—
called cognitive science these days—because it involves psychological experiments designed
out to find out how human cognition actually works. What aboutthe the “rational” side?
If we view it as studying the abstract relationship among an arbitrary task environment, a
computing device, and the program for that computing devicethat yields the best performance
in the task environment, then the rational side of AI is really mathematics and engineering;
it does not require any empirical knowledge about theactual world—and theactual task
environment—that we inhabit; that a given program will do well in a given environment is a
theorem. (The same is true of pure decision theory.) In practice, however, we are interested
in task environments that do approximate the actual world, so even the rational side of AI
involves finding out what the actual world is like. For example, in studying rational agents
that communicate, we are interested in task environments that contain humans, so we have



4 Chapter 1. Introduction

to find out what human language is like. In studying perception, we tend to focus on sensors
such as cameras that extract useful information from the actual world. (In a world without
light, cameras wouldn’t be much use.) Moreover, to design vision algorithms that are good
at extracting information from camera images, we need to understand the actual world that
generates those images. Obtaining the required understanding of scene characteristics, object
types, surface markings, and so on is a quite different kind of science from ordinary physics,
chemistry, biology, and so on, but it is still science.

In summary, AI is definitely engineering but it would not be especially useful to us if it
were not also an empirical science concerned with those aspects of the real world that affect
the design of intelligent systems for that world.

1.11 This depends on your definition of “intelligent” and “tell.”In one sense computers only
do what the programmers command them to do, but in another sense what the programmers
consciously tells the computer to do often has very little todo with what the computer actually
does. Anyone who has written a program with an ornery bug knows this, as does anyone
who has written a successful machine learning program. So inone sense Samuel “told” the
computer “learn to play checkers better than I do, and then play that way,” but in another
sense he told the computer “follow this learning algorithm”and it learned to play. So we’re
left in the situation where you may or may not consider learning to play checkers to be s sign
of intelligence (or you may think that learning to play in theright way requires intelligence,
but not in this way), and you may think the intelligence resides in the programmer or in the
computer.

1.12 The point of this exercise is to notice the parallel with the previous one. Whatever
you decided about whether computers could be intelligent in1.11, you are committed to
making the same conclusion about animals (including humans), unlessyour reasons for de-
ciding whether something is intelligent take into account the mechanism (programming via
genes versus programming via a human programmer). Note thatSearle makes this appeal to
mechanism in his Chinese Room argument (see Chapter 26).

1.13 Again, the choice you make in 1.11 drives your answer to this question.

1.14

a. (ping-pong) A reasonable level of proficiency was achievedby Andersson’s robot (An-
dersson, 1988).

b. (driving in Cairo) No. Although there has been a lot of progress in automated driving,
all such systems currently rely on certain relatively constant clues: that the road has
shoulders and a center line, that the car ahead will travel a predictable course, that cars
will keep to their side of the road, and so on. Some lane changes and turns can be made
on clearly marked roads in light to moderate traffic. Drivingin downtown Cairo is too
unpredictable for any of these to work.

c. (driving in Victorville, California) Yes, to some extent,as demonstrated in DARPA’s
Urban Challenge. Some of the vehicles managed to negotiate streets, intersections,
well-behaved traffic, and well-behaved pedestrians in goodvisual conditions.
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d. (shopping at the market) No. No robot can currently put together the tasks of moving in
a crowded environment, using vision to identify a wide variety of objects, and grasping
the objects (including squishable vegetables) without damaging them. The component
pieces are nearly able to handle the individual tasks, but itwould take a major integra-
tion effort to put it all together.

e. (shopping on the web) Yes. Software robots are capable of handling such tasks, par-
ticularly if the design of the web grocery shopping site doesnot change radically over
time.

f. (bridge) Yes. Programs such as GIB now play at a solid level.

g. (theorem proving) Yes. For example, the proof of Robbins algebra described on page
360.

h. (funny story) No. While some computer-generated prose andpoetry is hysterically
funny, this is invariably unintentional, except in the caseof programs that echo back
prose that they have memorized.

i. (legal advice) Yes, in some cases. AI has a long history of research into applications
of automated legal reasoning. Two outstanding examples arethe Prolog-based expert
systems used in the UK to guide members of the public in dealing with the intricacies of
the social security and nationality laws. The social security system is said to have saved
the UK government approximately $150 million in its first year of operation. However,
extension into more complex areas such as contract law awaits a satisfactory encoding
of the vast web of common-sense knowledge pertaining to commercial transactions and
agreement and business practices.

j . (translation) Yes. In a limited way, this is already being done. See Kay, Gawron and
Norvig (1994) and Wahlster (2000) for an overview of the fieldof speech translation,
and some limitations on the current state of the art.

k. (surgery) Yes. Robots are increasingly being used for surgery, although always under
the command of a doctor. Robotic skills demonstrated at superhuman levels include
drilling holes in bone to insert artificial joints, suturing, and knot-tying. They are not
yet capable of planning and carrying out a complex operationautonomously from start
to finish.

1.15
The progress made in this contests is a matter of fact, but theimpact of that progress is

a matter of opinion.

• DARPA Grand Challenge for Robotic Cars In 2004 the Grand Challenge was a 240
km race through the Mojave Desert. It clearly stressed the state of the art of autonomous
driving, and in fact no competitor finished the race. The bestteam, CMU, completed
only 12 of the 240 km. In 2005 the race featured a 212km course with fewer curves
and wider roads than the 2004 race. Five teams finished, with Stanford finishing first,
edging out two CMU entries. This was hailed as a great achievement for robotics and
for the Challenge format. In 2007 the Urban Challenge put cars in a city setting, where
they had to obey traffic laws and avoid other cars. This time CMU edged out Stanford.
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The competition appears to have been a good testing ground toput theory into practice,
something that the failures of 2004 showed was needed. But itis important that the
competition was done at just the right time, when there was theoretical work to con-
solidate, as demonstrated by the earlier work by Dickmanns (whose VaMP car drove
autonomously for 158km in 1995) and by Pomerleau (whose Navlab car drove 5000km
across the USA, also in 1995, with the steering controlled autonomously for 98% of the
trip, although the brakes and accelerator were controlled by a human driver).

• International Planning Competition In 1998, five planners competed: Blackbox,
HSP, IPP, SGP, and STAN. The result page (ftp://ftp.cs.yale.edu/pub/
mcdermott/aipscomp-results.html ) stated “all of these planners performed
very well, compared to the state of the art a few years ago.” Most plans found were 30 or
40 steps, with some over 100 steps. In 2008, the competition had expanded quite a bit:
there were more tracks (satisficing vs. optimizing; sequential vs. temporal; static vs.
learning). There were about 25 planners, including submissions from the 1998 groups
(or their descendants) and new groups. Solutions found weremuch longer than in 1998.
In sum, the field has progressed quite a bit in participation,in breadth, and in power of
the planners. In the 1990s it was possible to publish a Planning paper that discussed
only a theoretical approach; now it is necessary to show quantitative evidence of the
efficacy of an approach. The field is stronger and more mature now, and it seems that
the planning competition deserves some of the credit. However, some researchers feel
that too much emphasis is placed on the particular classes ofproblems that appear in
the competitions, and not enough on real-world applications.

• Robocup Robotics SoccerThis competition has proved extremely popular, attracting
407 teams from 43 countries in 2009 (up from 38 teams from 11 countries in 1997).
The robotic platform has advanced to a more capable humanoidform, and the strategy
and tactics have advanced as well. Although the competitionhas spurred innovations
in distributed control, the winning teams in recent years have relied more on individual
ball-handling skills than on advanced teamwork. The competition has served to increase
interest and participation in robotics, although it is not clear how well they are advancing
towards the goal of defeating a human team by 2050.

• TREC Information Retrieval Conference This is one of the oldest competitions,
started in 1992. The competitions have served to bring together a community of re-
searchers, have led to a large literature of publications, and have seen progress in par-
ticipation and in quality of results over the years. In the early years, TREC served
its purpose as a place to do evaluations of retrieval algorithms on text collections that
were large for the time. However, starting around 2000 TREC became less relevant as
the advent of the World Wide Web created a corpus that was available to anyone and
was much larger than anything TREC had created, and the development of commercial
search engines surpassed academic research.

• NIST Open Machine Translation Evaluation This series of evaluations (explicitly
not labelled a “competition”) has existed since 2001. Sincethen we have seen great
advances in Machine Translation quality as well as in the number of languages covered.



7

The dominant approach has switched from one based on grammatical rules to one that
relies primarily on statistics. The NIST evaluations seem to track these changes well,
but don’t appear to be driving the changes.

Overall, we see that whatever you measure is bound to increase over time. For most of
these competitions, the measurement was a useful one, and the state of the art has progressed.
In the case of ICAPS, some planning researchers worry that too much attention has been
lavished on the competition itself. In some cases, progresshas left the competition behind,
as in TREC, where the resources available to commercial search engines outpaced those
available to academic researchers. In this case the TREC competition was useful—it helped
train many of the people who ended up in commercial search engines—and in no way drew
energy away from new ideas.



Solutions for Chapter 2
Intelligent Agents

2.1 This question tests the student’s understanding of environments, rational actions, and
performance measures. Any sequential environment in whichrewards may take time to arrive
will work, because then we can arrange for the reward to be “over the horizon.” Suppose that
in any state there are two action choices,a andb, and consider two cases: the agent is in state
s at timeT or at timeT − 1. In states, actiona reaches states′ with reward 0, while action
b reaches states again with reward 1; ins′ either action gains reward 10. At timeT − 1,
it’s rational to doa in s, with expected total reward 10 before time is up; but at timeT , it’s
rational to dob with total expected reward 1 because the reward of 10 cannot be obtained
before time is up.

Students may also provide common-sense examples from real life: investments whose
payoff occurs after the end of life, exams where it doesn’t make sense to start the high-value
question with too little time left to get the answer, and so on.

The environment state can include a clock, of course; this doesn’t change the gist of
the answer—now the action will depend on the clock as well as on the non-clock part of the
state—but it does mean that the agent can never be in the same state twice.

2.2 Notice that for our simple environmental assumptions we need not worry about quanti-
tative uncertainty.

a. It suffices to show that for all possible actual environments (i.e., all dirt distributions and
initial locations), this agent cleans the squares at least as fast as any other agent. This is
trivially true when there is no dirt. When there is dirt in theinitial location and none in
the other location, the world is clean after one step; no agent can do better. When there
is no dirt in the initial location but dirt in the other, the world is clean after two steps; no
agent can do better. When there is dirt in both locations, theworld is clean after three
steps; no agent can do better. (Note: in general, the condition stated in the first sentence
of this answer is much stricter than necessary for an agent tobe rational.)

b. The agent in (a) keeps moving backwards and forwards even after the world is clean.
It is better to doNoOp once the world is clean (the chapter says this). Now, since
the agent’s percept doesn’t say whether the other square is clean, it would seem that
the agent must have some memory to say whether the other square has already been
cleaned. To make this argument rigorous is more difficult—for example, could the
agent arrange things so that it would only be in a clean left square when the right square

8
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was already clean? As a general strategy, an agentcan use the environment itself as
a form of external memory—a common technique for humans who use things likeEXTERNAL MEMORY

appointment calendars and knots in handkerchiefs. In this particular case, however, that
is not possible. Consider the reflex actions for[A,Clean ] and[B,Clean ]. If either of
these isNoOp, then the agent will fail in the case where that is the initialpercept but
the other square is dirty; hence, neither can beNoOp and therefore the simple reflex
agent is doomed to keep moving. In general, the problem with reflex agents is that they
have to do the same thing in situations that look the same, even when the situations
are actually quite different. In the vacuum world this is a big liability, because every
interior square (except home) looks either like a square with dirt or a square without
dirt.

c. If we consider asymptotically long lifetimes, then it is clear that learning a map (in
some form) confers an advantage because it means that the agent can avoid bumping
into walls. It can also learn where dirt is most likely to accumulate and can devise
an optimal inspection strategy. The precise details of the exploration method needed
to construct a complete map appear in Chapter 4; methods for deriving an optimal
inspection/cleanup strategy are in Chapter 21.

2.3

a. An agent that senses only partial information about the state cannot be perfectly ra-
tional.
False. Perfect rationality refers to the ability to make good decisions given the sensor
information received.

b. There exist task environments in which no pure reflex agent can behave rationally.
True. A pure reflex agent ignores previous percepts, so cannot obtain an optimal state
estimate in a partially observable environment. For example, correspondence chess is
played by sending moves; if the other player’s move is the current percept, a reflex agent
could not keep track of the board state and would have to respond to, say, “a4” in the
same way regardless of the position in which it was played.

c. There exists a task environment in which every agent is rational.
True. For example, in an environment with a single state, such that all actions have the
same reward, it doesn’t matter which action is taken. More generally, any environment
that is reward-invariant under permutation of the actions will satisfy this property.

d. The input to an agent program is the same as the input to the agent function.
False. The agent function, notionally speaking, takes as input the entire percept se-
quence up to that point, whereas the agent program takes the current percept only.

e. Every agent function is implementable by some program/machine combination.
False. For example, the environment may contain Turing machines and input tapes and
the agent’s job is to solve the halting problem; there is an agent function that specifies
the right answers, but no agent program can implement it. Another example would be
an agent function that requires solving intractable problem instances of arbitrary size in
constant time.



10 Chapter 2. Intelligent Agents

f. Suppose an agent selects its action uniformly at random fromthe set of possible actions.
There exists a deterministic task environment in which thisagent is rational.
True. This is a special case of (c); if it doesn’t matter whichaction you take, selecting
randomly is rational.

g. It is possible for a given agent to be perfectly rational in two distinct task environments.
True. For example, we can arbitrarily modify the parts of theenvironment that are
unreachable by any optimal policy as long as they stay unreachable.

h. Every agent is rational in an unobservable environment.
False. Some actions are stupid—and the agent may know this ifit has a model of the
environment—even if one cannot perceive the environment state.

i. A perfectly rational poker-playing agent never loses.
False. Unless it draws the perfect hand, the agent can alwayslose if an opponent has
better cards. This can happen for game after game. The correct statement is that the
agent’s expected winnings are nonnegative.

2.4 Many of these can actually be argued either way, depending onthe level of detail and
abstraction.

A. Partially observable, stochastic, sequential, dynamic, continuous, multi-agent.

B. Partially observable, stochastic, sequential, dynamic, continuous, single agent (unless
there are alien life forms that are usefully modeled as agents).

C. Partially observable, deterministic, sequential, static, discrete, single agent. This can be
multi-agent and dynamic if we buy books via auction, or dynamic if we purchase on a
long enough scale that book offers change.

D. Fully observable, stochastic, episodic (every point is separate), dynamic, continuous,
multi-agent.

E. Fully observable, stochastic, episodic, dynamic, continuous, single agent.

F. Fully observable, stochastic, sequential, static, continuous, single agent.

G. Fully observable, deterministic, sequential, static, continuous, single agent.

H. Fully observable, strategic, sequential, static, discrete, multi-agent.

2.5 The following are just some of the many possible definitions that can be written:

• Agent: an entity that perceives and acts; or, one thatcan be viewedas perceiving and
acting. Essentially any object qualifies; the key point is the way the object implements
an agent function. (Note: some authors restrict the term toprogramsthat operateon
behalf ofa human, or to programs that can cause some or all of their codeto run on
other machines on a network, as inmobile agents.)MOBILE AGENT

• Agent function: a function that specifies the agent’s action in response to every possible
percept sequence.

• Agent program: that program which, combined with a machine architecture,imple-
ments an agent function. In our simple designs, the program takes a new percept on
each invocation and returns an action.
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• Rationality: a property of agents that choose actions that maximize their expected util-
ity, given the percepts to date.

• Autonomy: a property of agents whose behavior is determined by their own experience
rather than solely by their initial programming.

• Reflex agent: an agent whose action depends only on the current percept.

• Model-based agent: an agent whose action is derived directly from an internal model
of the current world state that is updated over time.

• Goal-based agent: an agent that selects actions that it believes will achieveexplicitly
represented goals.

• Utility-based agent: an agent that selects actions that it believes will maximize the
expected utility of the outcome state.

• Learning agent: an agent whose behavior improves over time based on its experience.

2.6 Although these questions are very simple, they hint at some very fundamental issues.
Our answers are for the simple agent designs forstaticenvironments where nothing happens
while the agent is deliberating; the issues get even more interesting for dynamic environ-
ments.

a. Yes; take any agent program and insert null statements thatdo not affect the output.

b. Yes; the agent function might specify that the agent printtrue when the percept is a
Turing machine program that halts, andfalse otherwise. (Note: in dynamic environ-
ments, for machines of less than infinite speed, the rationalagent function may not be
implementable; e.g., the agent function that always plays awinning move, if any, in a
game of chess.)

c. Yes; the agent’s behavior is fixed by the architecture and program.

d. There are2n agent programs, although many of these will not run at all. (Note: Any
given program can devote at mostn bits to storage, so its internal state can distinguish
among only2n past histories. Because the agent function specifies actions based on per-
cept histories, there will be many agent functions that cannot be implemented because
of lack of memory in the machine.)

e. It depends on the program and the environment. If the environment is dynamic, speed-
ing up the machine may mean choosing different (perhaps better) actions and/or acting
sooner. If the environment is static and the program pays no attention to the passage of
elapsed time, the agent function is unchanged.

2.7
The design of goal- and utility-based agents depends on the structure of the task en-

vironment. The simplest such agents, for example those in chapters 3 and 10, compute the
agent’s entire future sequence of actions in advance beforeacting at all. This strategy works
for static and deterministic environments which are eitherfully-known or unobservable

For fully-observable and fully-known static environmentsa policy can be computed in
advance which gives the action to by taken in any given state.
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function GOAL-BASED-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current stateand action
goal , a description of the desired goal state
plan , a sequence of actions to take, initially empty
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept ,model )
if GOAL-ACHIEVED(state,goal ) then return a null action
if plan is emptythen

plan←PLAN (state,goal ,model )
action← FIRST(plan)
plan←REST(plan)
return action

Figure S2.1 A goal-based agent.

For partially-observable environments the agent can compute a conditional plan, which
specifies the sequence of actions to take as a function of the agent’s perception. In the ex-
treme, a conditional plan gives the agent’s response to every contingency, and so it is a repre-
sentation of the entire agent function.

In all cases it may be either intractable or too expensive to compute everything out in
advance. Instead of a conditional plan, it may be better to compute a single sequence of
actions which is likely to reach the goal, then monitor the environment to check whether the
plan is succeeding, repairing or replanning if it is not. It may be even better to compute only
the start of this plan before taking the first action, continuing to plan at later time steps.

Pseudocode for simple goal-based agent is given in Figure S2.1. GOAL-ACHIEVED

tests to see whether the current state satisfies the goal or not, doing nothing if it does. PLAN

computes a sequence of actions to take to achieve the goal. This might return only a prefix
of the full plan, the rest will be computed after the prefix is executed. This agent will act to
maintain the goal: if at any point the goal is not satisfied it will (eventually) replan to achieve
the goal again.

At this level of abstraction the utility-based agent is not much different than the goal-
based agent, except that action may be continuously required (there is not necessarily a point
where the utility function is “satisfied”). Pseudocode is given in Figure S2.2.

2.8 The file"agents/environments/vacuum.lisp" in the code repository imple-
ments the vacuum-cleaner environment. Students can easilyextend it to generate different
shaped rooms, obstacles, and so on.

2.9 A reflex agent program implementing the rational agent function described in the chap-
ter is as follows:

(defun reflex-rational-vacuum-agent (percept)
(destructuring-bind (location status) percept
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function UTILITY -BASED-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current stateand action
utility − function, a description of the agent’s utility function
plan , a sequence of actions to take, initially empty
action , the most recent action, initially none

state←UPDATE-STATE(state,action ,percept ,model )
if plan is emptythen
plan←PLAN (state,utility − function ,model )
action← FIRST(plan)
plan←REST(plan)
return action

Figure S2.2 A utility-based agent.

(cond ((eq status ’Dirty) ’Suck)
((eq location ’A) ’Right)
(t ’Left))))

For states 1, 3, 5, 7 in Figure 4.9, the performance measures are 1996, 1999, 1998, 2000
respectively.

2.10

a. No; see answer to 2.4(b).
b. See answer to 2.4(b).
c. In this case, a simple reflex agent can be perfectly rational. The agent can consist of

a table with eight entries, indexed by percept, that specifies an action to take for each
possible state. After the agent acts, the world is updated and the next percept will tell
the agent what to do next. For larger environments, constructing a table is infeasible.
Instead, the agent could run one of the optimal search algorithms in Chapters 3 and 4
and execute the first step of the solution sequence. Again, nointernal state isrequired,
but it would help to be able to store the solution sequence instead of recomputing it for
each new percept.

2.11

a. Because the agent does not know the geography and perceivesonly location and local
dirt, and cannot remember what just happened, it will get stuck forever against a wall
when it tries to move in a direction that is blocked—that is, unless it randomizes.

b. One possible design cleans up dirt and otherwise moves randomly:

(defun randomized-reflex-vacuum-agent (percept)
(destructuring-bind (location status) percept

(cond ((eq status ’Dirty) ’Suck)
(t (random-element ’(Left Right Up Down))))))
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Figure S2.3 An environment in which random motion will take a long time tocover all
the squares.

This is fairly close to what the RoombaTM vacuum cleaner does (although the Roomba
has a bump sensor and randomizes only when it hits an obstacle). It works reasonably
well in nice, compact environments. In maze-like environments or environments with
small connecting passages, it can take a very long time to cover all the squares.

c. An example is shown in Figure S2.3. Students may also wish tomeasure clean-up time
for linear or square environments of different sizes, and compare those to the efficient
online search algorithms described in Chapter 4.

d. A reflex agent with state can build a map (see Chapter 4 for details). An online depth-
first exploration will reach every state in time linear in thesize of the environment;
therefore, the agent can do much better than the simple reflexagent.

The question of rational behavior in unknown environments is a complex one but it is
worth encouraging students to think about it. We need to havesome notion of the prior
probability distribution over the class of environments; call this the initialbelief state.
Any action yields a new percept that can be used to update thisdistribution, moving
the agent to a new belief state. Once the environment is completely explored, the belief
state collapses to a single possible environment. Therefore, the problem of optimal
exploration can be viewed as a search for an optimal strategyin the space of possible
belief states. This is a well-defined, if horrendously intractable, problem. Chapter 21
discusses some cases where optimal exploration is possible. Another concrete example
of exploration is the Minesweeper computer game (see Exercise 7.22). For very small
Minesweeper environments, optimal exploration is feasible although the belief state
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update is nontrivial to explain.

2.12 The problem appears at first to be very similar; the main difference is that instead of
using the location percept to build the map, the agent has to “invent” its own locations (which,
after all, are just nodes in a data structure representing the state space graph). When a bump
is detected, the agent assumes it remains in the same location and can add a wall to its map.
For grid environments, the agent can keep track of its(x, y) location and so can tell when it
has returned to an old state. In the general case, however, there is no simple way to tell if a
state is new or old.

2.13

a. For a reflex agent, this presents noadditionalchallenge, because the agent will continue
to Suck as long as the current location remains dirty. For an agent that constructs a
sequential plan, everySuck action would need to be replaced by “Suck until clean.”
If the dirt sensor can be wrong on each step, then the agent might want to wait for a
few steps to get a more reliable measurement before decidingwhether toSuck or move
on to a new square. Obviously, there is a trade-off because waiting too long means
that dirt remains on the floor (incurring a penalty), but acting immediately risks either
dirtying a clean square or ignoring a dirty square (if the sensor is wrong). A rational
agent must also continue touring and checking the squares incase it missed one on a
previous tour (because of bad sensor readings). it is not immediately obvious how the
waiting time at each square should change with each new tour.These issues can be
clarified by experimentation, which may suggest a general trend that can be verified
mathematically. This problem is a partially observable Markov decision process—see
Chapter 17. Such problems are hard in general, but some special cases may yield to
careful analysis.

b. In this case, the agent must keep touring the squares indefinitely. The probability that
a square is dirty increases monotonically with the time since it was last cleaned, so the
rational strategy is, roughly speaking, to repeatedly execute the shortest possible tour of
all squares. (We say “roughly speaking” because there are complications caused by the
fact that the shortest tour may visit some squares twice, depending on the geography.)
This problem is also a partially observable Markov decisionprocess.



Solutions for Chapter 3
Solving Problems by Searching

3.1 In goal formulation, we decide which aspects of the world we are interested in, and
which can be ignored or abstracted away. Then in problem formulation we decide how to
manipulate the important aspects (and ignore the others). If we did problem formulation first
we would not know what to include and what to leave out. That said, it can happen that there
is a cycle of iterations between goal formulation, problem formulation, and problem solving
until one arrives at a sufficiently useful and efficient solution.

3.2

a. We’ll define the coordinate system so that the center of themaze is at(0, 0), and the
maze itself is a square from(−1,−1) to (1, 1).

Initial state: robot at coordinate(0, 0), facing North.
Goal test: either|x| > 1 or |y| > 1 where(x, y) is the current location.
Successor function: move forwards any distanced; change direction robot it facing.
Cost function: total distance moved.

The state space is infinitely large, since the robot’s position is continuous.

b. The state will record the intersection the robot is currently at, along with the direction
it’s facing. At the end of each corridor leaving the maze we will have an exit node.
We’ll assume some node corresponds to the center of the maze.

Initial state: at the center of the maze facing North.
Goal test: at an exit node.
Successor function: move to the next intersection in front of us, if there is one; turn to
face a new direction.
Cost function: total distance moved.

There are4n states, wheren is the number of intersections.

c. Initial state: at the center of the maze.
Goal test: at an exit node.
Successor function: move to next intersection to the North,South, East, or West.
Cost function: total distance moved.

We no longer need to keep track of the robot’s orientation since it is irrelevant to
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predicting the outcome of our actions, and not part of the goal test. The motor system
that executes this plan will need to keep track of the robot’scurrent orientation, to know
when to rotate the robot.

d. State abstractions:

(i) Ignoring the height of the robot off the ground, whether it is tilted off the vertical.
(ii) The robot can face in only four directions.

(iii) Other parts of the world ignored: possibility of otherrobots in the maze, the
weather in the Caribbean.

Action abstractions:

(i) We assumed all positions we safely accessible: the robotcouldn’t get stuck or
damaged.

(ii) The robot can move as far as it wants, without having to recharge its batteries.
(iii) Simplified movement system: moving forwards a certaindistance, rather than con-

trolled each individual motor and watching the sensors to detect collisions.

3.3

a. State space: States are all possible city pairs(i, j). The map isnot the state space.
Successor function: The successors of(i, j) are all pairs(x, y) such thatAdjacent(x, i)

andAdjacent(y, j).
Goal: Be at(i, i) for somei.
Step cost function: The cost to go from(i, j) to (x, y) ismax(d(i, x), d(j, y)).

b. In the best case, the friends head straight for each other insteps of equal size, reducing
their separation by twice the time cost on each step. Hence (iii) is admissible.

c. Yes: e.g., a map with two nodes connected by one link. The twofriends will swap
places forever. The same will happen on any chain if they start an odd number of steps
apart. (One can see this best on the graph that represents thestate space, which has two
disjoint sets of nodes.) The same even holds for a grid of any size or shape, because
every move changes the Manhattan distance between the two friends by 0 or 2.

d. Yes: take any of the unsolvable maps from part (c) and add a self-loop to any one of
the nodes. If the friends start an odd number of steps apart, amove in which one of the
friends takes the self-loop changes the distance by 1, rendering the problem solvable. If
the self-loop is not taken, the argument from (c) applies andno solution is possible.

3.4 From http://www.cut-the-knot.com/pythagoras/fifteen.shtml, this proof applies to the
fifteen puzzle, but the same argument works for the eight puzzle:

Definition: The goal state has the numbers in a certain order, which we will measure as
starting at the upper left corner, then proceeding left to right, and when we reach the end of a
row, going down to the leftmost square in the row below. For any other configuration besides
the goal, whenever a tile with a greater number on it precedesa tile with a smaller number,
the two tiles are said to beinverted.

Proposition: For a given puzzle configuration, letN denote the sum of the total number
of inversions and the row number of the empty square. Then(Nmod2) is invariant under any
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legal move. In other words, after a legal move an oddN remains odd whereas an evenN
remains even. Therefore the goal state in Figure 3.4, with noinversions and empty square in
the first row, hasN = 1, and can only be reached from starting states with oddN , not from
starting states with evenN .

Proof: First of all, sliding a tile horizontally changes neither the total number of in-
versions nor the row number of the empty square. Therefore let us consider sliding a tile
vertically.

Let’s assume, for example, that the tileA is located directly over the empty square.
Sliding it down changes the parity of the row number of the empty square. Now consider the
total number of inversions. The move only affects relative positions of tilesA, B, C, andD.
If none of theB,C,D caused an inversion relative toA (i.e., all three are larger thanA) then
after sliding one gets three (an odd number) of additional inversions. If one of the three is
smaller thanA, then before the moveB, C, andD contributed a single inversion (relative to
A) whereas after the move they’ll be contributing two inversions - a change of 1, also an odd
number. Two additional cases obviously lead to the same result. Thus the change in the sum
N is always even. This is precisely what we have set out to show.

So before we solve a puzzle, we should compute theN value of the start and goal state
and make sure they have the same parity, otherwise no solution is possible.

3.5 The formulation puts one queen per column, with a new queen placed only in a square
that is not attacked by any other queen. To simplify matters,we’ll first consider then–rooks
problem. The first rook can be placed in any square in column 1 (n choices), the second in
any square in column 2 except the same row that as the rook in column 1 (n−1 choices), and
so on. This givesn! elements of the search space.

Forn queens, notice that a queen attacks at most three squares in any given column, so
in column 2 there are at least(n − 3) choices, in column at least(n − 6) choices, and so on.
Thus the state space sizeS ≥ n · (n− 3) · (n− 6) · · ·. Hence we have

S3 ≥ n · n · n · (n− 3) · (n− 3) · (n− 3) · (n− 6) · (n− 6) · (n− 6) · · · ·
≥ n · (n− 1) · (n− 2) · (n− 3) · (n− 4) · (n− 5) · (n− 6) · (n− 7) · (n− 8) · · · ·
= n!

or S ≥ 3
√
n!.

3.6

a. Initial state: No regions colored.
Goal test: All regions colored, and no two adjacent regions have the same color.
Successor function: Assign a color to a region.
Cost function: Number of assignments.

b. Initial state: As described in the text.
Goal test: Monkey has bananas.
Successor function: Hop on crate; Hop off crate; Push crate from one spot to another;
Walk from one spot to another; grab bananas (if standing on crate).
Cost function: Number of actions.
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c. Initial state: considering all input records.
Goal test: considering a single record, and it gives “illegal input” message.
Successor function: run again on the first half of the records; run again on the second
half of the records.
Cost function: Number of runs.
Note: This is acontingency problem; you need to see whether a run gives an error
message or not to decide what to do next.

d. Initial state: jugs have values[0, 0, 0].
Successor function: given values[x, y, z], generate[12, y, z], [x, 8, z], [x, y, 3] (by fill-
ing); [0, y, z], [x, 0, z], [x, y, 0] (by emptying); or for any two jugs with current values
x andy, poury into x; this changes the jug withx to the minimum ofx + y and the
capacity of the jug, and decrements the jug withy by by the amount gained by the first
jug.
Cost function: Number of actions.

3.7

a. If we consider all(x, y) points, then there are an infinite number of states, and of paths.

b. (For this problem, we consider the start and goal points to be vertices.) The shortest
distance between two points is a straight line, and if it is not possible to travel in a
straight line because some obstacle is in the way, then the next shortest distance is a
sequence of line segments, end-to-end, that deviate from the straight line by as little
as possible. So the first segment of this sequence must go fromthe start point to a
tangent point on an obstacle – any path that gave the obstaclea wider girth would be
longer. Because the obstacles are polygonal, the tangent points must be at vertices of
the obstacles, and hence the entire path must go from vertex to vertex. So now the state
space is the set of vertices, of which there are 35 in Figure 3.31.

c. Code not shown.

d. Implementations and analysis not shown.

3.8

a. Any path, no matter how bad it appears, might lead to an arbitrarily large reward (nega-
tive cost). Therefore, one would need to exhaust all possible paths to be sure of finding
the best one.

b. Suppose the greatest possible reward isc. Then if we also know the maximum depth of
the state space (e.g. when the state space is a tree), then anypath withd levels remaining
can be improved by at mostcd, so any paths worse thancd less than the best path can be
pruned. For state spaces with loops, this guarantee doesn’thelp, because it is possible
to go around a loop any number of times, picking upc reward each time.

c. The agent should plan to go around this loop forever (unlessit can find another loop
with even better reward).

d. The value of a scenic loop is lessened each time one revisitsit; a novel scenic sight
is a great reward, but seeing the same one for the tenth time inan hour is tedious, not
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rewarding. To accommodate this, we would have to expand the state space to include
a memory—a state is now represented not just by the current location, but by a current
location and a bag of already-visited locations. The rewardfor visiting a new location
is now a (diminishing) function of the number of times it has been seen before.

e. Real domains with looping behavior include eating junk food and going to class.

3.9

a. Here is one possible representation: A state is a six-tupleof integers listing the number
of missionaries, cannibals, and boats on the first side, and then the second side of the
river. The goal is a state with 3 missionaries and 3 cannibalson the second side. The
cost function is one per action, and the successors of a stateare all the states that move
1 or 2 people and 1 boat from one side to another.

b. The search space is small, so any optimal algorithm works. For an example, see the
file "search/domains/cannibals.lisp" . It suffices to eliminate moves that
circle back to the state just visited. From all but the first and last states, there is only
one other choice.

c. It is not obvious that almost all moves are either illegal orrevert to the previous state.
There is a feeling of a large branching factor, and no clear way to proceed.

3.10 A state is a situation that an agent can find itself in. We distinguishtwo types of states:
world states (the actual concrete situations in the real world) and representational states (the
abstract descriptions of the real world that are used by the agent in deliberating about what to
do).

A state spaceis a graph whose nodes are the set of all states, and whose links are
actions that transform one state into another.

A search treeis a tree (a graph with no undirected loops) in which the root node is the
start state and the set of children for each node consists of the states reachable by taking any
action.

A search nodeis a node in the search tree.
A goal is a state that the agent is trying to reach.
An action is something that the agent can choose to do.
A successor functiondescribed the agent’s options: given a state, it returns a set of

(action, state) pairs, where each state is the state reachable by taking the action.
Thebranching factor in a search tree is the number of actions available to the agent.

3.11 A world state is how reality is or could be. In one world state we’re in Arad, in another
we’re in Bucharest. The world state also includes which street we’re on, what’s currently on
the radio, and the price of tea in China. A state description is an agent’s internal descrip-
tion of a world state. Examples areIn(Arad) andIn(Bucharest). These descriptions are
necessarily approximate, recording only some aspect of thestate.

We need to distinguish between world states and state descriptions because state de-
scription are lossy abstractions of the world state, because the agent could be mistaken about
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how the world is, because the agent might want to imagine things that aren’t true but it could
make true, and because the agent cares about the world not itsinternal representation of it.

Search nodes are generated during search, representing a state the search process knows
how to reach. They contain additional information aside from the state description, such as
the sequence of actions used to reach this state. This distinction is useful because we may
generate different search nodes which have the same state, and because search nodes contain
more information than a state representation.

3.12 The state space is a tree of depth one, with all states successors of the initial state.
There is no distinction between depth-first search and breadth-first search on such a tree. If
the sequence length is unbounded the root node will have infinitely many successors, so only
algorithms which test for goal nodes as we generate successors can work.

What happens next depends on how the composite actions are sorted. If there is no
particular ordering, then a random but systematic search ofpotential solutions occurs. If they
are sorted by dictionary order, then this implements depth-first search. If they are sorted by
length first, then dictionary ordering, this implements breadth-first search.

A significant disadvantage of collapsing the search space like this is if we discover that
a plan starting with the action “unplug your battery” can’t be a solution, there is no easy way
to ignore all other composite actions that start with this action. This is a problem in particular
for informed search algorithms.

Discarding sequence structure is not a particularly practical approach to search.

3.13
The graph separation property states that “every path from the initial state to an unex-

plored state has to pass through a state in the frontier.”
At the start of the search, the frontier holds the initial state; hence, trivially, every path

from the initial state to an unexplored state includes a nodein the frontier (the initial state
itself).

Now, we assume that the property holds at the beginning of an arbitrary iteration of
the GRAPH-SEARCH algorithm in Figure 3.7. We assume that the iteration completes, i.e.,
the frontier is not empty and the selected leaf noden is not a goal state. At the end of the
iteration,n has been removed from the frontier and its successors (if notalready explored or in
the frontier) placed in the frontier. Consider any path fromthe initial state to an unexplored
state; by the induction hypothesis such a path (at the beginning of the iteration) includes
at least one frontier node; except whenn is the only such node, the separation property
automatically holds. Hence, we focus on paths passing through n (and no other frontier
node). By definition, the next noden′ along the path fromn must be a successor ofn that
(by the preceding sentence) is already not in the frontier. Furthermore,n′ cannot be in the
explored set, since by assumption there is a path fromn′ to an unexplored node not passing
through the frontier, which would violate the separation property as every explored node is
connected to the initial state by explored nodes (see lemma below for proof this is always
possible). Hence,n′ is not in the explored set, hence it will be added to the frontier; then the
path will include a frontier node and the separation property is restored.

The property is violated by algorithms that move nodes from the frontier into the ex-
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plored set before all of their successors have been generated, as well as by those that fail to
add some of the successors to the frontier. Note that it is notnecessary to generateall suc-
cessors of a node at once before expanding another node, as long as partially expanded nodes
remain in the frontier.

Lemma: Every explored node is connected to the initial stateby a path of explored
nodes.

Proof: This is true initially, since the initial state is connected to itself. Since we never
remove nodes from the explored region, we only need to check new nodes we add to the
explored list on an expansion. Letn be such a new explored node. This is previously on
the frontier, so it is a neighbor of a noden′ previously explored (i.e., its parent).n′ is, by
hypothesis is connected to the initial state by a path of explored nodes. This path withn
appended is a path of explored nodes connectingn′ to the initial state.

3.14

a. False: a lucky DFS might expand exactlyd nodes to reach the goal. A∗ largely domi-
nates any graph-search algorithm that isguaranteed to find optimal solutions.

b. True: h(n) = 0 is always an admissible heuristic, since costs are nonnegative.

c. True: A* search is often used in robotics; the space can be discretized or skeletonized.

d. True: depth of the solution matters for breadth-first search, notcost.

e. False: a rook can move across the board in move one, although the Manhattan distance
from start to finish is 8.

3.15

1

2 3

4 5 6 7

8 9 10 1211 13 14 15

Figure S3.1 The state space for the problem defined in Ex. 3.15.

a. See Figure S3.1.

b. Breadth-first: 1 2 3 4 5 6 7 8 9 10 11
Depth-limited: 1 2 4 8 9 5 10 11
Iterative deepening: 1; 1 2 3; 1 2 4 5 3 6 7; 1 2 4 8 9 5 10 11

c. Bidirectional search is very useful, because the only successor ofn in the reverse direc-
tion is ⌊(n/2)⌋. This helps focus the search. The branching factor is 2 in theforward
direction; 1 in the reverse direction.
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d. Yes; start at the goal, and apply the single reverse successor action until you reach 1.
e. The solution can be read off the binary numeral for the goal number. Write the goal

number in binary. Since we can only reach positive integers,this binary expansion
beings with a 1. From most- to least- significant bit, skipping the initial 1, go Left to
the node2n if this bit is 0 and go Right to node2n+ 1 if it is 1. For example, suppose
the goal is11, which is1011 in binary. The solution is therefore Left, Right, Right.

3.16

a. Initial state : one arbitrarily selected piece (say a straight piece).
Successor function: for any open peg, add any piece type from remaining types. (You
can add to open holes as well, but that isn’t necessary as all complete tracks can be
made by adding to pegs.) For a curved piece, addin either orientation; for a fork, add
in either orientationand (if there are two holes) connectingat either hole. It’s a good
idea to disallow any overlapping configuration, as this terminates hopeless configura-
tions early. (Note: there is no need to consider open holes, because in any solution these
will be filled by pieces added to open pegs.)
Goal test: all pieces used in a single connected track, no open pegs or holes, no over-
lapping tracks.
Step cost: one per piece (actually, doesn’t really matter).

b. All solutions are at the same depth, so depth-first search would be appropriate. (One
could also use depth-limited search with limitn−1, but strictly speaking it’s not neces-
sary to do the work of checking the limit because states at depth n− 1 have no succes-
sors.) The space is very large, so uniform-cost and breadth-first would fail, and iterative
deepening simply does unnecessary extra work. There are many repeated states, so it
might be good to use a closed list.

c. A solution has no open pegs or holes, so every peg is in a hole,so there must be equal
numbers of pegs and holes. Removing a fork violates this property. There are two other
“proofs” that are acceptable: 1) a similar argument to the effect that there must be an
even number of “ends”; 2) each fork creates two tracks, and only a fork can rejoin those
tracks into one, so if a fork is missing it won’t work. The argument using pegs and holes
is actually more general, because it also applies to the caseof a three-way fork that has
one hole and three pegs or one peg and three holes. The “ends” argument fails here, as
does the fork/rejoin argument (which is a bit handwavy anyway).

d. The maximum possible number of open pegs is 3 (starts at 1, adding a two-peg fork
increases it by one). Pretending each piece is unique, any piece can be added to a peg,
giving at most12 + (2 · 16) + (2 · 2) + (2 · 2 · 2) = 56 choices per peg. The total
depth is 32 (there are 32 pieces), so an upper bound is16832/(12! · 16! · 2! · 2!) where
the factorials deal with permutations of identical pieces.One could do a more refined
analysis to handle the fact that the branching factor shrinks as we go down the tree, but
it is not pretty.

3.17 a. The algorithm expands nodes in order of increasing path cost; therefore the first
goal it encounters will be the goal with the cheapest cost.
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b. It will be the same as iterative deepening,d iterations, in whichO(bd) nodes are
generated.

c. d/ǫ
d. Implementation not shown.

3.18 Consider a domain in which every state has a single successor, and there is a single goal
at depthn. Then depth-first search will find the goal inn steps, whereas iterative deepening
search will take1 + 2 + 3 + · · ·+ n = O(n2) steps.

3.19 As an ordinary person (or agent) browsing the web, we can onlygenerate the suc-
cessors of a page by visiting it. We can then do breadth-first search, or perhaps best-search
search where the heuristic is some function of the number of words in common between the
start and goal pages; this may help keep the links on target. Search engines keep the complete
graph of the web, and may provide the user access to all (or at least some) of the pages that
link to a page; this would allow us to do bidirectional search.

3.20 Code not shown, but a good start is in the code repository. Clearly, graph search
must be used—this is a classic grid world with many alternatepaths to each state. Students
will quickly find that computing the optimal solution sequence is prohibitively expensive for
moderately large worlds, because the state space for ann×n world hasn2 · 2n states. The
completion time of the random agent grows less than exponentially in n, so for any reasonable
exchange rate between search cost ad path cost the random agent will eventually win.

3.21

a. When all step costs are equal,g(n) ∝ depth(n), so uniform-cost search reproduces
breadth-first search.

b. Breadth-first search is best-first search withf(n) = depth(n); depth-first search is
best-first search withf(n) = −depth(n); uniform-cost search is best-first search with
f(n) = g(n).

c. Uniform-cost search is A∗ search withh(n) = 0.

3.22 The student should find that on the 8-puzzle, RBFS expands more nodes (because
it does not detect repeated states) but has lower cost per node because it does not need to
maintain a queue. The number of RBFS node re-expansions is not too high because the
presence of many tied values means that the best path changesseldom. When the heuristic is
slightly perturbed, this advantage disappears and RBFS’s performance is much worse.

For TSP, the state space is a tree, so repeated states are not an issue. On the other hand,
the heuristic is real-valued and there are essentially no tied values, so RBFS incurs a heavy
penalty for frequent re-expansions.

3.23 The sequence of queues is as follows:
L[0+244=244]

M[70+241=311], T[111+329=440]

L[140+244=384], D[145+242=387], T[111+329=440]

D[145+242=387], T[111+329=440], M[210+241=451], T[251+329=580]
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C[265+160=425], T[111+329=440], M[210+241=451], M[220+241=461], T[251+329=580]

T[111+329=440], M[210+241=451], M[220+241=461], P[403+100=503], T[251+329=580], R[411+193=604],

D[385+242=627]

M[210+241=451], M[220+241=461], L[222+244=466], P[403+100=503], T[251+329=580], A[229+366=595],

R[411+193=604], D[385+242=627]

M[220+241=461], L[222+244=466], P[403+100=503], L[280+244=524], D[285+242=527], T[251+329=580],

A[229+366=595], R[411+193=604], D[385+242=627]

L[222+244=466], P[403+100=503], L[280+244=524], D[285+242=527], L[290+244=534], D[295+242=537],

T[251+329=580], A[229+366=595], R[411+193=604], D[385+242=627]

P[403+100=503], L[280+244=524], D[285+242=527], M[292+241=533], L[290+244=534], D[295+242=537],

T[251+329=580], A[229+366=595], R[411+193=604], D[385+242=627], T[333+329=662]

B[504+0=504], L[280+244=524], D[285+242=527], M[292+241=533], L[290+244=534], D[295+242=537], T[251+329=580],

A[229+366=595], R[411+193=604], D[385+242=627], T[333+329=662], R[500+193=693], C[541+160=701]

S
A

G

B

h=7

h=5

h=1 h=02 1

4

4

Figure S3.2 A graph with an inconsistent heuristic on which GRAPH-SEARCH fails to
return the optimal solution. The successors ofS areA with f = 5 andB with f =7. A is
expanded first, so the path viaB will be discarded becauseA will already be in the closed
list.

3.24 See Figure S3.2.

3.25 It is complete whenever0 ≤ w < 2. w = 0 givesf(n) = 2g(n). This behaves exactly
like uniform-cost search—the factor of two makes no difference in theorderingof the nodes.
w = 1 gives A∗ search.w = 2 givesf(n) = 2h(n), i.e., greedy best-first search. We also
have

f(n) = (2− w)[g(n) +
w

2− wh(n)]

which behaves exactly like A∗ search with a heuristic w
2−wh(n). Forw ≤ 1, this is always

less thanh(n) and hence admissible, providedh(n) is itself admissible.

3.26

a. The branching factor is 4 (number of neighbors of each location).

b. The states at depthk form a square rotated at 45 degrees to the grid. Obviously there
are a linear number of states along the boundary of the square, so the answer is4k.
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c. Without repeated state checking, BFS expends exponentially many nodes: counting
precisely, we get((4x+y+1 − 1)/3) − 1.

d. There are quadratically many states within the square for depthx+ y, so the answer is
2(x+ y)(x+ y + 1)− 1.

e. True; this is the Manhattan distance metric.

f. False; all nodes in the rectangle defined by(0, 0) and (x, y) are candidates for the
optimal path, and there are quadratically many of them, all of which may be expended
in the worst case.

g. True; removing links may induce detours, which require more steps, soh is an under-
estimate.

h. False; nonlocal links can reduce the actual path length below the Manhattan distance.

3.27

a. n2n. There aren vehicles inn2 locations, so roughly (ignoring the one-per-square
constraint)(n2)n = n2n states.

b. 5n.

c. Manhattan distance, i.e.,|(n− i+ 1)− xi|+ |n− yi|. This is exact for a lone vehicle.

d. Only (iii) min{h1, . . . , hn}. The explanation is nontrivial as it requires two observa-
tions. First, let thework W in a given solution be the totaldistancemoved by all
vehicles over their joint trajectories; that is, for each vehicle, add the lengths of all the
steps taken. We haveW ≥∑i hi ≥≥ n ·min{h1, ..., hn}. Second, the total work we
can get done per step is≤ n. (Note that for every car that jumps 2, another car has to
stay put (move 0), so the total work per step is bounded byn.) Hence, completing all
the work requires at leastn ·min{h1, ..., hn}/n = min{h1, ..., hn} steps.

3.28 The heuristich = h1 +h2 (adding misplaced tiles and Manhattan distance) sometimes
overestimates. Now, supposeh(n) ≤ h∗(n) + c (as given) and letG2 be a goal that is
suboptimal by more thanc, i.e.,g(G2) > C∗ + c. Now consider any noden on a path to an
optimal goal. We have

f(n) = g(n) + h(n)

≤ g(n) + h∗(n) + c

≤ C∗ + c

≤ g(G2)

soG2 will never be expanded before an optimal goal is expanded.

3.29 A heuristic is consistent iff, for every noden and every successorn′ of n generated by
any actiona,

h(n) ≤ c(n, a, n′) + h(n′)

One simple proof is by induction on the numberk of nodes on the shortest path to any goal
from n. For k = 1, let n′ be the goal node; thenh(n) ≤ c(n, a, n′). For the inductive
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case, assumen′ is on the shortest pathk steps from the goal and thath(n′) is admissible by
hypothesis; then

h(n) ≤ c(n, a, n′) + h(n′) ≤ c(n, a, n′) + h∗(n′) = h∗(n)

soh(n) atk + 1 steps from the goal is also admissible.

3.30 This exercise reiterates a small portion of the classic workof Held and Karp (1970).

a. The TSP problem is to find a minimal (total length) path through the cities that forms
a closed loop. MST is a relaxed version of that because it asksfor a minimal (total
length) graph that need not be a closed loop—it can be any fully-connected graph. As
a heuristic, MST is admissible—it is always shorter than or equal to a closed loop.

b. The straight-line distance back to the start city is a rather weak heuristic—it vastly
underestimates when there are many cities. In the later stage of a search when there are
only a few cities left it is not so bad. To say that MST dominates straight-line distance
is to say that MST always gives a higher value. This is obviously true because a MST
that includes the goal node and the current node must either be the straight line between
them, or it must include two or more lines that add up to more. (This all assumes the
triangle inequality.)

c. See"search/domains/tsp.lisp" for a start at this. The file includes a heuristic
based on connecting each unvisited city to its nearest neighbor, a close relative to the
MST approach.

d. See (Cormenet al., 1990, p.505) for an algorithm that runs inO(E logE) time, where
E is the number of edges. The code repository currently contains a somewhat less
efficient algorithm.

3.31 The misplaced-tiles heuristic is exact for the problem where a tile can move from
square A to square B. As this is a relaxation of the condition that a tile can move from
square A to square B if B is blank, Gaschnig’s heuristic cannot be less than the misplaced-
tiles heuristic. As it is also admissible (being exact for a relaxation of the original problem),
Gaschnig’s heuristic is therefore more accurate.

If we permute two adjacent tiles in the goal state, we have a state where misplaced-tiles
and Manhattan both return 2, but Gaschnig’s heuristic returns 3.

To compute Gaschnig’s heuristic, repeat the following until the goal state is reached:
let B be the current location of the blank; if B is occupied by tile X (not the blank) in the
goal state, move X to B; otherwise, move any misplaced tile toB. Students could be asked to
prove that this is the optimal solution to the relaxed problem.

3.32 Students should provide results in the form of graphs and/ortables showing both run-
time and number of nodes generated. (Different heuristics have different computation costs.)
Runtimes may be very small for 8-puzzles, so you may want to assign the 15-puzzle or 24-
puzzle instead. The use of pattern databases is also worth exploring experimentally.



Solutions for Chapter 4
Beyond Classical Search

4.1

a. Local beam search withk = 1 is hill-climbing search.
b. Local beam search with one initial state and no limit on the number of states retained,

resembles breadth-first search in that it adds one complete layer of nodes before adding
the next layer. Starting from one state, the algorithm wouldbe essentially identical to
breadth-first search except that each layer is generated allat once.

c. Simulated annealing withT = 0 at all times: ignoring the fact that the termination step
would be triggered immediately, the search would be identical to first-choice hill climb-
ing because every downward successor would be rejected withprobability 1. (Exercise
may be modified in future printings.)

d. Simulated annealing withT = ∞ at all times is a random-walk search: it always
accepts a new state.

e. Genetic algorithm with population sizeN = 1: if the population size is 1, then the
two selected parents will be the same individual; crossoveryields an exact copy of the
individual; then there is a small chance of mutation. Thus, the algorithm executes a
random walk in the space of individuals.

4.2 Despite its humble origins, this question raises many of thesame issues as the scientifi-
cally important problem of protein design. There is a discrete assembly space in which pieces
are chosen to be added to the track and a continuous configuration space determined by the
“joint angles” at every place where two pieces are linked. Thus we can define a state as a set of
oriented, linked pieces and the associated joint angles in the range[−10, 10], plus a set of un-
linked pieces. The linkage and joint angles exactly determine the physical layout of the track;
we can allow for (and penalize) layouts in which tracks lie ontop of one another, or we can
disallow them. The evaluation function would include termsfor how many pieces are used,
how many loose ends there are, and (if allowed) the degree of overlap. We might include a
penalty for the amount of deviation from 0-degree joint angles. (We could also include terms
for “interestingness” and “traversability”—for example,it is nice to be able to drive a train
starting from any track segment to any other, ending up in either direction without having to
lift up the train.) The tricky part is the set of allowed moves. Obviously we can unlink any
piece or link an unlinked piece to an open peg with either orientation at any allowed angle
(possibly excluding moves that create overlap). More problematic are moves to join a peg

28
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and hole on already-linked pieces and moves to change the angle of a joint. Changing one
angle may force changes in others, and the changes will vary depending on whether the other
pieces are at their joint-angle limit. In general there willbe no unique “minimal” solution for
a given angle change in terms of the consequent changes to other angles, and some changes
may be impossible.

4.3 Here is one simple hill-climbing algorithm:

• Connect all the cities into an arbitrary path.

• Pick two points along the path at random.

• Split the path at those points, producing three pieces.

• Try all six possible ways to connect the three pieces.

• Keep the best one, and reconnect the path accordingly.

• Iterate the steps above until no improvement is observed for a while.

4.4 Code not shown.

4.5 See Figure S4.1 for the adapted algorithm. For states that OR-SEARCH finds a solution
for it records the solution found. If it later visits that state again it immediately returns that
solution.

When OR-SEARCH fails to find a solution it has to be careful. Whether a state can be
solved depends on the path taken to that solution, as we do notallow cycles. So on failure
OR-SEARCH records the value ofpath . If a state is which has previously failed whenpath

contained any subset of its present value, OR-SEARCH returns failure.
To avoid repeating sub-solutions we can label all new solutions found, record these

labels, then return the label if these states are visited again. Post-processing can prune off
unused labels. Alternatively, we can output a direct acyclic graph structure rather than a tree.

See (Bertoliet al., 2001) for further details.

4.6
The question statement describes the required changes in detail, see Figure S4.2 for the

modified algorithm. When OR-SEARCH cycles back to a state onpath it returns a tokenloop
which means to loop back to the most recent time this state wasreached along the path to
it. Sincepath is implicitly stored in the returned plan, there is sufficient information for later
processing, or a modified implementation, to replace these with labels.

The plan representation is implicitly augmented to keep track of whether the plan is
cyclic (i.e., contains aloop) so that OR-SEARCH can prefer acyclic solutions.

AND-SEARCH returns failure if all branches lead directly to aloop, as in this case the
plan will always loop forever. This is the only case it needs to check as if all branches in a
finite plan loop there must be some And-node whose children all immediately loop.

4.7 A sequence of actions is a solution to a belief state problem if it takes every initial
physical state to a goal state. We can relax this problem by requiring it take onlysomeinitial
physical state to a goal state. To make this well defined, we’ll require that it finds a solution
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function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure

OR-SEARCH(problem .INITIAL -STATE,problem , [ ])

function OR-SEARCH(state,problem ,path) returns a conditional plan, or failure

if problem .GOAL-TEST(state) then return the empty plan
if state has previously been solvedthen return RECALL-SUCCESS(state)
if state has previously failed for a subset ofpath then return failure

if state is onpath then
RECORD-FAILURE(state, path)
return failure

for eachaction in problem .ACTIONS(state) do
plan←AND-SEARCH(RESULTS(state,action),problem , [state | path])
if plan 6= failure then

RECORD-SUCCESS(state, [action | plan ])
return [action | plan ]

return failure

function AND-SEARCH(states,problem ,path) returns a conditional plan, or failure

for each si in states do
plan i←OR-SEARCH(si,problem ,path)
if plan i = failure then return failure

return [if s1 then plan1 else ifs2 then plan2 else . . . if sn−1 then plann−1 elseplann]

Figure S4.1 AND-OR search with repeated state checking.

for the physical state with the most costly solution. Ifh∗(s) is the optimal cost of solution
starting from the physical states, then

h(S) = max
s∈S

h∗(s)

is the heuristic estimate given by this relaxed problem. This heuristic assumes any solution
to the most difficult state the agent things possible will solve all states.

On the sensorless vacuum cleaner problem in Figure 4.14,h correctly determines the
optimal cost for all states except the central three states (those reached by[suck], [suck, left]
and [suck, right]) and the root, for whichh estimates to be 1 unit cheaper than they really
are. This means A∗ will expand these three central nodes, before marching towards the
solution.

4.8

a. An action sequence is a solution for belief stateb if performing it starting in any state
s ∈ b reaches a goal state. Since any state in a subset ofb is in b, the result is immediate.

Any action sequence which isnot a solution for belief stateb is also not a solution
for any superset; this is the contrapositive of what we’ve just proved. One cannot, in
general, say anything about arbitrary supersets, as the action sequence need not lead to
a goal on the states outside ofb. One can say, for example, that if an action sequence
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function AND-OR-GRAPH-SEARCH(problem) returns a conditional plan, or failure

OR-SEARCH(problem .INITIAL -STATE,problem , [ ])

function OR-SEARCH(state,problem ,path) returns a conditional plan, or failure

if problem .GOAL-TEST(state) then return the empty plan
if state is onpath then return loop

cyclic − plan←None

for eachaction in problem .ACTIONS(state) do
plan←AND-SEARCH(RESULTS(state,action),problem , [state | path])
if plan 6= failure then

if plan is acyclicthen return [action | plan ]
cyclic − plan← [action | plan ]

if cyclic − plan 6= None then return cyclic − plan

return failure

function AND-SEARCH(states,problem ,path) returns a conditional plan, or failure

loopy←True

for each si in states do
plan i←OR-SEARCH(si,problem ,path)
if plan i = failure then return failure

if plan i 6= loop then loopy←False

if not loopy then
return [if s1 then plan1 else ifs2 thenplan2 else . . . if sn−1 thenplann−1 elseplann]

return failure

Figure S4.2 AND-OR search with repeated state checking.

solves a belief stateb and a belief stateb′ then it solves the union belief stateb ∪ b′.
b. On expansion of a node, do not add to the frontier any child belief state which is a

superset of a previously explored belief state.
c. If you keep a record of previously solved belief states, adda check to the start of OR-

search to check whether the belief state passed in is a subsetof a previously solved
belief state, returning the previous solution in case it is.

4.9
Consider a very simple example: an initial belief state{S1, S2}, actionsa andb both

leading to goal stateG from either initial state, and

c(S1, a,G) = 3 ; c(S2, a,G) = 5 ;
c(S1, b,G) = 2 ; c(S2, b,G) = 6 .

In this case, the solution[a] costs 3 or 5, the solution[b] costs 2 or 6. Neither is “optimal” in
any obvious sense.

In some cases, therewill be an optimal solution. Let us consider just the deterministic
case. For this case, we can think of the cost of a plan as a mapping from each initial phys-
ical state to the actual cost of executing the plan. In the example above, the cost for[a] is
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{S1:3, S2:5} and the cost for[b] is {S1:2, S2:6}. We can say that planp1 weakly dominates
p2 if, for each initial state, the cost forp1 is no higher than the cost forp2. (Moreover,p1

dominatesp2 if it weakly dominates itandhas a lower cost for some state.) If a planpweakly
dominates all others, it is optimal. Notice that this definition reduces to ordinary optimality in
the observable case where every belief state is a singleton.As the preceding example shows,
however, a problem may have no optimal solution in this sense. A perhaps acceptable version
of A∗ would be one that returns any solution that is not dominated by another.

To understand whether it is possible to apply A∗ at all, it helps to understand its depen-
dence on Bellman’s (1957)principle of optimality : An optimal policy has the property thatPRINCIPLE OF

OPTIMALITY

whatever the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision. It is important to
understand that this is a restriction on performance measures designed to facilitate efficient
algorithms, not a general definition of what it means to be optimal.

In particular, if we define the cost of a plan in belief-state space as the minimum cost
of any physical realization, we violate Bellman’s principle. Modifying and extending the
previous example, suppose thata andb reachS3 from S1 andS4 from S2, and then reachG
from there:

c(S1, a, S3) = 6 ; c(S2, a, S4) = 2 ;
c(S1, b, S3) = 6 ; c(S2, b, S4) = 1 .c(S3, a,G) = 2 ; c(S4, a,G) = 2 ;
c(S3, b,G) = 1 ; c(S4, b,G) = 9 .

In the belief state{S3, S4}, the minimum cost of[a] is min{2, 2}= 2 and the minimum cost
of [b] is min{1, 9}= 1, so the optimal plan is[b]. In the initial belief state{S1, S2}, the four
possible plans have the following costs:

[a, a] : min{8, 4} = 4 ; [a, b] : min{7, 11} = 7 ; [b, a] : min{8, 3} = 3 ; [b, b] : min{7, 10} = 7 .

Hence, the optimal plan in{S1, S2} is [b, a], which doesnotchooseb in {S3, S4} even though
that is the optimal plan at that point. This counterintuitive behavior is a direct consequence
of choosing the minimum of the possible path costs as the performance measure.

This example gives just a small taste of what might happen with nonadditive perfor-
mance measures. Details of how to modify and analyze A∗ for general path-dependent cost
functions are give by Dechter and Pearl (1985). Many aspectsof A∗ carry over; for example,
we can still derive lower bounds on the cost of a path through agiven node. For a belief state
b, the minimum value ofg(s) + h(s) for each states in b is a lower bound on the minimum
cost of a plan that goes throughb.

4.10 The belief state space is shown in Figure S4.3. No solution ispossible because no path
leads to a belief state all of whose elements satisfy the goal. If the problem is fully observable,
the agent reaches a goal state by executing a sequence such thatSuck is performed only in a
dirty square. This ensures deterministic behavior and every state is obviously solvable.

4.11
The student needs to make several design choices in answering this question. First,

how will the vertices of objects be represented? The problemstates the percept is a list of
vertex positions, but that is not precise enough. Here is onegood choice: The agent has an
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Figure S4.3 The belief state space for the sensorless vacuum world underMurphy’s law.

orientation (a heading in degrees). The visible vertexes are listed in clockwise order, starting
straight ahead of the agent. Each vertex has a relative angle(0 to 360 degrees) and a distance.
We also want to know if a vertex represents the left edge of an obstacle, the right edge, or an
interior point. We can use the symbols L, R, or I to indicate this.

The student will need to do some basic computational geometry calculations: intersec-
tion of a path and a set of line segments to see if the agent willbump into an obstacle, and
visibility calculations to determine the percept. There are efficient algorithms for doing this
on a set of line segments, but don’t worry about efficiency; anexhaustive algorithm is ok. If
this seems too much, the instructor can provide an environment simulator and ask the student
only to program the agent.

To answer (c), the student will need some exchange rate for trading off search time with
movement time. It is probably too complex to make the simulation asynchronous real-time;
easier to impose a penalty in points for computation.

For (d), the agent will need to maintain a set of possible positions. Each time the agent
moves, it may be able to eliminate some of the possibilities.The agent may consider moves
that serve to reduce uncertainty rather than just get to the goal.

4.12 This question is slightly ambiguous as to what the percept is—either the percept is just
the location, or it gives exactly the set of unblocked directions (i.e., blocked directions are
illegal actions). We will assume the latter. (Exercise may be modified in future printings.)
There are 12 possible locations for internal walls, so thereare212 = 4096 possible environ-
ment configurations. A belief state designates asubsetof these as possible configurations;
for example, before seeing any percepts all 4096 configurations are possible—this is a single
belief state.

a. Online search is equivalent to offline search in belief-state space where each action
in a belief-state can have multiple successor belief-states: one for each percept the
agent could observe after the action. A successor belief-state is constructed by taking
the previous belief-state, itself a set of states, replacing each state in this belief-state
by the successor state under the action, and removing all successor states which are
inconsistent with the percept. This is exactly the construction in Section 4.4.2. AND-OR

search can be used to solve this search problem. The initial belief state has210= 1024
states in it, as we know whether two edges have walls or not (the upper and right edges
have no walls) but nothing more. There are2212

possible belief states, one for each set
of environment configurations.
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Figure S4.4 The3× 3 maze exploration problem: the initial state, first percept,and one
selected action with its perceptual outcomes.

We can view this as a contingency problem in belief state space. After each ac-
tion and percept, the agent learns whether or not an internalwall exists between the
current square and each neighboring square. Hence, each reachable belief state can be
represented exactly by a list of status values (present, absent, unknown) for each wall
separately. That is, the belief state is completely decomposable and there are exactly312

reachable belief states. The maximum number of possible wall-percepts in each state
is 16 (24), so each belief state has four actions, each with up to 16 nondeterministic
successors.

b. Assuming the external walls are known, there are two internal walls and hence22 =4
possible percepts.

c. The initial null action leads to four possible belief states, as shown in Figure S4.4. From
each belief state, the agent chooses a single action which can lead to up to 8 belief states
(on entering the middle square). Given the possibility of having to retrace its steps at
a dead end, the agent can explore the entire maze in no more than 18 steps, so the
complete plan (expressed as a tree) has no more than818 nodes. On the other hand,
there are just312 reachable belief states, so the plan could be expressed moreconcisely
as a table of actions indexed by belief state (apolicy in the terminology of Chapter 17).

4.13 Hillclimbing is surprisingly effective at finding reasonable if not optimal paths for very
little computational cost, and seldom fails in two dimensions.



35

Current
position

Goal

(a) (b)
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Figure S4.5 (a) Getting stuck with a convex obstacle. (b) Getting stuck with a nonconvex
obstacle.

a. It is possible (see Figure S4.5(a)) but very unlikely—the obstacle has to have an unusual
shape and be positioned correctly with respect to the goal.

b. With nonconvex obstacles, getting stuck is much more likely to be a problem (see Fig-
ure S4.5(b)).

c. Notice that this is just depth-limited search, where you choose a step along the best path
even if it is not a solution.

d. Setk to the maximum number of sides of any polygon and you can always escape.

e. LRTA* always makes a move, but may move back if the old state looks better than the
new state. But then the old state is penalized for the cost of the trip, so eventually the
local minimum fills up and the agent escapes.

4.14
Since we can observe successor states, we always know how to backtrack from to a

previous state. This means we can adapt iterative deepeningsearch to solve this problem.
The only difference is backtracking must be explicit, following the action which the agent
can see leads to the previous state.

The algorithm expands the following nodes:
Depth 1:(0, 0), (1, 0), (0, 0), (−1, 0), (0, 0)
Depth 2:(0, 1), (0, 0), (0,−1), (0, 0), (1, 0), (2, 0), (1, 0), (0, 0), (1, 0), (1, 1), (1, 0), (1,−1)



Solutions for Chapter 5
Adversarial Search

5.1 The translation uses the model of the opponentOM(s) to fill in the opponent’s actions,
leaving our actions to be determined by the search algorithm. LetP (s) be the state predicted
to occur after the opponent has made all their moves according toOM . Note that the op-
ponent may take multiple moves in a row before we get a move, sowe need to define this
recursively. We haveP (s) = s if PLAYERs is us or TERMINAL -TESTs is true, otherwise
P (s) = P (RESULT(s,OM(s)).

The search problem is then given by:

a. Initial state:P (S0) whereS0 is the initial game state. We applyP as the opponent may
play first

b. Actions: defined as in the game by ACTIONSs.

c. Successor function: RESULT′(s, a) = P (RESULT(s, a))

d. Goal test: goals are terminal states

e. Step cost: the cost of an action is zero unless the resultingstates′ is terminal, in which
case its cost isM − UTILITY (s′) whereM = maxs UTILITY (s). Notice that all costs
are non-negative.

Notice that the state space of the search problem consists ofgame state where we are to
play and terminal states. States where the opponent is to play have been compiled out. One
might alternatively leave those states in but just have a single possible action.

Any of the search algorithms of Chapter 3 can be applied. For example, depth-first
search can be used to solve this problem, if all games eventually end. This is equivalent to
using the minimax algorithm on the original game ifOM(s) always returns the minimax
move ins.

5.2

a. Initial state: two arbitrary 8-puzzle states. Successor function: one move on an unsolved
puzzle. (You could also have actions that change both puzzles at the same time; this is
OK but technically you have to say what happens when one is solved but not the other.)
Goal test: both puzzles in goal state. Path cost: 1 per move.

b. Each puzzle has9!/2 reachable states (remember that half the states are unreachable).
The joint state space has(9!)2/4 states.

c. This is like backgammon; expectiminimax works.
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Figure S5.1 Pursuit-evasion solution tree.

d. Actually the statement in the question is not true (it applies to a previous version of part
(c) in which the opponent is just trying to prevent you from winning—in that case, the
coin tosses will eventually allow you to solve one puzzle without interruptions). For the
game described in (c), consider a state in which the coin has come up heads, say, and
you get to work on a puzzle that is 2 steps from the goal. Shouldyou move one step
closer? If you do, your opponent wins if he tosses heads; or ifhe tosses tails, you toss
tails, and he tosses heads; or any sequence where both toss tails n times and then he
tosses heads. So his probability of winning isat least1/2+1/8+1/32+ · · · = 2/3. So
it seems you’re better off movingawayfrom the goal. (There’s no way to stay the same
distance from the goal.) This problem unintentionally seems to have the same kind of
solution as suicide tictactoe with passing.

5.3

a. See Figure S5.1; the values are just (minus) the number of steps along the path from the
root.

b. See Figure S5.1; note that there is both an upper bound and a lower bound for the left
child of the root.

c. See figure.

d. The shortest-path length between the two players is a lowerbound on the total capture
time (here the players take turns, so no need to divide by two), so the “?” leaves have a
capture time greater than or equal to the sum of the cost from the root and the shortest-
path length. Notice that this bound is derived when the Evader plays very badly. The
true value of a node comes from best play by both players, so wecan get better bounds
by assuming better play. For example, we can get a better bound from the cost when the
Evader simply moves backwards and forwards rather than moving towards the Pursuer.

e. See figure (we have used the simple bounds). Notice that oncethe right child is known
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to have a value below –6, the remaining successors need not beconsidered.
f. The pursuer always wins if the tree is finite. To prove this, let the tree be rooted as

the pursuer’s current node. (I.e., pick up the tree by that node and dangle all the other
branches down.) The evader must either be at the root, in which case the pursuer has
won, or in some subtree. The pursuer takes the branch leadingto that subtree. This
process repeats at mostd times, whered is the maximum depth of the original subtree,
until the pursuer either catches the evader or reaches a leafnode. Since the leaf has no
subtrees, the evader must be at that node.

5.4 The basic physical state of these games is fairly easy to describe. One important thing
to remember for Scrabble and bridge is that the physical state is not accessible to all players
and so cannot be provided directly to each player by the environment simulator. Particularly
in bridge, each player needs to maintain some best guess (or multiple hypotheses) as to the
actual state of the world. We expect to be putting some of the game implementations online
as they become available.

5.5 Code not shown.

5.6 The most obvious change is that the space of actions is now continuous. For example,
in pool, the cueing direction, angle of elevation, speed, and point of contact with the cue ball
are all continuous quantities.

The simplest solution is just to discretize the action spaceand then apply standard meth-
ods. This might work for tennis (modelled crudely as alternating shots with speed and direc-
tion), but for games such as pool and croquet it is likely to fail miserably because small
changes in direction have large effects on action outcome. Instead, one must analyze the
game to identify a discrete set of meaningful local goals, such as “potting the 4-ball” in pool
or “laying up for the next hoop” in croquet. Then, in the current context, a local optimization
routine can work out the best way to achieve each local goal, resulting in a discrete set of pos-
sible choices. Typically, these games are stochastic, so the backgammon model is appropriate
provided that we use sampled outcomes instead of summing over all outcomes.

Whereas pool and croquet are modelled correctly as turn-taking games, tennis is not.
While one player is moving to the ball, the other player is moving to anticipate the opponent’s
return. This makes tennis more like the simultaneous-action games studied in Chapter 17. In
particular, it may be reasonable to deriverandomizedstrategies so that the opponent cannot
anticipate where the ball will go.

5.7 Consider aMIN node whose children are terminal nodes. IfMIN plays suboptimally,
then the value of the node is greater than or equal to the valueit would have ifMIN played
optimally. Hence, the value of theMAX node that is theMIN node’s parent can only be
increased. This argument can be extended by a simple induction all the way to the root.If
the suboptimal play byMIN is predictable, then one can do better than a minimax strategy.
For example, ifMIN always falls for a certain kind of trap and loses, then setting the trap
guarantees a win even if there is actually a devastating response forMIN . This is shown in
Figure S5.2.

5.8
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Figure S5.3 The game tree for the four-square game in Exercise 5.8. Terminal states are
in single boxes, loop states in double boxes. Each state is annotated with its minimax value
in a circle.

a. (5) The game tree, complete with annotations of all minimaxvalues, is shown in Fig-
ure S5.3.

b. (5) The “?” values are handled by assuming that an agent witha choice between win-
ning the game and entering a “?” state will always choose the win. That is, min(–1,?)
is –1 and max(+1,?) is +1. If all successors are “?”, the backed-up value is “?”.

c. (5) Standard minimax is depth-first and would go into an infinite loop. It can be fixed
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by comparing the current state against the stack; and if the state is repeated, then return
a “?” value. Propagation of “?” values is handled as above. Although it works in this
case, it does notalwayswork because it is not clear how to compare “?” with a drawn
position; nor is it clear how to handle the comparison when there are wins of different
degrees (as in backgammon). Finally, in games with chance nodes, it is unclear how to
compute the average of a number and a “?”. Note that it isnot correct to treat repeated
states automatically as drawn positions; in this example, both (1,4) and (2,4) repeat in
the tree but they are won positions.

What is really happening is that each state has a well-definedbut initially unknown
value. These unknown values are related by the minimax equation at the bottom of
164. If the game tree is acyclic, then the minimax algorithm solves these equations by
propagating from the leaves. If the game tree has cycles, then a dynamic programming
method must be used, as explained in Chapter 17. (Exercise 17.7 studies this problem in
particular.) These algorithms can determine whether each node has a well-determined
value (as in this example) or is really an infinite loop in thatboth players prefer to stay
in the loop (or have no choice). In such a case, the rules of thegame will need to define
the value (otherwise the game will never end). In chess, for example, a state that occurs
3 times (and hence is assumed to be desirable for both players) is a draw.

d. This question is a little tricky. One approach is a proof by induction on the size of the
game. Clearly, the base casen=3 is a loss for A and the base casen=4 is a win for
A. For anyn > 4, the initial moves are the same: A and B both move one step towards
each other. Now, we can see that they are engaged in a subgame of sizen − 2 on the
squares[2, . . . , n − 1], exceptthat there is an extra choice of moves on squares2 and
n − 1. Ignoring this for a moment, it is clear that if the “n − 2” is won for A, then A
gets to the squaren − 1 before B gets to square2 (by the definition of winning) and
therefore gets ton before B gets to1, hence the “n” game is won for A. By the same
line of reasoning, if “n − 2” is won for B then “n” is won for B. Now, the presence of
the extra moves complicates the issue, but not too much. First, the player who is slated
to win the subgame[2, . . . , n − 1] never moves back to his home square. If the player
slated to lose the subgame does so, then it is easy to show thathe is bound to lose the
game itself—the other player simply moves forward and a subgame of sizen − 2k is
played one step closer to the loser’s home square.

5.9 Fora, there are at most 9! games. (This is the number of move sequences that fill up the
board, but many wins and losses end before the board is full.)Forb–e, Figure S5.4 shows the
game tree, with the evaluation function values below the terminal nodes and the backed-up
values to the right of the non-terminal nodes. The values imply that the best starting move for
X is to take the center. The terminal nodes with a bold outlineare the ones that do not need
to be evaluated, assuming the optimal ordering.

5.10

a. An upper bound on the number of terminal nodes isN !, one for each ordering of
squares, so an upper bound on the total number of nodes is

∑N
i=1 i!. This is not much
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Figure S5.4 Part of the game tree for tic-tac-toe, for Exercise 5.9.

bigger thanN ! itself as the factorial function grows superexponentially. This is an
overestimate because some games will end early when a winning position is filled.

This count doesn’t take into account transpositions. An upper bound on the number
of distinct game states is3N , as each square is either empty or filled by one of the two
players. Note that we can determine who is to play just from looking at the board.

b. In this case no games terminate early, and there areN ! different games ending in a draw.
So ignoring repeated states, we have exactly

∑N
i=1 i! nodes.

At the end of the game the squares are divided between the two players: ⌈N/2⌉ to
the first player and⌊N/2⌋ to the second. Thus, a good lower bound on the number of
distinct states is

( N
⌈N/2⌉

)

, the number of distinct terminal states.

c. For a states, letX(s) be the number of winning positions containing noO’s andO(s)
the number of winning positions containing noX ’s. One evaluation function is then
Eval(s) = X(s) − O(S). Notice that empty winning positions cancel out in the eval-
uation function.

Alternatively, we might weight potential winning positions by how close they are to
completion.

d. Using the upper bound ofN ! from (a), and observing that it takes100NN ! instructions.
At 2GHz we have 2 billion instructions per second (roughly speaking), so solve for the
largestN using at most this many instructions. For one second we getN = 9, for one
minuteN = 11, and for one hourN = 12.

5.11 See"search/algorithms/games.lisp" for definitions of games, game-playing
agents, and game-playing environments."search/algorithms/minimax.lisp" con-
tains the minimax and alpha-beta algorithms. Notice that the game-playing environment is
essentially a generic environment with the update functiondefined by the rules of the game.
Turn-taking is achieved by having agents do nothing until itis their turn to move.

See"search/domains/cognac.lisp" for the basic definitions of a simple game
(slightly more challenging than Tic-Tac-Toe). The code forthis contains only a trivial eval-
uation function. Students can use minimax and alpha-beta tosolve small versions of the
game to termination (probably up to4 × 3); they should notice that alpha-beta is far faster
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than minimax, but still cannot scale up without an evaluation function and truncated horizon.
Providing an evaluation function is an interesting exercise. From the point of view of data
structure design, it is also interesting to look at how to speed up the legal move generator by
precomputing the descriptions of rows, columns, and diagonals.

Very few students will have heard of kalah, so it is a fair assignment, but the game
is boring—depth 6 lookahead and a purely material-based evaluation function are enough
to beat most humans. Othello is interesting and about the right level of difficulty for most
students. Chess and checkers are sometimes unfair because usually a small subset of the
class will be experts while the rest are beginners.

5.12 The minimax algorithm for non-zero-sum games works exactlyas for multiplayer
games, described on p.165–6; that is, the evaluation function is a vector of values, one for
each player, and the backup step selects whichever vector has the highest value for the player
whose turn it is to move. The example at the end of Section 5.2.2 (p.165) shows that alpha-
beta pruning is not possible in general non-zero-sum games,because an unexamined leaf
node might be optimal for both players.

5.13 This question is not as hard as it looks. The derivation belowleads directly to a defini-
tion of α andβ values. The notationni refers to (the value of) the node at depthi on the path
from the root to the leaf nodenj. Nodesni1 . . . nibi

are the siblings of nodei.

a. We can writen2 = max(n3, n31, . . . , n3b3), giving

n1 = min(max(n3, n31, . . . , n3b3), n21, . . . , n2b2)

Thenn3 can be similarly replaced, until we have an expression containing nj itself.

b. In terms of thel andr values, we have

n1 = min(l2,max(l3, n3, r3), r2)

Again, n3 can be expanded out down tonj. The most deeply nested term will be
min(lj , nj , rj).

c. If nj is a max node, then the lower bound on its value only increasesas its successors
are evaluated. Clearly, if it exceedslj it will have no further effect onn1. By extension,
if it exceedsmin(l2, l4, . . . , lj) it will have no effect. Thus, by keeping track of this
value we can decide when to prunenj. This is exactly whatα-β does.

d. The corresponding bound for min nodesnk is max(l3, l5, . . . , lk).

5.14 The result is given in Section 6 of Knuth (1975). The exact statement (Corollary 1 of
Theorem 1) is that the algorithms examinesb⌊m/2⌋ + b⌈m/2⌉ − 1 nodes at levelm. These
are exactly the nodes reached when Min plays only optimal moves and/or Max plays only
optimal moves. The proof is by induction onm.

5.15 With 32 pieces, each needing 6 bits to specify its position onone of 64 squares, we
need 24 bytes (6 32-bit words) to store a position, so we can store roughly 80 million positions
in the table (ignoring pointers for hash table bucket lists). This is about 1/22 of the 1800
million positions generated during a three-minute search.
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Figure S5.5 Pruning with chance nodes solution.

Generating the hash key directly from an array-based representation of the position
might be quite expensive. Modern programs (see, e.g., Heinz, 2000) carry along the hash
key and modify it as each new position is generated. Suppose this takes on the order of 20
operations; then on a 2GHz machine where an evaluation takes2000 operations we can do
roughly 100 lookups per evaluation. Using a rough figure of one millisecond for a disk seek,
we could do 1000 evaluations per lookup. Clearly, using a disk-resident table is of dubious
value, even if we can get some locality of reference to reducethe number of disk reads.

5.16

a. See Figure S5.5.

b. Given nodes 1–6, we would need to look at 7 and 8: if they were both +∞ then the
values of the min node and chance node above would also be+∞ and the best move
would change. Given nodes 1–7, we do not need to look at 8. Evenif it is +∞, the min
node cannot be worth more than−1, so the chance node above cannot be worth more
than−0.5, so the best move won’t change.

c. The worst case is if either of the third and fourth leaves is−2, in which case the chance
node above is 0. The best case is where they are both 2, then thechance node has value
2. So it must lie between 0 and 2.

d. See figure.

5.18 The general strategy is to reduce a general game tree to a one-ply tree by induction on
the depth of the tree. The inductive step must be done for min,max, and chance nodes, and
simply involves showing that the transformation is carriedthough the node. Suppose that the
values of the descendants of a node arex1 . . . xn, and that the transformation isax+b, where
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a is positive. We have

min(ax1 + b, ax2 + b, . . . , axn + b) = amin(x1, x2, . . . , xn) + b

max(ax1 + b, ax2 + b, . . . , axn + b) = amin(x1, x2, . . . , xn) + b

p1(ax1 + b) + p2(ax2 + b) + · · · + pn(axn + b) = a(p1x1 + p2x2 + · · · pnxn) + b

Hence the problem reduces to a one-ply tree where the leaves have the values from the original
tree multiplied by the linear transformation. Sincex > y ⇒ ax + b > ay + b if a > 0, the
best choice at the root will be the same as the best choice in the original tree.

5.19 This procedure will give incorrect results. Mathematically, the procedure amounts to
assuming that averaging commutes with min and max, which it does not. Intuitively, the
choices made by each player in the deterministic trees are based on full knowledge of future
dice rolls, and bear no necessary relationship to the moves made without such knowledge.
(Notice the connection to the discussion of card games in Section 5.6.2 and to the general
problem of fully and partially observable Markov decision problems in Chapter 17.) In prac-
tice, the method works reasonably well, and it might be a goodexercise to have students
compare it to the alternative of using expectiminimax with sampling (rather than summing
over) dice rolls.

5.20

a. No pruning. In a max tree, the value of the root is the value ofthe best leaf. Any unseen
leaf might be the best, so we have to see them all.

b. No pruning. An unseen leaf might have a value arbitrarily higher or lower than any other
leaf, which (assuming non-zero outcome probabilities) means that there is no bound on
the value of any incompletely expanded chance or max node.

c. No pruning. Same argument as in (a).

d. No pruning. Nonnegative values allowlowerbounds on the values of chance nodes, but
a lower bound does not allow any pruning.

e. Yes. If the first successor has value 1, the root has value 1 and all remaining successors
can be pruned.

f. Yes. Suppose the first action at the root has value 0.6, and the first outcome of the
second action has probability 0.5 and value 0; then all otheroutcomes of the second
action can be pruned.

g. (ii) Highest probability first. This gives the strongest bound on the value of the node,
all other things being equal.

5.21

a. In a fully observable, turn-taking, zero-sum game between two perfectly rational play-
ers, it does not help the first player to know what strategy thesecond player is using—
that is, what move the second player will make, given the firstplayer’s move.
True. The second player will play optimally, and so is perfectly predictable up to ties.
Knowing which of two equally good moves the opponent will make does not change
the value of the game to the first player.
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b. In a partially observable, turn-taking, zero-sum game between two perfectly rational
players, it does not help the first player to know what move thesecond player will
make, given the first player’s move.
False. In a partially observable game, knowing the second player’s move tells the first
player additional information about the game state that would otherwise be available
only to the second player. For example, in Kriegspiel, knowing the opponent’s future
move tells the first player where one of the opponent’s piecesis; in a card game, it tells
the first player one of the opponent’s cards.

c. A perfectly rational backgammon agent never loses.
False. Backgammon is a game of chance, and the opponent may consistently roll much
better dice. The correct statement is that theexpectedwinnings are optimal. It is sus-
pected, but not known, that when playing first the expected winnings are positive even
against an optimal opponent.

5.22 One can think of chance events during a game, such as dice rolls, in the same way
as hidden but preordained information (such as the order of the cards in a deck). The key
distinctions are whether the players can influence what information is revealed and whether
there is any asymmetry in the information available to each player.

a. Expectiminimax is appropriate only for backgammon and Monopoly. In bridge and
Scrabble, each player knows the cards/tiles he or she possesses but not the opponents’.
In Scrabble, the benefits of a fully rational, randomized strategy that includes reasoning
about the opponents’ state of knowledge are probably small,but in bridge the questions
of knowledge and information disclosure are central to goodplay.

b. None, for the reasons described earlier.

c. Key issues include reasoning about the opponent’s beliefs, the effect of various actions
on those beliefs, and methods for representing them. Since belief states for rational
agents are probability distributions over all possible states (including the belief states of
others), this is nontrivial.



Solutions for Chapter 6
Constraint Satisfaction Problems

6.1 There are 18 solutions for coloring Australia with three colors. Start withSA, which
can have any of three colors. Then moving clockwise,WAcan have either of the other two
colors, and everything else is strictly determined; that makes 6 possibilities for the mainland,
times 3 for Tasmania yields 18.

6.2

a. Solution A: There is a variable corresponding to each of then2 positions on the board.
Solution B: There is a variable corresponding to each knight.

b. Solution A: Each variable can take one of two values,{occupied,vacant}
Solution B: Each variable’s domain is the set of squares.

c. Solution A: every pair of squares separated by a knight’s move is constrained, such that
both cannot be occupied. Furthermore, the entire set of squares is constrained, such that
the total number of occupied squares should bek.
Solution B: every pair of knights is constrained, such that no two knights can be on the
same square or on squares separated by a knight’s move. Solution B may be preferable
because there is no global constraint, although Solution A has the smaller state space
whenk is large.

d. Any solution must describe acomplete-stateformulation because we are using a local
search algorithm. For simulated annealing, the successor function must completely
connect the space; for random-restart, the goal state must be reachable by hillclimbing
from some initial state. Two basic classes of solutions are:
Solution C: ensure no attacks at any time. Actions are to remove any knight, add a
knight in any unattacked square, or move a knight to any unattacked square.
Solution D: allow attacks but try to get rid of them. Actions are to remove any knight,
add a knight in any square, or move a knight to any square.

6.3 a. Crossword puzzle construction can be solved many ways. One simple choice is
depth-first search. Each successor fills in a word in the puzzle with one of the words in the
dictionary. It is better to go one word at a time, to minimize the number of steps.

b. As a CSP, there are even more choices. You could have a variable for each box in
the crossword puzzle; in this case the value of each variableis a letter, and the constraints are
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that the letters must make words. This approach is feasible with a most-constraining value
heuristic. Alternately, we could have each string of consecutive horizontal or vertical boxes
be a single variable, and the domain of the variables be wordsin the dictionary of the right
length. The constraints would say that two intersecting words must have the same letter in the
intersecting box. Solving a problem in this formulation requires fewer steps, but the domains
are larger (assuming a big dictionary) and there are fewer constraints. Both formulations are
feasible.

6.4 a. For rectilinear floor-planning, one possibility is to have avariable for each of the
small rectangles, with the value of each variable being a 4-tuple consisting of thex andy
coordinates of the upper left and lower right corners of the place where the rectangle will
be located. The domain of each variable is the set of 4-tuplesthat are the right size for the
corresponding small rectangle and that fit within the large rectangle. Constraints say that no
two rectangles can overlap; for example if the value of variableR1 is [0, 0, 5, 8], then no other
variable can take on a value that overlaps with the0, 0 to 5, 8 rectangle.

b. For class scheduling, one possibility is to have three variables for each class, one with
times for values (e.g. MWF8:00, TuTh8:00, MWF9:00, ...), one with classrooms for values
(e.g. Wheeler110, Evans330, ...) and one with instructors for values (e.g. Abelson, Bibel,
Canny, ...). Constraints say that only one class can be in thesame classroom at the same time,
and an instructor can only teach one class at a time. There maybe other constraints as well
(e.g. an instructor should not have two consecutive classes).

c. For Hamiltonian tour, one possibility is to have one variable for each stop on the tour,
with binary constraints requiring neighboring cities to beconnected by roads, and an AllDiff
constraint that all variables have a different value.

6.5 The exact steps depend on certain choices you are free to make; here are the ones I
made:

a. Choose theX3 variable. Its domain is{0, 1}.
b. Choose the value 1 forX3. (We can’t choose 0; it wouldn’t survive forward checking,

because it would forceF to be 0, and the leading digit of the sum must be non-zero.)

c. ChooseF , because it has only one remaining value.

d. Choose the value 1 forF .

e. NowX2 andX1 are tied for minimum remaining values at 2; let’s chooseX2.

f. Either value survives forward checking, let’s choose 0 forX2.

g. NowX1 has the minimum remaining values.

h. Again, arbitrarily choose 0 for the value ofX1.

i. The variableO must be an even number (because it is the sum ofT + T less than 5
(becauseO +O = R+ 10× 0). That makes it most constrained.

j . Arbitrarily choose 4 as the value ofO.

k. R now has only 1 remaining value.

l. Choose the value 8 forR.

m. T now has only 1 remaining value.
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n. Choose the value 7 forT .

o. U must be an even number less than 9; chooseU .

p. The only value forU that survives forward checking is 6.

q. The only variable left isW .

r . The only value left forW is 3.

s. This is a solution.

This is a rather easy (under-constrained) puzzle, so it is not surprising that we arrive at a
solution with no backtracking (given that we are allowed to use forward checking).

6.6 The problem statement sets out the solution fairly completely. To express the ternary
constraint onA, B andC thatA + B = C, we first introduce a new variable,AB. If the
domain ofA andB is the set of numbersN , then the domain ofAB is the set of pairs of
numbers fromN , i.e. N × N . Now there are three binary constraints, one betweenA and
AB saying that the value ofAmust be equal to the first element of the pair-value ofAB; one
betweenB andAB saying that the value ofB must equal the second element of the value
of AB; and finally one that says that the sum of the pair of numbers that is the value ofAB
must equal the value ofC. All other ternary constraints can be handled similarly.

Now that we can reduce a ternary constraint into binary constraints, we can reduce a
4-ary constraint on variablesA,B,C,D by first reducingA,B,C to binary constraints as
shown above, then adding backD in a ternary constraint withAB andC, and then reducing
this ternary constraint to binary by introducingCD.

By induction, we can reduce anyn-ary constraint to an(n− 1)-ary constraint. We can
stop at binary, because any unary constraint can be dropped,simply by moving the effects of
the constraint into the domain of the variable.

6.7 The “Zebra Puzzle” can be represented as a CSP by introducinga variable for each
color, pet, drink, country, and cigarette brand (a total of 25 variables). The value of each
variable is a number from 1 to 5 indicating the house number. This is a good representation
because it easy to represent all the constraints given in theproblem definition this way. (We
have done so in the Python implementation of the code, and at some point we may reimple-
ment this in the other languages.) Besides ease of expressing a problem, the other reason to
choose a representation is the efficiency of finding a solution. here we have mixed results—
on some runs, min-conflicts local search finds a solution for this problem in seconds, while
on other runs it fails to find a solution after minutes.

Another representation is to have five variables for each house, one with the domain of
colors, one with pets, and so on.

6.8

a. A1 = R.

b. H = R conflicts withA1.

c. H = G.

d. A4 = R.

e. F1 = R.
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f. A2 = R conflicts withA1,A2 = G conflicts withH, soA2 = B.

g. F2 = R.

h. A3 = R conflicts withA4, A3 = G conflicts withH, A3 = B conflicts withA2, so
backtrack. Conflict set is{A2,H,A4}, so jump toA2. Add {H,A4} to A2’s conflict
set.

i. A2 has no more values, so backtrack. Conflict set is{A1,H,A4} so jump back toA4.
Add {A1,H} toA4’s conflict set.

j . A4 = G conflicts withH, soA4 = B.

k. F1 = R

l. A2 = R conflicts withA1,A2 = G conflicts withH, soA2 = B.

m. F2 = R

n. A3 = R.

o. T = R conflicts withF1 andF2, T = G conflicts withG, soT = B.

p. Success.

6.9 The most constrained variable makes sense because it chooses a variable that is (all
other things being equal) likely to cause a failure, and it ismore efficient to fail as early
as possible (thereby pruning large parts of the search space). The least constraining value
heuristic makes sense because it allows the most chances forfuture assignments to avoid
conflict.

6.11 We’ll trace through each iteration of thewhile loop in AC-3 (for one possible ordering
of the arcs):

a. RemoveSA−WA, deleteG from SA.

b. RemoveSA− V , deleteR from SA, leaving onlyB.

c. RemoveNT −WA, deleteG fromNT .

d. RemoveNT − SA, deleteB fromNT , leaving onlyR.

e. RemoveNSW − SA, deleteB fromNSW .

f. RemoveNSW − V , deleteR fromNSW , leaving onlyG.

g. RemoveQ−NT , deleteR fromQ.

h. RemoveQ− SA, deleteB fromQ.

i. removeQ−NSW , deleteG fromQ, leaving no domain forQ.

6.12 On a tree-structured graph, no arc will be considered more than once, so the AC-
3 algorithm isO(ED), whereE is the number of edges andD is the size of the largest
domain.

6.13 The basic idea is to preprocess the constraints so that, for each value ofXi, we keep
track of those variablesXk for which an arc fromXk toXi is satisfied by that particular value
of Xi. This data structure can be computed in time proportional tothe size of the problem
representation. Then, when a value ofXi is deleted, we reduce by 1 the count of allowable
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values for each(Xk,Xi) arc recorded under that value. This is very similar to the forward
chaining algorithm in Chapter 7. See Mohr and Henderson (1986) for detailed proofs.

6.14
We establish arc-consistency from the bottom up because we will then (after establish-

ing consistency) solve the problem from the top down. It willalways be possible to find a
solution (if one exists at all) with no backtracking becauseof the definition of arc consistency:
whatever choice we make for the value of the parent node, there will be a value for the child.

6.15
It is certainly possible to solve Sudoku problems in this fashion. However, it is not as

effective as the partial-assignment approach, and not as effective as min-conflicts is on the N-
queens problem. Perhaps that is because there are two different types of conflicts: a conflict
with one of the numbers that defines the initial problem is onethat must be corrected, but
a conflict between two numbers that were placed elsewhere in the rid can be corrected by
replacing either of the two. A version of min-conflicts that recognizes the difference between
these two situations might do better than the naive min-conflicts algorithm.

6.16 A constraint is a restriction on the possible values of two or more variables. For
example, a constraint might say thatA = a is not allowed in conjunction withB = b.

Backtracking search is a form of depth-first search in which there is a single repre-
sentation of the state that gets updated for each successor,and then must be restored when a
dead end is reached.

A directed arc from variableA to variableB in a CSP isarc consistentif, for every
value in the current domain ofA, there is some consistent value ofB.

Backjumping is a way of making backtracking search more efficient, by jumping back
more than one level when a dead end is reached.

Min-conflicts is a heuristic for use with local search on CSP problems. The heuristic
says that, when given a variable to modify, choose the value that conflicts with the fewest
number of other variables.

A cycle cutsetis a set of variables which when removed from the constraint graph make
it acyclic (i.e., a tree). When the variables of a cycle cutset are instantiated the remainder of
the CSP can be solved in linear time.

6.17 A simple algorithm for finding a cutset of no more thank nodes is to enumerate all
subsets of nodes of size1, 2, . . . , k, and for each subset check whether the remaining nodes

form a tree. This algorithm takes time
(

Pk
i=1 n
nk

)

, which isO(nk).
Becker and Geiger (1994; http://citeseer.nj.nec.com/becker94approximation.html) give

an algorithm called MGA (modified greedy algorithm) that finds a cutset that is no more than
twice the size of the minimal cutset, using timeO(E+ V log(V )), whereE is the number of
edges andV is the number of variables.

Whether the cycle cutset approach is practical depends moreon the graph than on the
cutset-finding algorithm. That is because, for a cutset of sizec, we still have an exponential
(dc) factor before we can solve the CSP. So any graph with a large cutset will be intractable
to solve by this method, even if we could find the cutset with noeffort at all.



Solutions for Chapter 7
Logical Agents

7.1 To save space, we’ll show the list of models as a table (FigureS7.1) rather than a
collection of diagrams. There are eight possible combinations of pits in the three squares,
and four possibilities for the wumpus location (including nowhere).

We can see thatKB |= α2 because every line whereKB is true also hasα2 true.
Similarly for α3.

7.2 As human reasoners, we can see from the first two statements, that if it is mythical, then
it is immortal; otherwise it is a mammal. So it must be either immortal or a mammal, and thus
horned. That means it is also magical. However, we can’t deduce anything about whether it
is mythical. To proide a formal answer, we can enumerate the possible worlds (25 = 32 of
them with 5 proposition symbols), mark those in which all theassertions are true, and see
which conclusions hold in all of those. Or, we can let the machine do the work—in this case,
the Lisp code for propositional reasoning:

> (setf kb (make-prop-kb))
#S(PROP-KB SENTENCE (AND))
> (tell kb "Mythical => Immortal")
T
> (tell kb "˜Mythical => ˜Immortal ˆ Mammal")
T
> (tell kb "Immortal | Mammal => Horned")
T
> (tell kb "Horned => Magical")
T
> (ask kb "Mythical")
NIL
> (ask kb "˜Mythical")
NIL
> (ask kb "Magical")
T
> (ask kb "Horned")
T

7.3

a. See Figure S7.2. We assume the language has built-in Boolean operatorsnot, and, or,
iff .
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Model KB α2 α3

true
P1,3 true
P2,2

P3,1 true
P1,3, P2,2

P2,2, P3,1

P3,1, P1,3 true
P1,3, P3,1, P2,2

W1,3 true true
W1,3, P1,3 true true
W1,3, P2,2 true
W1,3, P3,1 true true true
W1,3, P1,3, P2,2 true
W1,3, P2,2, P3,1 true
W1,3, P3,1, P1,3 true true
W1,3, P1,3, P3,1, P2,2 true

W3,1, true
W3,1, P1,3 true
W3,1, P2,2

W3,1, P3,1 true
W3,1, P1,3, P2,2

W3,1, P2,2, P3,1

W3,1, P3,1, P1,3 true
W3,1, P1,3, P3,1, P2,2

W2,2 true
W2,2, P1,3 true
W2,2, P2,2

W2,2, P3,1 true
W2,2, P1,3, P2,2

W2,2, P2,2, P3,1

W2,2, P3,1, P1,3 true
W2,2, P1,3, P3,1, P2,2

Figure S7.1 A truth table constructed for Ex. 7.2. Propositions not listed as true on a
given line are assumed false, and onlytrue entries are shown in the table.

b. The question is somewhat ambiguous: we can interpret “in apartial model” to mean
in all such models orsomesuch models. For the former interpretation, the sentences
False ∧ P , True ∨ ¬P , andP ∧ ¬P can all be determined to be true or false in any
partial model. For the latter interpretation, we can in addition have sentences such as
A ∧ P which is false in the partial model{A= false}.

c. A general algorithm for partial models must handle the empty partial model, with no
assignments. In that case, the algorithm must determine validity and unsatisfiability,
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function PL-TRUE?(s ,m) returns true or false

if s = True then return true

else ifs = False then return false

else ifSYMBOL ?(s) then return LOOKUP(s ,m)
elsebranch on the operator ofs
¬: return not PL-TRUE?(ARG1(s),m)
∨: return PL-TRUE?(ARG1(s),m) or PL-TRUE?(ARG2(s),m)
∧: return PL-TRUE?(ARG1(s),m) and PL-TRUE?(ARG2(s),m)
⇒: (not PL-TRUE?(ARG1(s),m)) or PL-TRUE?(ARG2(s),m)
⇔: PL-TRUE?(ARG1(s),m) iff PL-TRUE?(ARG2(s),m)

Figure S7.2 Pseudocode for evaluating the truth of a sentence wrt a model.

which are co-NP-complete and NP-complete respectively.

d. It helps ifand andor evaluate their arguments in sequence, terminating on falseor true
arguments, respectively. In that case, the algorithm already has the desired properties:
in the partial model whereP is true andQ is unknown,P ∨Q returns true, and¬P ∧Q
returns false. But the truth values ofQ∨¬Q,Q∨ True, andQ∧¬Q are not detected.

e. Early termination in Boolean operators will provide a verysubstantial speedup. In most
languages, the Boolean operators already have the desired property, so you would have
to write special “dumb” versions and observe a slow-down.

7.4 In all cases, the question can be resolved easily by referring to the definition of entail-
ment.

a. False |= True is true becauseFalse has no models and hence entails every sentence
AND becauseTrue is true in all models and hence is entailed by every sentence.

b. True |= False is false.

c. (A ∧B) |= (A ⇔ B) is true because the left-hand side has exactly one model thatis
one of the two models of the right-hand side.

d. A ⇔ B |= A ∨ B is false because one of the models ofA ⇔ B has bothA andB
false, which does not satisfyA ∨B.

e. A ⇔ B |= ¬A ∨ B is true because the RHS isA ⇒ B, one of the conjuncts in the
definition ofA ⇔ B.

f. (A ∧ B) ⇒ C |= (A ⇒ C) ∨ (B ⇒ C) is true because the RHS is false only
when both disjuncts are false, i.e., whenA andB are true andC is false, in which case
the LHS is also false. This may seem counterintuitive, and would not hold if ⇒ is
interpreted as “causes.”

g. (C∨ (¬A∧¬B)) ≡ ((A ⇒ C)∧ (B ⇒ C)) is true; proof by truth table enumeration,
or by application of distributivity (Fig 7.11).

h. (A ∨B) ∧ (¬C ∨ ¬D ∨E) |= (A ∨B) is true; removing a conjunct only allows more
models.
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i. (A∨B)∧ (¬C∨¬D∨E) |= (A∨B)∧ (¬D∨E) is false; removing a disjunct allows
fewer models.

j . (A ∨B) ∧ ¬(A ⇒ B) is satisfiable; model hasA and¬B.

k. (A ⇔ B) ∧ (¬A ∨ B) is satisfiable; RHS is entailed by LHS so models are those of
A ⇔ B.

l. (A ⇔ B) ⇔ C does have the same number of models as(A ⇔ B); half the
models of(A ⇔ B) satisfy(A ⇔ B) ⇔ C, as do half the non-models, and there
are the same numbers of models and non-models.

7.5 Remember,α |= β iff in every model in whichα is true,β is also true. Therefore,

a. α is valid if and only ifTrue |= α.
Forward: Ifalpha is valid it is true in all models, hence it is true in all models ofTrue.
Backward: ifTrue |= α thenα must be true in all models ofTrue, i.e., in all models,
henceα must be valid.

b. For anyα, False |= α.
False doesn’t hold in any model, soα trivially holds in every model ofFalse.

c. α |= β if and only if the sentence(α ⇒ β) is valid.
Both sides are equivalent to the assertion that there is no model in whichα is true and
β is false, i.e., no model in whichα ⇒ β is false.

d. α ≡ β if and only if the sentence(α ⇔ β) is valid.
Both sides are equivalent to the assertion thatα andβ have the same truth value in every
model.

e. α |= β if and only if the sentence(α ∧ ¬β) is unsatisfiable.
As in c, both sides are equivalent to the assertion that there is no model in whichα is
true andβ is false.

7.6

a. If α |= γ or β |= γ (or both) then(α ∧ β) |= γ.
True. This follows from monotonicity.

b. If α |= (β ∧ γ) thenα |= β andα |= γ.
True. Ifβ ∧ γ is true in every model ofα, thenβ andγ are true in every model ofα, so
α |= β andα |= γ.

c. If α |= (β ∨ γ) thenα |= β or α |= γ (or both).
False. Considerβ ≡ A, γ ≡ ¬A.

7.7 These can be computed by counting the rows in a truth table that come out true, but
each has some simple property that allows a short-cut:

a. Sentence is false only ifB andC are false, which occurs in 4 cases forA andD, leaving
12.

b. Sentence is false only ifA, B, C, andD are false, which occurs in 1 case, leaving 15.

c. The last four conjuncts specify a model in which the first conjunct is false, so 0.
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7.8 A binary logical connective is defined by a truth table with 4 rows. Each of the four
rows may be true or false, so there are24 = 16 possible truth tables, and thus 16 possible
connectives. Six of these are trivial ones that ignore one orboth inputs; they correspond to
True, False, P , Q, ¬P and¬Q. Four of them we have already studied:∧,∨, ⇒ , ⇔ .
The remaining six are potentially useful. One of them is reverse implication (⇐ instead of
⇒), and the other five are the negations of∧,∨, ⇔ , ⇒ and⇐. The first three of these
are sometimes callednand, nor, andxor.

7.9 We use the truth table code in Lisp in the directorylogic/prop.lisp to show each
sentence is valid. We substituteP, Q, R for α, β, γ because of the lack of Greek letters in
ASCII. To save space in this manual, we only show the first fourtruth tables:

> (truth-table "P ˆ Q <=> Q ˆ P")
-----------------------------------------

P Q P ˆ Q Q ˆ P (P ˆ Q) <=> (Q ˆ P)
-----------------------------------------

F F F F \(true\)
T F F F T
F T F F T
T T T T T

-----------------------------------------
NIL

> (truth-table "P | Q <=> Q | P")
-----------------------------------------

P Q P | Q Q | P (P | Q) <=> (Q | P)
-----------------------------------------

F F F F T
T F T T T
F T T T T
T T T T T

-----------------------------------------
NIL

> (truth-table "P ˆ (Q ˆ R) <=> (P ˆ Q) ˆ R")
--------------------------------------------------- --------------------

P Q R Q ˆ R P ˆ (Q ˆ R) P ˆ Q ˆ R (P ˆ (Q ˆ R)) <=> (P ˆ Q ˆ R)
--------------------------------------------------- --------------------

F F F F F F T
T F F F F F T
F T F F F F T
T T F F F F T
F F T F F F T
T F T F F F T
F T T T F F T
T T T T T T T

--------------------------------------------------- --------------------
NIL

> (truth-table "P | (Q | R) <=> (P | Q) | R")
--------------------------------------------------- --------------------

P Q R Q | R P | (Q | R) P | Q | R (P | (Q | R)) <=> (P | Q | R)
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--------------------------------------------------- --------------------
F F F F F F T
T F F F T T T
F T F T T T T
T T F T T T T
F F T T T T T
T F T T T T T
F T T T T T T
T T T T T T T

--------------------------------------------------- --------------------
NIL

For the remaining sentences, we just show that they are validaccording to thevalidity
function:

> (validity "˜˜P <=> P")
VALID
> (validity "P => Q <=> ˜Q => ˜P")
VALID
> (validity "P => Q <=> ˜P | Q")
VALID
> (validity "(P <=> Q) <=> (P => Q) ˆ (Q => P)")
VALID
> (validity "˜(P ˆ Q) <=> ˜P | ˜Q")
VALID
> (validity "˜(P | Q) <=> ˜P ˆ ˜Q")
VALID
> (validity "P ˆ (Q | R) <=> (P ˆ Q) | (P ˆ R)")
VALID
> (validity "P | (Q ˆ R) <=> (P | Q) ˆ (P | R)")
VALID

7.10

a. Valid.

b. Neither.

c. Neither.

d. Valid.

e. Valid.

f. Valid.

g. Valid.

7.11 Each possible world can be written as a conjunction of literals, e.g. (A ∧ B ∧ ¬C).
Asserting that a possible world is not the case can be writtenby negating that, e.g.¬(A∧B∧
¬C), which can be rewritten as(¬A ∨ ¬B ∨ C). This is the form of a clause; a conjunction
of these clauses is a CNF sentence, and can list the negationsof all the possible worlds that
would make the sentence false.

7.12 To prove the conjunction, it suffices to prove each literal separately. To prove¬B, add
the negated goal S7:B.
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• Resolve S7 with S5, giving S8:F .

• Resolve S7 with S6, giving S9:C.

• Resolve S8 with S3, giving S10:(¬C ∨ ¬B).

• Resolve S9 with S10, giving S11:¬B.

• Resolve S7 with S11 giving the empty clause.

To prove¬A, add the negated goal S7:A.

• Resolve S7 with the first clause of S1, giving S8:(B ∨ E).

• Resolve S8 with S4, giving S9:B.

• Proceed as above to derive the empty clause.

7.13

a. P ⇒ Q is equivalent to¬P ∨Q by implication elimination (Figure 7.11), and¬(P1 ∧
· · · ∧ Pm) is equivalent to(¬P1 ∨ · · · ∨ ¬Pm) by de Morgan’s rule, so(¬P1 ∨ · · · ∨
¬Pm ∨Q) is equivalent to(P1 ∧ · · · ∧ Pm) ⇒ Q.

b. A clause can have positive and negative literals; let the negative literals have the form
¬P1, . . . ,¬Pm and let the positive literals have the formQ1, . . . , Qn, where thePis and
Qjs are symbols. Then the clause can be written as(¬P1∨· · ·∨¬Pm∨Q1∨· · ·∨Qn).
By the previous argument, withQ = Q1 ∨ · · · ∨ Qn, it is immediate that the clause is
equivalent to

(P1 ∧ · · · ∧ Pm) ⇒ Q1 ∨ · · · ∨Qn .

c. For atomspi, qi, ri, si wherepj = qk:

p1 ∧ . . . pj . . . ∧ pn1 ⇒ r1 ∨ . . . rn2

s1 ∧ . . . ∧ sn3 ⇒ q1 ∨ . . . qk . . . ∨ qn4

p1∧...pj−1∧pj+1∧pn1∧s1∧...sn3 ⇒ r1∨...rn2∨q1∨... qk−1∨qk+1∨...∨qn4

7.14

a. Correct representations of “a person who is radical is electable if he/she is conservative,
but otherwise is not electable”:

(i) (R ∧ E) ⇐⇒ C
No; this sentence asserts, among other things, that all conservatives are radical,
which is not what was stated.

(ii) R ⇒ (E ⇐⇒ C)
Yes, this says that if a person is a radical then they are electable if and only if they
are conservative.

(iii) R ⇒ ((C ⇒ E) ∨ ¬E)
No, this is equivalent to¬R ∨ ¬C ∨ E ∨ ¬E which is a tautology, true under any
assignment.

b. Horn form:
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(i) Yes:

(R ∧ E) ⇐⇒ C ≡ ((R ∧ E) ⇒ C) ∧ (C ⇒ (R ∧ E))

≡ ((R ∧ E) ⇒ C) ∧ (C ⇒ R) ∧ (C ⇒ E)

(ii) Yes:

R ⇒ (E ⇐⇒ C) ≡ R ⇒ ((E ⇒ C) ∧ (C ⇒ E))

≡ ¬R ∨ ((¬E ∨ C) ∧ (¬C ∨ E))

≡ (¬R ∨ ¬E ∨ C) ∧ (¬R ∨ ¬C ∨ E)

(iii) Yes, e.g.,True ⇒ True.

7.15

a. The graph is simply a connected chain of 5 nodes, one per variable.

b. n + 1 solutions. Once anyXi is true, all subsequentXjs must be true. Hence the
solutions arei falses followed byn− i trues, fori = 0, . . . , n.

c. The complexity isO(n2). This is somewhat tricky. Consider what part of the complete
binary tree is explored by the search. The algorithm must follow all solution sequences,
which themselves cover a quadratic-sized portion of the tree. Failing branches are all
those trying afalse after the preceding variable is assignedtrue. Such conflicts are
detected immediately, so they do not change the quadratic cost.

d. These facts are not obviously connected. Horn-form logical inference problems need
not have tree-structured constraint graphs; the linear complexity comes from the nature
of the constraint (implication) not the structure of the problem.

7.16 A clause is a disjunction of literals, and its models are theunionof the sets of models
of each literal; and each literal satisfies half the possiblemodels. (Note thatFalse is un-
satisfiable, but it is really another name for the empty clause.) A 3-SAT clause with three
distinct variables rules out exactly 1/8 of all possible models, so five clauses can rule out
no more than 5/8 of the models. Eight clauses are needed to rule out all models. Suppose
we have variablesA, B, C. There are eight models, and we write one clause to rule out
each model. For example, the model{A= false,B= false, C = false} is ruled out by the
clause(¬A ∨ ¬B ∨ ¬C).

7.17

a. The negated goal is¬G. Resolve witht he last two clauses to produce¬C and¬D.
Resolve with the second and third clauses to produce¬A and¬B. Resolve these suc-
cessively against the first clause to produce the empty clause.

b. This can be answered with or withoutTrue andFalse symbols; we’ll omit them for
simplicity. First, each 2-CNF clause has two places to put literals. There are2n distinct
literals, so there are(2n)2 syntactically distinct clauses. Now, many of these clausesare
semantically identical. Let us handle them in groups. ThereareC(2n, 2) = (2n)(2n−
1)/2 = 2n2 − n clauses with two different literals, if we ignore ordering.All these
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clauses are semantically distinct except those that are equivalent toTrue (e.g.,(A ∨
¬A)), of which there aren, so that makes2n2 − 2n + 1 clauses with distinct literals.
There are2n clauses with repeated literals, all distinct. So there are2n2 + 1 distinct
clauses in all.

c. Resolving two 2-CNF clauses cannot increase the clause size; therefore, resolution can
generate onlyO(n2) distinct clauses before it must terminate.

d. First, note that the number of 3-CNF clauses isO(n3), so we cannot argue for nonpoly-
nomial complexity on the basis of the number of different clauses! The key observation
is that resolving two 3-CNF clauses canincreasethe clause size to 4, and so on, so
clause size can grow toO(n), givingO(2n) possible clauses.

7.18

a. A simple truth table has eight rows, and shows that the sentence is true for all models
and hence valid.

b. For the left-hand side we have:

(Food ⇒ Party) ∨ (Drinks ⇒ Party)
(¬Food ∨ Party) ∨ (¬Drinks ∨ Party)
(¬Food ∨ Party ∨ ¬Drinks ∨ Party)
(¬Food ∨ ¬Drinks ∨ Party)

and for the right-hand side we have

(Food ∧Drinks) ⇒ Party
¬(Food ∧Drinks) ∨ Party
(¬Food ∨ ¬Drinks) ∨ Party
(¬Food ∨ ¬Drinks ∨ Party)

The two sides are identical in CNF, and hence the original sentence is of the form
P ⇒ P , which is valid for anyP .

c. To prove that a sentence is valid, prove that its negation isunsatisfiable. I.e., negate
it, convert to CNF, use resolution to prove a contradiction.We can use the above CNF
result for the LHS.

¬[[(Food ⇒ Party) ∨ (Drinks ⇒ Party)] ⇒ [(Food ∧Drinks) ⇒ Party]]
[(Food ⇒ Party) ∨ (Drinks ⇒ Party)] ∧ ¬[(Food ∧Drinks) ⇒ Party]
(¬Food ∨ ¬Drinks ∨ Party) ∧ Food ∧Drinks ∧ ¬Party

Each of the three unit clauses resolves in turn against the first clause, leaving an empty
clause.

7.19

a. Each possible world can be expressed as the conjunction of all the literals that hold in
the model. The sentence is then equivalent to the disjunction of all these conjunctions,
i.e., a DNF expression.
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b. A trivial conversion algorithm would enumerate all possible models and include terms
corresponding to those in which the sentence is true; but this is necessarily exponential-
time. We can convert to DNF using the same algorithm as for CNFexcept that we
distribute∧ over∨ at the end instead of the other way round.

c. A DNF expression is satisfiable if it contains at least one term that has no contradictory
literals. This can be checked in linear time, or even during the conversion process. Any
completion of that term, filling in missing literals, is a model.

d. The first steps give

(¬A ∨B) ∧ (¬B ∨C) ∧ (¬C ∨ ¬A) .

Converting to DNF means taking one literal from each clause,in all possible ways, to
generate the terms (8 in all). Choosing each literal corresponds to choosing the truth
value of each variable, so the process is very like enumerating all possible models. Here,
the first term is(¬A ∧ ¬B ∧ ¬C), which is clearly satisfiable.

e. The problem is that the final step typically results in DNF expressions of exponential
size, so we require both exponential time AND exponential space.

7.20 The CNF representations are as follows:

S1: (¬A ∨B ∨ E) ∧ (¬B ∨A) ∧ (¬E ∨A).
S2: (¬E ∨D).
S3: (¬C ∨ ¬F ∨ ¬B).
S4: (¬E ∨B).
S5: (¬B ∨ F ).
S6: (¬B ∨C).

We omit the DPLL trace, which is easy to obtain from the version in the code repository.

7.21 It is more likely to be solvable: adding literals to disjunctive clauses makes them easier
to satisfy.

7.22

a. This is a disjunction with 28 disjuncts, each one saying that two of the neighbors are
true and the others are false. The first disjunct is

X2,2 ∧X1,2 ∧ ¬X0,2 ∧ ¬X0,1 ∧ ¬X2,1 ∧ ¬X0,0 ∧ ¬X1,0 ∧ ¬X2,0

The other 27 disjuncts each select two differentXi,j to be true.

b. There will be
(n
k

)

disjuncts, each saying thatk of then symbols are true and the others
false.

c. For each of the cells that have been probed, take the resulting numbern revealed by the
game and construct a sentence with

(n
8

)

disjuncts. Conjoin all the sentences together.
Then use DPLL to answer the question of whether this sentenceentailsXi,j for the
particulari, j pair you are interested in.

d. To encode the global constraint that there areM mines altogether, we can construct
a disjunct with

(

M
N

)

disjuncts, each of sizeN . Remember,
(

M
N=M !/(M−N)!

)

. So for
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a Minesweeper game with 100 cells and 20 mines, this will be morre than1039, and
thus cannot be represented in any computer. However, we can represent the global
constraint within the DPLL algorithm itself. We add the parametermin and max to
the DPLL function; these indicate the minimum and maximum number of unassigned
symbols that must be true in the model. For an unconstrained problem the values 0 and
N will be used for these parameters. For a mineseeper problem the valueM will be
used for bothmin andmax. Within DPLL, we fail (return false) immediately ifmin is
less than the number of remaining symbols, or ifmaxis less than 0. For each recursive
call to DPLL, we updatemin andmaxby subtracting one when we assign a true value
to a symbol.

e. No conclusions are invalidated by adding this capability to DPLL and encoding the
global constraint using it.

f. Consider this string of alternating 1’s and unprobed cells(indicated by a dash):

|-|1|-|1|-|1|-|1|-|1|-|1|-|1|-|

There are two possible models: either there are mines under every even-numbered
dash, or under every odd-numbered dash. Making a probe at either end will determine
whether cells at the far end are empty or contain mines.

7.23 It will take time proportional to the number of pure symbols plus the number of unit
clauses. We assume thatKB ⇒ α is false, and prove a contradiction.¬(KB ⇒ α) is
equivalent toKB ∧ ¬α. From this sentence the algorithm will first eliminate all the pure
symbols, then it will work on unit clauses until it chooses eitherα or ¬α (both of which are
unit clauses); at that point it will immediately recognize that either choice (true or false) for
α leads to failure, which means that the original non-negatedassertionα is entailed.

7.24 We omit the DPLL trace, which is easy to obtain from the version in the code reposi-
tory. The behavior is very similar: the unit-clause rule in DPLL ensures that all known atoms
are propagated to other clauses.

7.25

Locked t+1 ⇔ [Lock t ∨ (Locked t ∧ ¬Unlock t)] .

7.26 The remaining fluents are the orientation fluents (FacingEast etc.) andWumpusAlive.
The successor-state axioms are as follows:

FacingEast t+1 ⇔ (FacingEast t ∧ ¬(TurnLeft t ∨ TurnRight t))

∨ (FacingNorth t ∧ TurnRight t)

∨ (FacingSouth t ∧ TurnLeft t)

WumpusAlivet+1 ⇔ WumpusAlivet ∧ ¬(WumpusAhead t ∧ HaveArrow t ∧ Shoot t) .

TheWumpusAhead fluent does not need a successor-state axiom, since it is definable syn-
chronously in terms of the agent location and orientation fluents and the wumpus location.
The definition is extraordinarily tedious, illustrating the weakness of proposition logic. Note
also that in the second edition we described a successor-state axiom (in the form of a circuit)
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for WumpusAlive that used theScream observation to infer the wumpus’s death, with no
need for describing the complicated physics of shooting. Such an axiom suffices for state
estimation, but nor for planning.

7.27
The required modifications are to add definitional axioms such as

P3,1 or 2,2 ⇔ P3,1 ∨ P2,2

and to include the new literals on the list of literals whose truth values are to be inferred at
each time step.

One natural way to extend the 1-CNF representation is to add test additional non-literal
sentences. The sentences we choose to test can depend on inferences from the current KB.
This can work if the number of additional sentences we need totest is not too large.

For example, we can query the knowledge base to find out which squares we know
have pits, which we know might have pits, and which states arebreezy (we need to do this
to compute the un-augmented 1-CNF belief state). Then, for each breezy square, test the
sentence “one of the neighbours of this square which might have a bit does have a pit.” For
example, this would testP3,1 ∨ P2,2 if we had perceived a breeze in square (2,1). Under the
Wumpus physics, this literal will be true iff the breezy square has no known pit around it.



Solutions for Chapter 8
First-Order Logic

8.1 This question will generate a wide variety of possible solutions. The key distinction
between analogical and sentential representations is thatthe analogical representation au-
tomatically generates consequences that can be “read off” whenever suitable premises are
encoded. When you get into the details, this distinction turns out to be quite hard to pin
down—for example, what does “read off” mean?—but it can be justified by examining the
time complexity of various inferences on the “virtual inference machine” provided by the
representation system.

a. Depending on the scale and type of the map, symbols in the maplanguage typically
include city and town markers, road symbols (various types), lighthouses, historic mon-
uments, river courses, freeway intersections, etc.

b. Explicit and implicit sentences: this distinction is a little tricky, but the basic idea is that
when the map-drawer plunks a symbol down in a particular place, he says one explicit
thing (e.g. that Coit Tower is here), but the analogical structure of the map representa-
tion means that many implicit sentences can now be derived. Explicit sentences: there
is a monument called Coit Tower at this location; Lombard Street runs (approximately)
east-west; San Francisco Bay exists and has this shape. Implicit sentences: Van Ness
is longer than North Willard; Fisherman’s Wharf is north of the Mission District; the
shortest drivable route from Coit Tower to Twin Peaks is the following . . ..

c. Sentences unrepresentable in the map language: TelegraphHill is approximately coni-
cal and about 430 feet high (assuming the map has no topographical notation); in 1890
there was no bridge connecting San Francisco to Marin County(map does not repre-
sent changing information); Interstate 680 runs either east or west of Walnut Creek (no
disjunctive information).

d. Sentences that are easier to express in the map language: any sentence that can be
written easily in English is not going to be a good candidate for this question. Any
linguistic abstraction from the physical structure of San Francisco (e.g. San Francisco
is on the end of a peninsula at the mouth of a bay) can probably be expressed equally
easily in the predicate calculus, since that’s what it was designed for. Facts such as
the shape of the coastline, or the path taken by a road, are best expressed in the map
language. Even then, one can argue that the coastline drawn on the map actually consists
of lots of individual sentences, one for each dot of ink, especially if the map is drawn
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using a digital plotter. In this case, the advantage of the map is really in the ease of
inference combined with suitability for human “visual computing” apparatus.

e. Examples of other analogical representations:

• Analog audio tape recording. Advantages: simple circuitscan record and repro-
duce sounds. Disadvantages: subject to errors, noise; hardto process in order to
separate sounds or remove noise etc.

• Traditional clock face. Advantages: easier to read quickly, determination of how
much time is available requires no additional computation.Disadvantages: hard to
read precisely, cannot represent small units of time (ms) easily.

• All kinds of graphs, bar charts, pie charts. Advantages: enormous data compres-
sion, easy trend analysis, communicate information in a waywhich we can in-
terpret easily. Disadvantages: imprecise, cannot represent disjunctive or negated
information.

8.2 The knowledge base does not entail∀x P (x). To show this, we must give a model
whereP (a) andP (b) but∀x P (x) is false. Consider any model with three domain elements,
wherea andb refer to the first two elements and the relation referred to byP holds only for
those two elements.

8.3 The sentence∃x, y x= y is valid. A sentence is valid if it is true in every model. An
existentially quantified sentence is true in a model if it holds under any extended interpretation
in which its variables are assigned to domain elements. According to the standard semantics
of FOL as given in the chapter, every model contains at least one domain element, hence,
for any model, there is an extended interpretation in whichx andy are assigned to the first
domain element. In such an interpretation,x= y is true.

8.4 ∀x, y x= y stipulates that there is exactly one object. If there are twoobjects, then
there is an extended interpretation in whichx andy are assigned to different objects, so the
sentence would be false. Some students may also notice that any unsatisfiable sentence also
meets the criterion, since there are no worlds in which the sentence is true.

8.5 We will use the simplest counting method, ignoring redundant combinations. For the
constant symbols, there areDc assignments. Each predicate of arityk is mapped onto ak-ary
relation, i.e., a subset of theDk possiblek-element tuples; there are2Dk

such mappings. Each
function symbol of arityk is mapped onto ak-ary function, which specifies a value for each
of theDk possiblek-element tuples. Including the invisible element, there areD+ 1 choices
for each value, so there are(D+ 1)D

k
functions. The total number of possible combinations

is therefore

Dc ·
(

A
∑

k =1

2Dk

)

·
(

A
∑

k = 1

(D + 1)D
k

)

.

Two things to note: first, the number is finite; second, the maximum arity A is the most
crucial complexity parameter.

8.6 Validity in first-order logic requires truth in all possiblemodels:
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a. (∃x x=x) ⇒ (∀ y ∃z y= z).
Valid. The LHS is valid by itself—in standard FOL, every model has at least one object;
hence, the whole sentence is valid iff the RHS is valid. (Otherwise, we can find a model
where the LHS is true and the RHS is false.) The RHS is valid because for every value
of y in any given model, there is az—namely, the value ofy itself—that is identical to
y.

b. ∀x P (x) ∨ ¬P (x).
Valid. For any relation denoted byP , every objectx is either in the relation or not in it.

c. ∀x Smart(x) ∨ (x= x).
Valid. In every model, every object satisfiesx=x, so the disjunction is satisfied regard-
less of whetherx is smart.

8.7 This version of FOL, first studied in depth by Mostowski (1951), goes under the title of
free logic (Lambert, 1967). By a natural extension of the truth values for empty conjunctions
(true) and empty disjunctions (false), every universally quantified sentence is true in empty
models and every existentially quantified sentence is false. The semantics also needs to be
adjusted to handle the fact that constant symbols have no referent in an empty model.

Examples of sentences valid in the standard semantics but not in free logic include
∃x x=x and[∀x P (x)] ⇒ [∃x P (x)]. More importantly, perhaps, the equivalence of
φ∨∃x ψ and∃x φ∨ψ whenx does not occur free inφ, which is used for putting sentences
into CNF, does not hold.

One could argue that∃x x=x, which simply states that the model is nonempty, is
not naturally a valid sentence, and that it ought to be possible to contemplate a universe with
no objects. However, experience has shown that free logic seems to require extra work to
rule out the empty model in many commonly occurring cases of logical representation and
reasoning.

8.8 The fact¬Spouse(George ,Laura) does not follow. We need to assert that at most one
person can be the spouse of any given person:

∀x, y, z Spouse(x, z) ∧ Spouse(y, z) ⇒ x= y .

With this axiom, a resolution proof of¬Spouse(George ,Laura) is straightforward.
If Spouse is a unary function symbol, then the question is whether¬Spouse(Laura)=George

follows from Jim 6= George andSpouse(Laura)= Jim. The answer is yes, it does follow.
They could not both be the value of the function applied to thesame argument if they were
different objects.

8.9

a. Paris and Marseilles are both in France.

(i) In(Paris ∧Marseilles,France).
(2) Syntactically invalid. Cannot use conjunction inside aterm.

(ii) In(Paris ,France) ∧ In(Marseilles ,France).
(1) Correct.
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(iii) In(Paris ,France) ∨ In(Marseilles ,France).
(3) Incorrect. Disjunction does not express “both.”

b. There is a country that borders both Iraq and Pakistan.

(i) ∃ c Country(c) ∧ Border (c, Iraq) ∧ Border (c,Pakistan).
(1) Correct.

(ii) ∃ c Country(c) ⇒ [Border (c, Iraq) ∧ Border (c,Pakistan)].
(3) Incorrect. Use of implication in existential.

(iii) [∃ c Country(c)] ⇒ [Border (c, Iraq) ∧ Border (c,Pakistan)].
(2) Syntactically invalid. Variablec used outside the scope of its quantifier.

(iv) ∃ c Border (Country(c), Iraq ∧ Pakistan).
(2) Syntactically invalid. Cannot use conjunction inside aterm.

c. All countries that border Ecuador are in South America.

(i) ∀ c Country(c) ∧ Border (c,Ecuador ) ⇒ In(c,SouthAmerica).
(1) Correct.

(ii) ∀ c Country(c) ⇒ [Border (c,Ecuador ) ⇒ In(c,SouthAmerica)].
(1) Correct. Equivalent to (i).

(iii) ∀ c [Country(c) ⇒ Border (c,Ecuador )] ⇒ In(c,SouthAmerica).
(3) Incorrect. The implication in the LHS is effectively an implication in an exis-
tential; in particular, it sanctions the RHS for all non-countries.

(iv) ∀ c Country(c) ∧ Border (c,Ecuador ) ∧ In(c,SouthAmerica).
(3) Incorrect. Uses conjunction as main connective of a universal quantifier.

d. No region in South America borders any region in Europe.

(i) ¬[∃ c, d In(c,SouthAmerica) ∧ In(d,Europe) ∧ Borders(c, d)].
(1) Correct.

(ii) ∀ c, d [In(c,SouthAmerica) ∧ In(d,Europe)] ⇒ ¬Borders(c, d)].
(1) Correct.

(iii) ¬∀ c In(c,SouthAmerica) ⇒ ∃ d In(d,Europe) ∧ ¬Borders(c, d).
(3) Incorrect. This says there is some country in South America that borders every
country in Europe!

(iv) ∀ c In(c,SouthAmerica) ⇒ ∀ d In(d,Europe) ⇒ ¬Borders(c, d).
(1) Correct.

e. No two adjacent countries have the same map color.

(i) ∀x, y ¬Country(x) ∨ ¬Country(y) ∨ ¬Borders(x, y) ∨
¬(MapColor (x) = MapColor (y)).

(1) Correct.
(ii) ∀x, y (Country(x) ∧ Country(y) ∧ Borders(x, y) ∧ ¬(x = y)) ⇒

¬(MapColor (x) = MapColor (y)).
(1) Correct. The inequality is unnecessary because no country borders itself.

(iii) ∀x, y Country(x) ∧Country(y) ∧ Borders(x, y) ∧
¬(MapColor (x) = MapColor (y)).

(3) Incorrect. Uses conjunction as main connective of a universal quantifier.
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(iv) ∀x, y (Country(x) ∧ Country(y) ∧ Borders(x, y)) ⇒ MapColor (x 6= y).
(2) Syntactically invalid. Cannot use inequality inside a term.

8.10

a. O(E,S) ∨O(E,L).
b. O(J,A) ∧ ∃ p p 6= A ∧O(J, p).
c. ∀ p O(p, S) ⇒ O(p,D).
d. ¬∃ p C(J, p) ∧O(p, L).
e. ∃ p B(p,E) ∧O(p, L).
f. ∃ p O(p, L) ∧ ∀ q C(q, p) ⇒ O(q,D).
g. ∀ p O(p, S) ⇒ ∃ q O(q, L) ∧ C(p, q).

8.11

a. People who speak the same language understand each other.
b. Suppose that an extended interpretation withx→ A andy → B satisfy

SpeaksLanguage(x, l) ∧ SpeaksLanguage(y, l)

for somel. Then from the second sentence we can concludeUnderstands(A,B). The
extended interpretation withx→ B andy → A also must satisfy

SpeaksLanguage(x, l) ∧ SpeaksLanguage(y, l) ,

allowing us to concludeUnderstands(B,A). Hence, whenever the second sentence
holds, the first holds.

c. LetUnderstands(x, y) mean thatx understandsy, and letFriend(x, y) mean thatx
is a friend ofy.

(i) It is not completely clear if the English sentence is referring to mutual understand-
ing and mutual friendship, but let us assume that is what is intended:
∀x, y Understands(x, y)∧Understands(y, x)⇒ (Friend(x, y)∧Friend(y, x)).

(ii) ∀x, y, z Friend(x, y) ∧ Friend(y, z) ⇒ Friend(x, z).

8.12 This exercise requires a rewriting similar to the Clark completion of the two Horn
clauses:

∀n NatNum(n) ⇔ [n= 0 ∨ ∃m NatNum(m) ∧ n=S(m)] .

8.13

a. The two implication sentences are

∀ s Breezy(s) ⇒ ∃ r Adjacent(r, s) ∧ Pit(r)
∀ s ¬Breezy(s) ⇒ ¬∃ r Adjacent(r, s) ∧ Pit(r) .

The converse of the second sentence is

∀ s ∃ r Adjacent(r, s) ∧ Pit(r) ⇒ Breezy(s)

which, combined with the first sentence, immediately gives

∀ s Breezy(s) ⇔ ∃ r Adjacent(r, s) ∧ Pit(r) .
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b. To say that a pit causes all adjacent squares to be breezy:

∀ s Pit(s) ⇒ [∀ r Adjacent(r, s) ⇒ Breezy(r)] .

This axiom allows for breezes to occur spontaneously with noadjacent pits. It would be
incorrect to say that a non-pit causes all adjacent squares to be non-breezy, since there
might be pits in other squares causing one of the adjacent squares to be breezy. But if
all adjacent squares have no pits, a square is non-breezy:

∀ s [∀ r Adjacent(r, s) ⇒ ¬Pit(r)] ⇒ ¬Breezy(s) .

8.14 Make sure you write definitions with⇔. If you use⇒, you are only imposing con-
straints, not writing a real definition. Note that for aunts and uncles, we include the relations
whom the OED says are more strictly defined as aunts-in-law and uncles-in-law, since the
latter terms are not in common use.

Grandchild(c, a) ⇔ ∃ b Child(c, b) ∧ Child(b, a)
Greatgrandparent(a, d) ⇔ ∃ b, c Child(d, c) ∧ Child(c, b) ∧ Child(b, a)
Ancestor(a, x) ⇔ Child(x, a) ∨ ∃ b Child(b, a) ∧Ancestor(b, x)
Brother(x, y) ⇔ Male(x) ∧ Sibling(x, y)
Sister(x, y) ⇔ Female(x) ∧ Sibling(x, y)
Daughter(d, p) ⇔ Female(d) ∧ Child(d, p)
Son(s, p) ⇔ Male(s) ∧ Child(s, p)
FirstCousin(c, d) ⇔ ∃ p1, p2 Child(c, p1) ∧Child(d, p2) ∧ Sibling(p1, p2)
BrotherInLaw(b, x) ⇔ ∃m Spouse(x,m) ∧Brother(b,m)
SisterInLaw(s, x) ⇔ ∃m Spouse(x,m) ∧ Sister(s,m)
Aunt(a, c) ⇔ ∃ p Child(c, p) ∧ [Sister(a, p) ∨ SisterInLaw(a, p)]
Uncle(u, c) ⇔ ∃ p Child(c, p) ∧ [Brother(a, p) ∨BrotherInLaw(a, p)]

There are several equivalent ways to define anmth cousinn times removed. One way is
to look at the distance of each person to the nearest common ancestor. DefineDistance(c, a)
as follows:

Distance(c, c) = 0
Child(c, b) ∧Distance(b, a) = k ⇒ Distance(c, a)= k + 1 .

Thus, the distance to one’s grandparent is 2, great-great-grandparent is 4, and so on. Now we
have

MthCousinNTimesRemoved(c, d,m, n) ⇔
∃ a Distance(c, a)=m+ 1 ∧Distance(d, a)=m+ n+ 1 .

The facts in the family tree are simple: each arrow represents two instances ofChild
(e.g.,Child(William,Diana) andChild(William,Charles)), each name represents a
sex proposition (e.g.,Male(William) or Female(Diana)), each “bowtie” symbol indi-
cates aSpouse proposition (e.g.,Spouse(Charles,Diana)). Making the queries of the
logical reasoning system is just a way of debugging the definitions.

8.15 Although these axioms are sufficient to prove set membershipwhen x is in fact a
member of a given set, they have nothing to say about cases where x is not a member. For
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example, it is not possible to prove thatx is not a member of the empty set. These axioms may
therefore be suitable for a logical system, such as Prolog, that uses negation-as-failure.

8.16 Here we translateList? to mean “proper list” in Lisp terminology, i.e., a cons structure
with Nil as the “rightmost” atom.

List?(Nil)
∀x, l List?(l) ⇔ List?(Cons(x, l))
∀x, y F irst(Cons(x, y))=x
∀x, y Rest(Cons(x, y))= y
∀x Append(Nil, x)= x
∀ v, x, y, z List?(x) ⇒ (Append(x, y)= z ⇔ Append(Cons(v, x), y)=Cons(v, z))
∀x ¬Find(x,Nil)
∀x List?(z) ⇒ (Find(x,Cons(y, z)) ⇔ (x= y ∨ Find(x, z))

8.17 There are several problems with the proposed definition. It allows one to prove, say,
Adjacent([1, 1], [1, 2]) but notAdjacent([1, 2], [1, 1]); so we need an additional symmetry
axiom. It does not allow one to prove thatAdjacent([1, 1], [1, 3]) is false, so it needs to be
written as

∀ s1, s2 ⇔ . . .

Finally, it does not work as the boundaries of the world, so some extra conditions must be
added.

8.18 We need the following sentences:

∀ s1 Smelly(s1) ⇔ ∃ s2 Adjacent(s1, s2) ∧ In(Wumpus, s2)
∃ s1 In(Wumpus, s1) ∧ ∀ s2 (s1 6= s2) ⇒ ¬In(Wumpus, s2) .

8.19

a. ∃x Parent(Joan, x) ∧ Female(x).
b. ∃1x Parent(Joan, x) ∧ Female(x).
c. ∃x Parent(Joan, x) ∧ Female(x) ∧ [∀ y Parent(Joan, y) ⇒ y=x].

(This is sometimes abbreviated “Female(ι(x)Parent(Joan, x))”.)

d. ∃1c Parent(Joan, c) ∧ Parent(Kevin, c).

e.
∃ c Parent(Joan, c) ∧ Parent(Kevin, c) ∧ ∀ d, p [Parent(Joan, d) ∧ Parent(p, d)]
⇒ [p= Joan ∨ p=Kevin]

8.20

a. ∀x Even(x) ⇔ ∃ y x= y + y.

b. ∀x Prime(x) ⇔ ∀ y, z x= y× z ⇒ y= 1 ∨ z= 1.

c. ∀x Even(x) ⇒ ∃ y, z Prime(y) ∧ Prime(z) ∧ x= y + z.

8.21 If we haveWA= red andQ = red then we could deduceWA=Q , which is undesir-
able to both Western Australians and Queenslanders.
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8.22
∀ k Key(k) ⇒ [∃ t0 Before(Now, t0) ∧ ∀ t Before(t0, t) ⇒ Lost(k, t)]
∀ s1, s2 Sock(s1) ∧ Sock(s2) ∧ Pair(s1, s2) ⇒

[∃ t1 Before(Now, t1) ∧ ∀ t Before(t1, t) ⇒ Lost(s1, t)]∨
[∃ t2 Before(Now, t2) ∧ ∀ t Before(t2, t) ⇒ Lost(s2, t)] .

Notice that the disjunction allows for both socks to be lost,as the English sentence im-
plies.

8.23

a. “No two people have the same social security number.”

¬∃x, y, n Person(x) ∧ Person(y) ⇒ [HasSS#(x, n) ∧ HasSS#(y, n)].

This uses⇒ with ∃. It also says that no person has a social security number because
it doesn’t restrict itself to the cases wherex andy are not equal. Correct version:

¬∃x, y, n Person(x) ∧ Person(y) ∧ ¬(x = y) ∧ [HasSS#(x, n) ∧HasSS#(y, n)]

b. “John’s social security number is the same as Mary’s.”

∃n HasSS#(John , n) ∧ HasSS#(Mary , n).

This is OK.

c. “Everyone’s social security number has nine digits.”

∀x, n Person(x) ⇒ [HasSS#(x, n) ∧Digits(n, 9)].

This says that everyone has every number.HasSS#(x, n) should be in the premise:

∀x, n Person(x) ∧ HasSS#(x, n) ⇒ Digits(n, 9)

d. HereSS#(x) denotes the social security number ofx. Using a function enforces the
rule that everyone has just one.

¬∃x, y Person(x) ∧ Person(y) ⇒ [SS#(x) = SS#(y)]
SS#(John) = SS#(Mary)
∀x Person(x) ⇒ Digits(SS#(x), 9)

8.24 In this exercise, it is best not to worry about details of tense and larger concerns with
consistent ontologies and so on. The main point is to make sure students understand con-
nectives and quantifiers and the use of predicates, functions, constants, and equality. Let the
basic vocabulary be as follows:
Takes(x, c, s): studentx takes coursec in semesters;
Passes(x, c, s): studentx passes coursec in semesters;
Score(x, c, s): the score obtained by studentx in coursec in semesters;
x > y: x is greater thany;
F andG: specific French and Greek courses (one could also interpretthese sentences as re-
ferring to any such course, in which case one could use a predicateSubject(c, f) meaning
that the subject of coursec is fieldf ;
Buys(x, y, z): x buysy from z (using a binary predicate with unspecified seller is OK but
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less felicitous);
Sells(x, y, z): x sellsy to z;
Shaves(x, y): personx shaves persony
Born(x, c): personx is born in countryc;
Parent(x, y): x is a parent ofy;
Citizen(x, c, r): x is a citizen of countryc for reasonr;
Resident(x, c): x is a resident of countryc;
Fools(x, y, t): personx fools persony at timet;
Student(x), Person(x), Man(x), Barber(x), Expensive(x), Agent(x), Insured(x),
Smart(x), Politician(x): predicates satisfied by members of the corresponding categories.

a. Some students took French in spring 2001.
∃x Student(x) ∧ Takes(x, F, Spring2001).

b. Every student who takes French passes it.
∀x, s Student(x) ∧ Takes(x, F, s) ⇒ Passes(x, F, s).

c. Only one student took Greek in spring 2001.
∃x Student(x)∧Takes(x,G, Spring2001)∧∀ y y 6= x⇒ ¬Takes(y,G, Spring2001).

d. The best score in Greek is always higher than the best score in French.
∀ s ∃x ∀ y Score(x,G, s) > Score(y, F, s).

e. Every person who buys a policy is smart.
∀x Person(x) ∧ (∃ y, z Policy(y) ∧Buys(x, y, z)) ⇒ Smart(x).

f. No person buys an expensive policy.
∀x, y, z Person(x) ∧ Policy(y) ∧Expensive(y) ⇒ ¬Buys(x, y, z).

g. There is an agent who sells policies only to people who are not insured.
∃x Agent(x) ∧ ∀ y, z Policy(y) ∧ Sells(x, y, z) ⇒ (Person(z) ∧ ¬Insured(z)).

h. There is a barber who shaves all men in town who do not shave themselves.
∃x Barber(x) ∧ ∀ y Man(y) ∧ ¬Shaves(y, y) ⇒ Shaves(x, y).

i. A person born in the UK, each of whose parents is a UK citizen or a UK resident, is a
UK citizen by birth.
∀x Person(x)∧Born(x,UK)∧(∀ y Parent(y, x) ⇒ ((∃ r Citizen(y, UK, r))∨
Resident(y, UK))) ⇒ Citizen(x,UK,Birth).

j . A person born outside the UK, one of whose parents is a UK citizen by birth, is a UK
citizen by descent.

∀x Person(x) ∧ ¬Born(x,UK) ∧ (∃ y Parent(y, x) ∧Citizen(y, UK,Birth))
⇒ Citizen(x,UK,Descent).

k. Politicians can fool some of the people all of the time, and they can fool all of the people
some of the time, but they can’t fool all of the people all of the time.

∀x Politician(x) ⇒
(∃ y ∀ t Person(y) ∧ Fools(x, y, t)) ∧
(∃ t ∀ y Person(y) ⇒ Fools(x, y, t)) ∧
¬(∀ t ∀ y Person(y) ⇒ Fools(x, y, t))
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l. All Greeks speak the same language.

∀x, y, l Person(x) ∧ [∃ r Citizen(x,Greece , r)] ∧ Person(y) ∧ [∃ r Citizen(y,Greece , r)]
∧ Speaks(x, l) ⇒ Speaks(y, l)

8.25 This is a very educational exercise but also highly nontrivial. Once students have
learned about resolution, ask them to do the proof too. In most cases, they will discover
missing axioms. Our basic predicates areHeard(x, e, t) (x heard about evente at timet);
Occurred(e, t) (evente occurred at timet); Alive(x, t) (x is alive at timet).

∃ t Heard(W,DeathOf(N), t)
∀x, e, t Heard(x, e, t) ⇒ Alive(x, t)
∀x, e, t2 Heard(x, e, t2) ⇒ ∃ t1 Occurred(e, t1) ∧ t1 < t2
∀ t1 Occurred(DeathOf(x), t1) ⇒ ∀ t2 t1 < t2 ⇒ ¬Alive(x, t2)
∀ t1, t2 ¬(t2 < t1) ⇒ ((t1 < t2) ∨ (t1 = t2))
∀ t1, t2, t3 (t1 < t2) ∧ ((t2 < t3) ∨ (t2 = t3)) ⇒ (t1 < t3)
∀ t1, t2, t3 ((t1 < t2) ∨ (t1 = t2)) ∧ (t2 < t3) ⇒ (t1 < t3)

8.26 There are three stages to go through. In the first stage, we define the concepts of one-
bit andn-bit addition. Then, we specify one-bit andn-bit adder circuits. Finally, we verify
that then-bit adder circuit doesn-bit addition.

• One-bit addition is easy. LetAdd1 be a function of three one-bit arguments (the third
is the carry bit). The result of the addition is a list of bits representing a 2-bit binary
number, least significant digit first:

Add1(0, 0, 0)= [0, 0]
Add1(0, 0, 1)= [0, 1]
Add1(0, 1, 0)= [0, 1]
Add1(0, 1, 1)= [1, 0]
Add1(1, 0, 0)= [0, 1]
Add1(1, 0, 1)= [1, 0]
Add1(1, 1, 0)= [1, 0]
Add1(1, 1, 1)= [1, 1]

• n-bit addition builds on one-bit addition. LetAddn(x1, x2, b) be a function that takes
two lists of binary digits of lengthn (least significant digit first) and a carry bit (initially
0), and constructs a list of lengthn + 1 that represents their sum. (It will always be
exactlyn + 1 bits long, even when the leading bit is 0—the leading bit is the overflow
bit.)

Addn([], [], b) = [b]
Add1(b1, b2, b) = [b3, b4] ⇒ Addn([b1|x1], [b2|x2], b) = [b3|Addn(x1, x2, b4)]

• The next step is to define the structure of a one-bit adder circuit, as given in the text.
Let Add1Circuit(c) be true of any circuit that has the appropriate components and
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connections:

∀ c Add1Circuit(c) ⇔
∃x1, x2, a1, a2, o1 Type(x1)=Type(x2)=XOR
∧ Type(a1)=Type(a2)=AND ∧ Type(o1)=OR
∧Connected(Out(1, x1), In(1, x2)) ∧ Connected(In(1, c), In(1, x1))
∧Connected(Out(1, x1), In(2, a2)) ∧ Connected(In(1, c), In(1, a1))
∧Connected(Out(1, a2), In(1, o1)) ∧ Connected(In(2, c), In(2, x1))
∧Connected(Out(1, a1), In(2, o1)) ∧ Connected(In(2, c), In(2, a1))
∧Connected(Out(1, x2), Out(1, c)) ∧ Connected(In(3, c), In(2, x2))
∧Connected(Out(1, o1), Out(2, c)) ∧ Connected(In(3, c), In(1, a2))

Notice that this allows the circuit to have additional gatesand connections, but they
won’t stop it from doing addition.

• Now we define what we mean by ann-bit adder circuit, following the design of Figure
8.6. We will need to be careful, because ann-bit adder is not just ann − 1-bit adder
plus a one-bit adder; we have to connect the overflow bit of then − 1-bit adder to the
carry-bit input of the one-bit adder. We begin with the base case, wheren= 0:

∀ c AddnCircuit(c, 0) ⇔
Signal(Out(1, c))= 0

Now, for the recursive case we specify that the first connect the “overflow” output of
then− 1-bit circuit as the carry bit for the last bit:

∀ c, n n > 0 ⇒ [AddnCircuit(c, n) ⇔
∃ c2, d AddnCircuit(c2, n− 1) ∧Add1Circuit(d)
∧ ∀m (m > 0) ∧ (m < 2n− 1) ⇒ In(m, c)= In(m, c2)
∧ ∀m (m > 0) ∧ (m < n) ⇒ ∧Out(m, c)=Out(m, c2)
∧Connected(Out(n, c2), In(3, d))
∧Connected(In(2n − 1, c), In(1, d)) ∧ Connected(In(2n, c), In(2, d))
∧Connected(Out(1, d), Out(n, c)) ∧ Connected(Out(2, d), Out(n + 1, c))

• Now, to verify that a one-bit addercircuit actually adds correctly, we ask whether, given
any setting of the inputs, the outputs equal the sum of the inputs:

∀ c Add1Circuit(c) ⇒
∀ i1, i2, i3 Signal(In(1, c))= i1 ∧ Signal(In(2, c))= i2 ∧ Signal(In(3, c))= i3
⇒ Add1(i1, i2, i3)= [Out(1, c), Out(2, c)]

If this sentence is entailed by the KB, then every circuit with theAdd1Circuit design
is in fact an adder. The query for then-bit can be written as

∀ c, n AddnCircuit(c, n) ⇒
∀x1, x2, y InterleavedInputBits(x1, x2, c) ∧OutputBits(y, c)
⇒ Addn(x1, x2, y)

whereInterleavedInputBits andOutputBits are defined appropriately to map bit
sequences to the actual terminals of the circuit. [Note: this logical formulation has not
been tested in a theorem prover and we hesitate to vouch for its correctness.]
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8.27 The answers here will vary by country. The two key rules for UKpassports are given
above.

8.28

a. W (G,T ).

b. ¬W (G,E).

c. W (G,T ) ∨W (M,T ).

d. ∃ s W (J, s).

e. ∃x C(x,R) ∧O(J, x).

f. ∀ s S(M,s,R) ⇒ W (M,s).

g. ¬[∃ s W (G, s) ∧ ∃ p S(p, s,R)].

h. ∀ s W (G, s) ⇒ ∃ p, a S(p, s, a).

i. ∃ a ∀ s W (J, s) ⇒ ∃ p S(p, s, a).

j . ∃ d, a, s C(d, a) ∧O(J, d) ∧ S(B,T, a).

k. ∀ a [∃ s S(M,s, a)] ⇒ ∃ d C(d, a) ∧O(J, d).

l. ∀ a [∀ s, p S(p, s, a) ⇒ S(B, s, a)] ⇒ ∃ d C(d, a) ∧O(J, d).



Solutions for Chapter 9
Inference in First-Order Logic

9.1 We want to show that any sentence of the form∀ v α entails any universal instantiation
of the sentence. The sentence∀ v α asserts thatα is true in all possible extended interpreta-
tions. For any model specifying the referent of ground termg, the truth of SUBST({v/g}, α)
must be identical to the truth value of some extended interpretation in whichv is assigned to
an object, and in all such interpretationsα is true.

EI states: for any sentenceα, variablev, and constant symbolk that does not appear
elsewhere in the knowledge base,

∃ v α

SUBST({v/k}, α)
.

If the knowledge base with the original existentially quantified sentence isKB and the result
of EI isKB′, then we need to prove thatKB is satisfiable iffKB′ is satisfiable. Forward: if
KB is satisfiable, it has a modelM for which an extended interpretation assigningv to some
objecto rendersα true. Hence, we can construct a modelM ′ that satisfiesKB′ by assigning
k to refer too; sincek does not appear elsewhere, the truth values of all other sentences are
unaffected. Backward: ifKB′ is satisfiable, it has a modelM ′ with an assignment fork
to some objecto. Hence, we can construct a modelM that satisfiesKB with an extended
interpretation assigningv to o; sincek does not appear elsewhere, removing it from the model
leaves the truth values of all other sentences are unaffected.

9.2 For any sentenceα containing a ground termg and for any variablev not occuring in
α, we have

α

∃ v SUBST∗({g/v}, α)

where SUBST∗ is a function that substitutes any or all of the occurrences of g with v. Notice
that substituting just one occurrence and applying the rulemultiple times is not the same,
because it results in a weaker conclusion. For example,P (a, a) should entail∃x P (x, x)
rather than the weaker∃x, y P (x, y).

9.3 Both b and c are sound conclusions; a is unsound because it introduces the previously-
used symbolEverest. Note that c does not imply that there are two mountains as high as
Everest, because nowhere is it stated thatBenNevisis different fromKilimanjaro (or Everest,
for that matter).

9.4 This is an easy exercise to check that the student understands unification.
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a. {x/A, y/B, z/B} (or some permutation of this).

b. No unifier (x cannot bind to bothA andB).

c. {y/John, x/John}.
d. No unifier (because the occurs-check prevents unification of y with Father(y)).

9.5

a. For the sentenceEmploys(Mother (John),Father (Richard)), the page isn’t wide enough
to draw the diagram as in Figure 9.2, so we will draw it with indentation denoting chil-
dren nodes:

[1] Employs(x, y)
[2] Employs(x, Father(z))

[3] Employs(x, Father(Richard))
[4] Employs(Mother(w), Father(Richard))

[5] Employs(Mother(John), Father(Richard))
[6] Employs(Mother(w), Father(z))

[4] ...
[7] Employs(Mother(John), Father(z))

[5] ...
[8] Employs(Mother(w), y)

[9] Employs(Mother(John), y)
[10] Employs(Mother(John), Father(z)

[5] ...
[6] ...

b. For the sentenceEmploys(IBM , y), the lattice containsEmploys(x, y) andEmploys(y, y).

c.

9.6 We use a very simple ontology to make the examples easier:

a. Horse(x) ⇒ Mammal(x)
Cow(x) ⇒ Mammal(x)
Pig(x) ⇒ Mammal(x).

b. Offspring(x, y) ∧Horse(y) ⇒ Horse(x).

c. Horse(Bluebeard).

d. Parent(Bluebeard,Charlie).

e. Offspring(x, y) ⇒ Parent(y, x)
Parent(x, y) ⇒ Offspring(y, x).
(Note we couldn’t doOffspring(x, y) ⇔ Parent(y, x) because that is not in the form
expected by Generalized Modus Ponens.)

f. Mammal(x) ⇒ Parent(G(x), x) (hereG is a Skolem function).

9.7
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a. LetP (x, y) be the relation “x is less thany” over the integers. Then∀x ∃ y P (x, y)
is true but∃x P (x, x) is false.

b. Converting the premise to clausal form givesP (x, Sk0(x)) and converting the negated
goal to clausal form gives¬P (q, q). If the two formulas can be unified, then these
resolve to the null clause.

c. If the premise is represented asP (x, Sk0) and the negated goal has been correctly
converted to the clause¬P (q, q) then these can be resolved to the null clause under the
substitution{q/Sk0, x/Sk0}.

d. Suppose you are given the premise∃x Cat(x) and you wish to proveCat(Socrates).
Converting the premise to clausal form gives the clauseCat(Sk1). If this unifies with
Cat(Socrates) then you can resolve this with the negated goal¬Cat(Socrates) to
give the null clause.

9.8 Consider a 3-SAT problem of the form

(x1,1 ∨ x2,1 ∨ ¬x3,1) ∧ (¬x1,2 ∨ x2,2 ∨ x3,2) ∨ . . .
We want to rewrite this as a single definite clause of the form

A ∧B ∧ C ∧ . . . ⇒ Z,

along with a few ground clauses. We can do that with the definite clause

OneOf(x1,1, x2,1,Not(x3,1)) ∧OneOf(Not(x1,2), x2,2, x3,2) ∧ . . . ⇒ Solved .

The key is that any solution to the definite clause has to assign the same value to each occur-
rence of any given variable, even if the variable is negated in some of the SAT clauses but not
others. We also need to defineOneOf . This can be done concisely as follows:

OneOf(True, x, y)
OneOf(x, True, y)
OneOf(x, y, T rue)
OneOf(Not(False), x, y)
OneOf(x,Not(False), y)
OneOf(x, y,Not(False))

9.9 This is quite tricky but students should be able to manage if they check each step care-
fully.

a. (Note: At each resolution, we rename the variables in the rule).

Goal G0:7 ≤ 3 + 9 Resolve with (8){x1/7, z1/3 + 9}.
Goal G1:7 ≤ y1 Resolve with (4){x2/7, y1/7 + 0}. Succeeds.
Goal G2:7 + 0 ≤ 3 + 9. Resolve with (8){x3/7 + 0, z3/3 + 9}

Goal G3:7 + 0 ≤ y3 Resolve with (6){x4/7, y4/0, y3/0 + 7} Succeeds.
Goal G4:0 + 7 ≤ 3 + 9 Resolve with (7){w5/0, x5/7, y5/3, z5/9}.

Goal G5:0 ≤ 3. Resolve with (1). Succeeds.
Goal G6:7 ≤ 9. Resolve with (2). Succeeds.
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G4 succeeds
G2 succeeds.

G0 succeeds.

b. From (1),(2), (7){w/0, x/7, y/3, z/9} infer
(9) 0 + 7 ≤ 3 + 9.

From (9), (6), (8){x1/0, y1/7, x2/0 + 7, y2/7 + 0, z2/3 + 9} infer
(10)7 + 0 ≤ 3 + 9.
(x1, y1 are renamed variables in (6).x2, y2, z2 are renamed variables in (8).)

From (4), (10), (8){x3/7, x4/7, y4/7 + 0, z4/3 + 9} infer
(11)7 ≤ 3 + 9.
(x3 is a renamed variable in (4).x4, y4, z4 are renamed variables in (8).)

9.10 Surprisingly, the hard part to represent is “who is that man.” We want to ask “what
relationship does that man have to some known person,” but ifwe represent relations with
predicates (e.g.,Parent(x, y)) then we cannot make the relationship be a variable in first-
order logic. So instead we need to reify relationships. We will useRel(r, x, y) to say that the
family relationshipr holds between peoplex andy. LetMe denote me andMrX denote
“that man.” We will also need the Skolem constantsFM for the father ofMe andFX for
the father ofMrX. The facts of the case (put into implicative normal form) are:

(1) Rel(Sibling,Me, x) ⇒ False
(2) Male(MrX)
(3) Rel(Father, FX,MrX)
(4) Rel(Father, FM,Me)
(5) Rel(Son, FX,FM)

We want to be able to show thatMe is the only son of my father, and therefore thatMe is
father ofMrX, who is male, and therefore that “that man” is my son. The relevant definitions
from the family domain are:

(6) Rel(Parent, x, y) ∧Male(x) ⇔ Rel(Father, x, y)
(7) Rel(Son, x, y) ⇔ Rel(Parent, y, x) ∧Male(x)
(8) Rel(Sibling, x, y) ⇔ x 6= y ∧ ∃ p Rel(Parent, p, x) ∧Rel(Parent, p, y)
(9) Rel(Father, x1, y) ∧Rel(Father, x2, y) ⇒ x1 = x2

and the query we want is:

(Q) Rel(r,MrX, y)

We want to be able to get back the answer{r/Son, y/Me}. Translating 1-9 andQ into INF
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(and negatingQ and including the definition of6=) we get:

(6a) Rel(Parent, x, y) ∧Male(x) ⇒ Rel(Father, x, y)
(6b) Rel(Father, x, y) ⇒ Male(x)
(6c) Rel(Father, x, y) ⇒ Rel(Parent, x, y)
(7a) Rel(Son, x, y) ⇒ Rel(Parent, y, x)
(7b) Rel(Son, x, y) ⇒ Male(x))
(7c) Rel(Parent, y, x) ∧Male(x) ⇒ Rel(Son, x, y)
(8a) Rel(Sibling, x, y) ⇒ x 6= y
(8b) Rel(Sibling, x, y) ⇒ Rel(Parent, P (x, y), x)
(8c) Rel(Sibling, x, y) ⇒ Rel(Parent, P (x, y), y)
(8d) Rel(Parent, P (x, y), x) ∧Rel(Parent, P (x, y), y) ∧ x 6= y ⇒ Rel(Sibling, x, y)
(9) Rel(Father, x1, y) ∧Rel(Father, x2, y) ⇒ x1 = x2

(N) True ⇒ x = y ∨ x 6= y
(N ′) x = y ∧ x 6= y ⇒ False
(Q′) Rel(r,MrX, y) ⇒ False

Note that (1) is non-Horn, so we will need resolution to be be sure of getting a solution. It
turns out we also need demodulation to deal with equality. The following lists the steps of
the proof, with the resolvents of each step in parentheses:

(10) Rel(Parent, FM,Me) (4, 6c)
(11) Rel(Parent, FM,FX) (5, 7a)
(12) Rel(Parent, FM, y) ∧Me 6= y ⇒ Rel(Sibling,Me, y) (10, 8d)
(13) Rel(Parent, FM, y) ∧Me 6= y ⇒ False (12, 1)
(14) Me 6= FX ⇒ False (13, 11)
(15) Me = FX (14,N)
(16) Rel(Father,Me,MrX) (15, 3, demodulation)
(17) Rel(Parent,Me,MrX) (16, 6c)
(18) Rel(Son,MrX,Me) (17, 2, 7c)
(19) False {r/Son, y/Me} (18, Q′)

9.11 We will give the average-case time complexity for each query/scheme combination
in the following table. (An entry of the form “1; n” means that it isO(1) to find the first
solution to the query, butO(n) to find them all.) We make the following assumptions: hash
tables giveO(1) access; there aren people in the data base; there areO(n) people of any
specified age; every person has one mother; there areH people in Houston andT people in
Tiny Town;T is much less thann; in Q4, the second conjunct is evaluated first.

Q1 Q2 Q3 Q4
S1 1 1; H 1; n T ; T
S2 1 n; n 1; n n; n
S3 n n; n 1; n n2; n2

S4 1 n; n 1; n n; n
S5 1 1; H 1; n T ; T

Anything that isO(1) can be considered “efficient,” as perhaps can anythingO(T ). Note
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that S1 and S5 dominate the other schemes for this set of queries. Also note that indexing on
predicates plays no role in this table (except in combination with an argument), because there
are only 3 predicates (which isO(1)). It would make a difference in terms of the constant
factor.

9.12 This would work if there were no recursive rules in the knowledge base. But suppose
the knowledge base contains the sentences:

Member(x, [x|r])
Member(x, r) ⇒ Member(x, [y|r])

Now take the queryMember(3, [1, 2, 3]), with a backward chaining system. We unify the
query with the consequent of the implication to get the substitution θ = {x/3, y/1, r/[2, 3]}.
We then substitute this in to the left-hand side to getMember(3, [2, 3]) and try to back
chain on that with the substitutionθ. When we then try to apply the implication again, we
get a failure becausey cannot be both1 and2. In other words, the failure to standardize
apart causes failure in some cases where recursive rules would result in a solution if we did
standardize apart.

9.13 This questions deals with the subject of looping in backward-chaining proofs. A loop
is bound to occur whenever a subgoal arises that is a substitution instance of one of the goals
on the stack. Not all loops can be caught this way, of course, otherwise we would have a way
to solve the halting problem.

a. The proof tree is shown in Figure S9.1. The branch withOffspring(Bluebeard, y) and
Parent(y,Bluebeard) repeats indefinitely, so the rest of the proof is never reached.

b. We get an infinite loop because of ruleb, Offspring(x, y) ∧Horse(y) ⇒ Horse(x).
The specific loop appearing in the figure arises because of theordering of the clauses—
it would be better to orderHorse(Bluebeard) before the rule fromb. However, a loop
will occur no matter which way the rules are ordered if the theorem-prover is asked for
all solutions.

c. One should be able to prove that both Bluebeard and Charlie are horses.

d. Smith et al. (1986) recommend the following method. Whenever a “looping” goal
occurs (one that is a substitution instance of a supergoal higher up the stack), sus-
pend the attempt to prove that subgoal. Continue with all other branches of the proof
for the supergoal, gathering up the solutions. Then use those solutions (suitably in-
stantiated if necessary) as solutions for the suspended subgoal, continuing that branch
of the proof to find additional solutions if any. In the proof shown in the figure, the
Offspring(Bluebeard, y) is a repeated goal and would be suspended. Since no other
way to prove it exists, that branch will terminate with failure. In this case, Smith’s
method is sufficient to allow the theorem-prover to find both solutions.

9.14 Here is a goal tree:

goals = [Criminal(West)]
goals = [American(West), Weapon(y), Sells(West, y, z), Hos tile(z)]
goals = [Weapon(y), Sells(West, y, z), Hostile(z)]
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Parent(y,Bluebeard)

Horse(h)

Offspring(h,y)

Parent(y,h)

Horse(Bluebeard)

Yes, {y/Bluebeard,
           h/Charlie}

Offspring(Bluebeard,y)

Offspring(Bluebeard,y)

Figure S9.1 Partial proof tree for finding horses.

goals = [Missle(y), Sells(West, y, z), Hostile(z)]
goals = [Sells(West, M1, z), Hostile(z)]

goals = [Missle(M1), Owns(Nono, M1), Hostile(Nono)]
goals = [Owns(Nono, M1), Hostile(Nono)]

goals = [Hostile(Nono)]
goals = []

9.15

a. In the following, an indented line is a step deeper in the proof tree, while two lines at
the same indentation represent two alternative ways to prove the goal that is unindented
above it.P1 andP2 refer to the first and second clauses of the definition respectively.
We show each goal as it is generated and the result of unifyingit with the head of each
clause.

P(A, [2,1,3]) goal
P(2, [2|[1,3]]) unify with head of P1

=> solution, with A = 2
P(A, [2|[1,3]]) unify with head of P2

P(A, [1,3]) subgoal
P(1, [1,3]) unify with head of P1

=> solution, with A = 1
P(A, [1|[3]]) unify with head of P2

P(A, [3]) subgoal
P(3, [3|[]]) unify with head of P1

=> solution, with A = 3
P(A, [3|[]]) unify with head of P2
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P(A, []) subgoal (fails)

P(2, [1,A,3]) goal
P(2, [1|[A,3]]) unify with head of P2

P(2, [A,3]) subgoal
P(2, [2,3]) unify with head of P1

=> solution, with A = 2
P(2, [A|[3]]) unify with head of P2

P(2, [3]) subgoal
P(2, [3|[]]) unify with head of P2

P(2, []) subgoal

b. P could better be calledMember; it succeeds when the first argument is an element of
the list that is the second argument.

9.16 The different versions ofsort illustrate the distinction between logical and procedu-
ral semantics in Prolog.

a. sorted([]).
sorted([X]).
sorted([X,Y|L]) :- X<Y, sorted([Y|L]).

b. perm([],[]).
perm([X|L],M) :-

delete(X,M,M1),
perm(L,M1).

delete(X,[X|L],L). %% deleting an X from [X|L] yields L
delete(X,[Y|L],[Y|M]) :- delete(X,L,M).

member(X,[X|L]).
member(X,[_|L]) :- member(X,L).

c. sort(L,M) :- perm(L,M), sorted(M).

This is about as close to an executable formal specification of sorting as you can
get—it says the absolute minimum about what sort means: in order forMto be a sort of
L, it must have the same elements asL, and they must be in order.

d. Unfortunately, this doesn’t fare as well as a program as it does as a specification. It
is a generate-and-test sort:perm generates candidate permutations one at a time, and
sorted tests them. In the worst case (when there is only one sorted permutation, and
it is the last one generated), this will takeO(n!) generations. Since eachperm isO(n2)
and eachsorted isO(n), the wholesort isO(n!n2) in the worst case.

e. Here’s a simple insertion sort, which isO(n2):
isort([],[]).
isort([X|L],M) :- isort(L,M1), insert(X,M1,M).

insert(X,[],[X]).
insert(X,[Y|L],[X,Y|L]) :- X=<Y.
insert(X,[Y|L],[Y|M]) :- Y<X, insert(X,L,M).

9.17 This exercise illustrates the power of pattern-matching, which is built into Prolog.
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a. The code for simplification looks straightforward, but students may have trouble finding
the middle way between undersimplifying and looping infinitely.
simplify(X,X) :- primitive(X).
simplify(X,Y) :- evaluable(X), Y is X.
simplify(Op(X)) :- simplify(X,X1), simplify_exp(Op(X1) ).
simplify(Op(X,Y)) :- simplify(X,X1), simplify(Y,Y1), si mplify_exp(Op(X1,Y1)).

simplify_exp(X,Y) :- rewrite(X,X1), simplify(X1,Y).
simplify_exp(X,X).

primitive(X) :- atom(X).

b. Here are a few representative rewrite rules drawn from the extensive list in Norvig (1992).
Rewrite(X+0,X).
Rewrite(0+X,X).
Rewrite(X+X,2 * X).
Rewrite(X * X,Xˆ2).
Rewrite(Xˆ0,1).
Rewrite(0ˆX,0).
Rewrite(X * N,N* X) :- number(N).
Rewrite(ln(eˆX),X).
Rewrite(XˆY * XˆZ,Xˆ(Y+Z)).
Rewrite(sin(X)ˆ2+cos(X)ˆ2,1).

c. Here are the rules for differentiation, usingd(Y,X) to represent the derivative of ex-
pressionY with respect to variableX.
Rewrite(d(X,X),1).
Rewrite(d(U,X),0) :- atom(U), U /= X.
Rewrite(d(U+V,X),d(U,X)+d(V,X)).
Rewrite(d(U-V,X),d(U,X)-d(V,X)).
Rewrite(d(U * V,X),V * d(U,X)+U * d(V,X)).
Rewrite(d(U/V,X),(V * d(U,X)-U * d(V,X))/(Vˆ2)).
Rewrite(d(UˆN,X),N * Uˆ(N-1) * d(U,X)) :- number(N).
Rewrite(d(log(U),X),d(U,X)/U).
Rewrite(d(sin(U),X),cos(U) * d(U,X)).
Rewrite(d(cos(U),X),-sin(U) * d(U,X)).
Rewrite(d(eˆU,X),d(U,X) * eˆU).

9.18 Once you understand how Prolog works, the answer is easy:
solve(X,[X]) :- goal(X).
solve(X,[X|P]) :- successor(X,Y), solve(Y,P).

We could render this in English as “Given a start state, if it is a goal state, then the path
consisting of just the start state is a solution. Otherwise,find some successor state such that
there is a path from the successor to the goal; then a solutionis the start state followed by that
path.”

Notice thatsolve can not only be used to find a pathP that is a solution, it can also be
used to verify that a given path is a solution.

If you want to add heuristics (or even breadth-first search),you need an explicit queue.
The algorithms become quite similar to the versions writtenin Lisp or Python or Java or in
pseudo-code in the book.
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9.19

a. Results from forward chaining:

(i) Ancestor(Mother(y), John): Yes,{y/John} (immediate).
(ii) Ancestor(Mother(Mother(y)), John): Yes,{y/John} (second iteration).

(iii) Ancestor(Mother(Mother(Mother(y))),Mother(y)): Yes,{} (second itera-
tion).

(iv) Ancestor(Mother(John),Mother(Mother(John))): Does not terminate.

b. Although resolution is complete, it cannot prove this because it does not follow. Nothing
in the axioms rules out the possibility of everything being the ancestor of everything
else.

c. Same answer.

9.20

a. ∃ p ∀ q S(p, q) ⇔ ¬S(q, q).

b. There are two clauses, corresponding to the two directionsof the implication.
C1:¬S(Sk1, q) ∨ ¬S(q, q).
C2: S(Sk1, q) ∨ S(q, q).

c. Applying factoring to C1, using the substitutionq/Sk1 gives:
C3:¬S(Sk1, Sk1).
Applying factoring to C2, using the substitutionq/Sk1 gives:
C4: S(Sk1, Sk1).
Resolving C3 with C4 gives the null clause.

9.21 This question tests both the student’s understanding of resolution and their ability to
think at a high level about relations among sets of sentences. Recall that resolution allows one
to show thatKB |= α by proving thatKB ∧ ¬α is inconsistent. Suppose that in general the
resolution system is called using ASK(KB,α). Now we want to show that a given sentence,
sayβ is valid or unsatisfiable.

A sentenceβ is valid if it can be shown to be true without additional information. We
check this by calling ASK(KB0, β) whereKB0 is the empty knowledge base.

A sentenceβ that is unsatisfiable is inconsistent by itself. So if we empty the knowl-
edge base again and call ASK(KB0,¬β) the resolution system will attempt to derive a con-
tradiction starting from¬¬β. If it can do so, then it must be that¬¬β, and henceβ, is
inconsistent.

9.22 There are two ways to do this: one literal in one clause that iscomplementary to two
different literals in the other, such as

P (x) ¬P (a) ∨ ¬P (b)

or two complementary pairs of literals, such as

P (x) ∨Q(x) ¬P (a) ∨ ¬Q(b) .
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Note that this does not work in propositional logic: in the first case, the two literals in the
second clause would have to be identical; in the second case,the remaining unresolved com-
plementary pair after resolution would render the result a tautology.

9.23 This is a form of inference used to show that Aristotle’s syllogisms could not capture
all sound inferences.

a. ∀x Horse(x) ⇒ Animal(x)
∀x, h Horse(x) ∧HeadOf(h, x) ⇒ ∃ y Animal(y) ∧HeadOf(h, y)

b. A. ¬Horse(x) ∨Animal(x)
B. Horse(G)
C. HeadOf(H,G)
D. ¬Animal(y) ∨ ¬HeadOf(H, y)
(HereA. comes from the first sentence ina. while the others come from the second.H
andG are Skolem constants.)

c. ResolveD andC to yield ¬Animal(G). Resolve this withA to give¬Horse(G).
Resolve this withB to obtain a contradiction.

9.24 This exercise tests the students’ understanding of models and implication.

a. (A) translates to “For every natural number there is some other natural number that is
smaller than or equal to it.” (B) translates to “There is a particular natural number that
is smaller than or equal to any natural number.”

b. Yes, (A) is true under this interpretation. You can always pick the number itself for the
“some other” number.

c. Yes, (B) is true under this interpretation. You can pick 0 for the “particular natural
number.”

d. No, (A) does not logically entail (B).
e. Yes, (B) logically entails (A).
f. We want to try to prove via resolution that (A) entails (B). To do this, we set our knowl-

edge base to consist of (A) and the negation of (B), which we will call (-B), and try to
derive a contradiction. First we have to convert (A) and (-B)to canonical form. For (-B),
this involves moving the¬ in past the two quantifiers. For both sentences, it involves
introducing a Skolem function:

(A) x ≥ F1(x)
(-B) ¬F2(y) ≥ y

Now we can try to resolve these two together, but the occurs check rules out the unifica-
tion. It looks like the substitution should be{x/F2(y), y/F1(x)}, but that is equivalent
to {x/F2(y), y/F1(F2(y))}, which fails becausey is bound to an expression contain-
ing y. So the resolution fails, there are no other resolution steps to try, and therefore (B)
does not follow from (A).

g. To prove that (B) entails (A), we start with a knowledge basecontaining (B) and the
negation of (A), which we will call (-A):

(-A) ¬F1 ≥ y
(B) x ≥ F2
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This time the resolution goes through, with the substitution {x/F1, y/F2}, thereby
yieldingFalse, and proving that (B) entails (A).

9.25 One way of seeing this is that resolution allows reasoning bycases, by which we can
proveC by proving that eitherA or B is true, without knowing which one. If the query
contains a variable, we cannot prove that anyparticular instantiation gives a fact that is
entailed. With definite clauses, we always have a single chain of inference, for which we can
follow the chain and instantiate variables; the solution isalways a single MGU.

9.26 Not exactly. Part of the definition of algorithm is that it must terminate. Since there
can be an infinite number of consequences of a set of sentences, no algorithm can generate
them all. Another way to see that the answer is no is to remember that entailment for FOL is
semidecidable. If there were an algorithm that generates the set of consequences of a set of
sentencesS, then when given the task of deciding ifB is entailed byS, one could just check
if B is in the generated set. But we know that this is not possible,therefore generating the set
of sentences is impossible.

If we relax the definition of “algorithm” to allow for programs thatenumeratethe con-
sequences, in the same sense that a program can enumerate thenatural numbers by printing
them out in order, the answer is yes. For example, we can enumerate them in order of the
deepest allowable nesting of terms in the proof.



Solutions for Chapter 10
Classical Planning

10.1 Both problem solver and planner are concerned with getting from a start state to a
goal using a set of defined operations or actions, typically in a deterministic, discrete, observ-
able environment. In planning, however, we open up the representation of states, goals, and
plans, which allows for a wider variety of algorithms that decompose the search space, search
forwards or backwards, and use automated generation of heuristic functions.

10.2 This is an easy exercise, the point of which is to understand that “applicable” means
satisfying the preconditions, and that a concrete action instance is one with the variables
replaced by constants. The applicable actions are:

Fly(P1, JFK ,SFO)
Fly(P1, JFK , JFK )
Fly(P2,SFO , JFK )
Fly(P2,SFO ,SFO)

A minor point of this is that the action of flying nowhere—fromone airport to itself—is
allowable by the definition ofFly , and is applicable (if not useful).

10.3 This exercise is intended as a fairly easy exercise in describing a domain.

a. The initial state is:

At(Monkey,A) ∧At(Bananas,B) ∧At(Box,C) ∧
Height(Monkey, Low) ∧Height(Box,Low) ∧Height(Bananas,High) ∧
Pushable(Box) ∧Climbable(Box)

87
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b. The actions are:

Action(ACTION:Go(x, y),PRECOND:At(Monkey, x),
EFFECT:At(Monkey, y) ∧ ¬(At(Monkey, x)))

Action(ACTION:Push(b, x, y),PRECOND:At(Monkey, x) ∧ Pushable(b),
EFFECT:At(b, y) ∧At(Monkey, y) ∧ ¬At(b, x) ∧ ¬At(Monkey, x))

Action(ACTION:ClimbUp(b),
PRECOND:At(Monkey, x) ∧At(b, x) ∧ Climbable(b),
EFFECT:On(Monkey, b) ∧ ¬Height(Monkey,High))

Action(ACTION:Grasp(b),
PRECOND:Height(Monkey, h) ∧Height(b, h)

∧At(Monkey, x) ∧At(b, x),
EFFECT:Have(Monkey, b))

Action(ACTION:ClimbDown(b),
PRECOND:On(Monkey, b) ∧Height(Monkey,High),
EFFECT:¬On(Monkey, b) ∧ ¬Height(Monkey,High)

∧Height(Monkey, Low)
Action(ACTION:UnGrasp(b),PRECOND:Have(Monkey, b),

EFFECT:¬Have(Monkey, b))

c. In situation calculus, the goal is a states such that:

Have(Monkey,Bananas, s) ∧ (∃x At(Box, x, s0) ∧At(Box, x, s))

In STRIPS, we can only talk about the goal state; there is no way of representing the fact
that there must be some relation (such as equality of location of an object) between two
states within the plan. So there is no way to represent this goal.

d. Actually, we did include thePushable precondition in the solution above.

10.4 The actions are quite similar to the monkey and bananas problem—you should proba-
bly assign only one of these two problems. The actions are:

Action(ACTION:Go(x, y),PRECOND:At(Shakey, x) ∧ In(x, r) ∧ In(y, r),
EFFECT:At(Shakey, y) ∧ ¬(At(Shakey, x)))

Action(ACTION:Push(b, x, y),PRECOND:At(Shakey, x) ∧ Pushable(b),
EFFECT:At(b, y) ∧At(Shakey, y) ∧ ¬At(b, x) ∧ ¬At(Shakey, x))

Action(ACTION:ClimbUp(b),PRECOND:At(Shakey, x) ∧At(b, x) ∧Climbable(b),
EFFECT:On(Shakey, b) ∧ ¬On(Shakey, F loor))

Action(ACTION:ClimbDown(b),PRECOND:On(Shakey, b),
EFFECT:On(Shakey, F loor) ∧ ¬On(Shakey, b))

Action(ACTION:TurnOn(l),PRECOND:On(Shakey, b) ∧At(Shakey, x) ∧At(l, x),
EFFECT:TurnedOn(l))

Action(ACTION:TurnOff(l),PRECOND:On(Shakey, b) ∧At(Shakey, x) ∧At(l, x),
EFFECT:¬TurnedOn(l))
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The initial state is:

In(Switch1, Room1) ∧ In(Door1, Room1) ∧ In(Door1, Corridor)
In(Switch1, Room2) ∧ In(Door2, Room2) ∧ In(Door2, Corridor)
In(Switch1, Room3) ∧ In(Door3, Room3) ∧ In(Door3, Corridor)
In(Switch1, Room4) ∧ In(Door4, Room4) ∧ In(Door4, Corridor)
In(Shakey,Room3) ∧At(Shakey,XS)
In(Box1, Room1) ∧ In(Box2, Room1) ∧ In(Box3, Room1) ∧ In(Box4, Room1)
Climbable(Box1) ∧ Climbable(Box2) ∧Climbable(Box3) ∧ Climbable(Box4)
Pushable(Box1) ∧ Pushable(Box2) ∧ Pushable(Box3) ∧ Pushable(Box4)
At(Box1,X1) ∧At(Box2,X2) ∧At(Box3,X3) ∧At(Box4,X4)
TurnwdOn(Switch1) ∧ TurnedOn(Switch4)

A plan to achieve the goal is:

Go(XS ,Door3)
Go(Door3,Door1)
Go(Door1,X2)
Push(Box2,X2,Door1)
Push(Box2,Door1,Door2)
Push(Box2,Door2, Switch2)

10.5 One representation is as follows. We have the predicates:

a. HeadAt(c): tape head at cell locationc, true for exactly one cell.

b. State(s): machine state iss, true for exactly one cell.

c. ValueOf (c, v): cell c’s value isv.

d. LeftOf (c1, c2): cell c1 is one step left from cellc2.

e. TransitionLeft(s1, v1, s2, v2): the machine in states1 upon reading a cell with value
v1 may write valuev2 to the cell, change state tos2, and transition to the left.

f. TransitionRight (s1, v1, s2, v2): the machine in states1 upon reading a cell with value
v1 may write valuev2 to the cell, change state tos2, and transition to the right.

The predicatesHeadAt , State , andValueOf are fluents, the rest are constant descrip-
tions of the machine and its tape. Two actions are required:

Action(RunLeft(s1, c1, v1, , s2, c2, v2),
PRECOND:State(s1) ∧HeadAt(c1) ∧ ValueOf (c1, v1)

; ∧TransitionLeft(s1, v1, s2, v2) ∧ LeftOf (c2, c1)
EFFECT:¬State(s1) ∧ State(s2) ∧ ¬HeadAt(c1) ∧HeadAt(c2)

∧¬ValueOf (c1, v1) ∧ ValueOf (c1, v2))

Action(RunRight(s1, c1, v1, , s2, c2, v2),
PRECOND:State(s1) ∧HeadAt(c1) ∧ ValueOf (c1, v1)

; ∧TransitionRight(s1, v1, s2, v2) ∧ LeftOf (c1, c2)
EFFECT:¬State(s1) ∧ State(s2) ∧ ¬HeadAt(c1) ∧HeadAt(c2)

∧¬ValueOf (c1, v1) ∧ ValueOf (c1, v2))
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The goal will typically be to reach a fixed accept state. A simple example problem is:

Init(HeadAt(C0) ∧ State(S1) ∧ ValueOf (C0, 1) ∧ ValueOf (C1, 1)
∧ValueOf (C2, 1) ∧ ValueOf (C3, 0) ∧ LeftOf (C0, C1) ∧ LeftOf (C1, C2)
∧LeftOf (C2, C3) ∧ TransitionLeft (S1, 1, S1, 0) ∧ TransitionLeft (S1, 0, Saccept , 0)

Goal (State(Saccept))

Note that the number of literals in a state is linear in the number of cells, which means a
polynomial space machine require polynomial state to represent.

10.6 Goals and preconditions can only be positive literals. So a negative effect can only
make it harder to achieve a goal (or a precondition to an action that achieves the goal). There-
fore, eliminating all negative effects only makes a problemeasier. This wouldnot be true if
negative preconditions and goals were allowed.

10.7 The initial state is:

On(B,Table) ∧On(C,A) ∧On(A,Table) ∧Clear(B) ∧ Clear(C)

The goal is:

On(A,B) ∧On(B,C)

First we’ll explain why it is an anomaly for a noninterleavedplanner. There are two subgoals;
suppose we decide to work onOn(A,B) first. We can clearC off of A and then moveA
on toB. But then there is no way to achieveOn(B,C) without undoing the work we have
done. Similarly, if we work on the subgoalOn(B,C) first we can immediately achieve it in
one step, but then we have to undo it to getA onB.

Now we’ll show how things work out with an interleaved planner such as POP. Since
On(A,B) isn’t true in the initial state, there is only one way to achieve it: Move(A,x,B),
for somex. Similarly, we also need aMove(B,x′, C) step, for somex′. Now let’s look
at theMove(A,x,B) step. We need to achieve its preconditionClear(A). We could do
that either withMove(b,A, y) or with MoveToTable(b,A). Let’s assume we choose the
latter. Now if we bindb toC, then all of the preconditions for the stepMoveToTable(C,A)
are true in the initial state, and we can add causal links to them. We then notice that there
is a threat: theMove(B,x′, C) step threatens theClear(C) condition that is required by
theMoveToTable step. We can resolve the threat by orderingMove(B,x′, C) after the
MoveToTable step. Finally, notice that all the preconditions forMove(B,x′, C) are true in
the initial state. Thus, we have a complete plan with all the preconditions satisfied. It turns
out there is a well-ordering of the three steps:

MoveToTable(C,A)
Move(B,Table, C)
Move(A,Table,B)

10.8 Briefly, the reason is the same as for forward search: in the absence of function sym-
bols, a PDDL state space is finite. Hence any complete search algorithm will be complete for
PDDL planning, whether forward or backward.

10.9 The drawing is actually rather complex, and doesn’t fit well on this page. Some key
things to watch out for: (1) BothFly andLoad actions are possible at levelA0; the planes
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can still fly when empty. (2) Negative effects appear inS1, and are mutex with their positive
counterparts.

10.10

a. Literals are persistent, so if it does not appear in the finallevel, it never will and never
did, and thus cannot be achieved.

b. In a serial planning graph, only one action can occur per time step. The level cost (the
level at which a literal first appears) thus represents the minimum number of actions in
a plan that might possibly achieve the literal.

10.11 The nature of the relaxed problem is described on p.382.

10.12

a. It is feasible to use bidirectional search, because it is possible to invert the actions.
However, most of those who have tried have concluded that biderectional search is
generally not efficient, because the forward and backward searches tend to miss each
other. This is due to the large state space. A few planners, such as PRODIGY (Fink and
Blythe, 1998) have used bidirectional search.

b. Again, this is feasible but not popular. PRODIGY is in fact (in part) a partial-order
planner: in the forward direction it keeps a total-order plan (equivalent to a state-based
planner), and in the backward direction it maintains a tree-structured partial-order plan.

c. An actionA can be added if all the preconditions ofA have been achieved by other
steps in the plan. WhenA is added, ordering constraints and causal links are also added
to make sure thatA appears after all the actions that enabled it and that a precondition
is not disestablished beforeA can be executed. The algorithm does search forward, but
it is not the same as forward state-space search because it can explore actions in parallel
when they don’t conflict. For example, ifA has three preconditions that can be satisfied
by the non-conflicting actionsB, C, andD, then the solution plan can be represented
as a single partial-order plan, while a state-space plannerwould have to consider all3!
permutations ofB, C, andD.

10.13 A forward state-space planner maintains a partial plan thatis a strict linear sequence
of actions; the plan refinement operator is to add an applicable action to the end of the se-
quence, updating literals according to the action’s effects.

A backward state-space planner maintains a partial plan that is a reversed sequence of
actions; the refinement operator is to add an action to the beginning of the sequence as long
as the action’s effects are compatible with the state at the beginning of the sequence.

10.14

a. We can illustrate the basic idea using the axiom given. Suppose thatShoot t is true
but HaveArrow t is false. Then the RHS of the axiom is false, soHaveArrow t+1 is
false, as we would hope. More generally, if an action precondition is violated, then
both ActionCausesF t andActionCausesNotF t are false, so the generic successor-
state axiom reduces to

F t+1 ⇔ False ∨ (F t ∧ True) .
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which is the same as sayingF t+1 ⇔ F t, i.e., nothing happens.

b. Yes, the plan plus the axioms will entail goal satisfaction; the axioms will copy every
fluent across an illegal action and the rest of the plan will still work. Note that goal
entailment is trivially achieved if we add precondition axioms, because then the plan is
logically inconsistent with the axioms and every sentence is entailed by a contradiction.
Precondition axioms are a way topreventillegal actions in satisfiability-based planning
methods.

c. No. As written in Section 10.4.2, the sucessor-state axioms preclude proving anything
about the outcome of a plan with illegal actions. WhenPoss(a, s) is false, the axioms
say nothing about the situation resulting from the action.

10.15 The main point here is that writing each successor-state axiom correctly requires
knowingall the actions that might add or delete a given fluent; writing a STRIPS axiom, on
the other hand, requires knowingall the fluents that a given action might add or delete.

a.
Poss(Fly(p, from , to), s) ⇔

At(p, from , s) ∧ Plane(p) ∧ Airport(from) ∧Airport(to) .

b.

Poss(a, s) ⇒
(At(p, to,Result(a, s))⇔

(∃ from a=Fly(p, from , to)) ∨
(At(p, to, s) ∧ ¬∃ new new 6= to ∧ a=Fly(p, to,new))) .

c. We must add the possibility axiom for the new action:

Poss(Teleport (p, from, to), s) ⇔
At(p, from , s) ∧ ¬Warped(p, s) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to) .

The successor-state axiom for location must be revised:

Poss(a, s) ⇒
(At(p, to,Result(a, s))⇔

(∃ from a=Fly(p, from , to)) ∨
(∃ from a=Teleport (p, from , to)) ∨
(At(p, to, s) ∧ ¬∃ new new 6= to ∧

(a= Fly(p, to,new ) ∨ a=Teleport (p, to,new)))) .

Finally, we must add a successor-state axiom forWarped :

Poss(a, s) ⇒
(Warped(p,Result(a, s))⇔

(∃ from , to a=Teleport (p, from, to)) ∨Warped(p, s)) .

d. The basic procedure is essentially given in the description of classical planning as
Boolean satisfiability in 10.4.1, except that there is no grounding step, the precondi-
tion axioms become definitions ofPoss for each action, and the successor-state axioms
use the structure given in 10.4.2 with existential quantifiers for all free variables in the
actions, as shown in the examples above.

10.16
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a. Yes, this will find a plan whenever the normal SATPLAN finds a plan no longer than
Tmax.

b. This will not cause SATPLAN to return an incorrect solution, but it might lead to plans
that, for example, achieve and unachieve the goal several times.

c. There is no simple and clear way to induce WALK SAT to find short solutions, because
it has no notion of the length of a plan—the fact that the problem is a planning problem
is part of the encoding, not part of WALK SAT. But if we are willing to do some rather
brutal surgery on WALK SAT, we can achieve shorter solutions by identifying the vari-
ables that represent actions and (1) tending to randomly initialize the action variables
(particularly the later ones) to false, and (1) preferring to randomly flip an earlier action
variable rather than a later one.



Solutions for Chapter 11
Planning and Acting in the Real

World

11.1 The simplest extension allows for maintenance goals that hold in the initial state and
must remain true throughout the execution of the plan. Safety goals (do no harm) are typically
of this form. This extends classical planning problems to allow a maintenance goal. A plan
solves the problem if the final state satisfies the regular goals, and all visited states satisfy the
maintenance goal.

The life-support example cannot, however, be solved by a finite plan. An extension to
infinite plans can capture this, where an infinite plan solvesa planning problem if the goal is
eventually satisfied by the plan, i.e., there is a point afterwhich the goal is continuously true.
Infinite solutions can be described finitely with loops.

For the chandelier example we can allow NoOp actions which donothing except model
the passing of physics. The idea is that a solution will have afinite prefix with an infinite
tail (i.e., a loop) of NoOps. This will allow the problem specification to capture the insta-
bility of a thrown chandelier, as after a certain number of time steps it would no longer be
suspended.

11.2 We first need to specify the primitive actions: for movement we haveForward (t),
TurnLeft(t), andTurnRight(t) wheret is a truck, and for package delivery we haveLoad(p, t)
andUnload(p, t) wherep is a package andt is a truck. These can be given PDDL descriptions
in the usual way.

The hierarchy can be built in a number of ways, but one is to usethe HLANagivate(t, [x, y])
to take a truckt to coordinates[x, y], andDeliver(t, p) to deliver packagep to its destina-
tion with truck t. We assume the fluentAt(o, [x, y]) for trucks and packageso records their
current position[x, y], the predicateDestination(p, [x′, y′]) gives the package’s destination.

This hierarchy (Figure S11.1) encodes the knowledge that trucks can only carry one
package at a time, that we need only drop packages off at theirdestinations not intermediate
points, and that we can serialize deliveries (in reality, trucks would move in parallel, but we
have no representation for parallel actions here). From a higher-level, the hierarchy says that
the planner needs only to choose which trucks deliver which packages in what order, and
trucks should navigate given their destinations.

11.3 To simplify the problem, we assume that at most one refinementof a high-level action
will be applicable at a given time (not much of a restriction since there is a unique solution).

The algorithm shown below maintains at each point the net preconditions and effects
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Refinement(Deliver (t, p),
PRECOND:Truck(t) ∧ Package(p) ∧ At(p, [x, y]) ∧ Destination(p, [x′, y′])
STEPS: [Navigate(t, [x, y]), Load(p, t), Navigate(t, [x′, y′]), Unload(p, t)] )

Refinement(Navigate(t, [x, y]),
PRECOND:Truck(t) ∧ At(t, [x, y])
STEPS: [] )

Refinement(Navigate(t, [x, y]),
PRECOND:Truck(t)
STEPS: [Forward(t),Navigate(t, [x, y])] )

Refinement(Navigate(t, [x, y]),
PRECOND:Truck(t)
STEPS: [TurnLeft(t),Navigate(t, [x, y])] )

Refinement(Navigate(t, [x, y]),
PRECOND:Truck(t)
STEPS: [TurnRight(t),Navigate(t, [x, y])] )

Figure S11.1 Truck hierarchy.

of the prefix ofh processed so far. This includes both preconditions and effects of primitive
actions, and preconditions of refinements. Note that any literal not in effect is untouched by
the prefix currently processed.
net_preconditions <- {}
net_effects <- {}
remaining <- [h]

while remaining not empty:
a <- pop remaining

if a is primitive:
add to net_preconditions any precondition of a not in effect s
add to net_effects the effects of action a, first removing an y

complementary literals
else:

r <- the unique refinement whose preconditions do not includ e
literals negated in net_effect or net_preconditions

add to net_preconditions any preconditions of r not in effec t
prepend to remaining the sequence of actions in r

11.4 We cannot draw any conclusions. Just knowing that the optimistic reachable set is
a superset of the goal is no more help than knowing only that itintersects the goal: the
optimistic reachable set only guarantees that we cannot reach states outside of it, not that we
can reach any of the states inside it. Similarly, the pessimistic reachable set only says we can
definitely reach state inside of it, not that we cannot reach states outside of it.

11.5 To simplify, we don’t model HLA precondition tests. (Comparing the preconditions
to the optimistic and pessimistic descriptions can sometimes determine if preconditions are
definitely or definitely not satisfied, respectively, but maybe inconclusive.)
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The operation to propagate 1-CNF descriptions through descriptions is the same for
optimistic and pessimistic descriptions, and is as follows:
state <- initial state

for each HLA h in order:
for each literal in the description of h:

choose case depending on form of literal:
+l: state <- state - {-l} + {l}
-l: state <- state - {l} + {-l}
poss add l: state <- state + {l}
poss del l: state <- state + {-l}
poss add del l: state <- state + {l,-l}

description <- conjunction of all literals which are
not part of a complementary pair in state

11.6 The natural nondeterministic generalization of DURATION, USE, and CONSUME rep-
resents each as anintervalof possible values rather than a single value. Algorithms that work
with quantities can all be modified relatively easily to manage intervals over quantities—for
example, by representing them as inequalities for the lowerand upper bounds. Thus, if the
agent starts with 10 screws and the first action in a plan consumes 2–4 screws, then a second
action requiring 5 screws is still executable.

When it comes to conditional effects, however, the fields must be treated differently.
The USE field refers to a constraint holdingduring the action, rather thanafter it is done.
Thus, it has to remain a separate field, since it is not treatedin the same way as an effect. The
DURATION and CONSUME fields both describe effects (on the clock and on the quantityof a
resource); thus, they can be folded into the conditional effect description for the action.

11.7 We need one action,Assign, which assigns the value in the source register (or variable
if you prefer, but the term “register” makes it clearer that we are dealing with a physical
location)sr to the destination registerdr:

Action(ACTION:Assign(dr, sr),
PRECOND:Register(dr) ∧Register(sr) ∧ V alue(dr, dv) ∧ V alue(sr, sv),
EFFECT:V alue(dr, sv) ∧ ¬V alue(dr, dv))

Now suppose we start in an initial state withRegister(R1)∧Register(R2)∧V alue(R1, V1)∧
V alue(R2, V2) and we have the goalV alue(R1, V2) ∧ V alue(R2, V1). Unfortunately, there
is no way to solve this as is. We either need to add an explicitRegister(R3) condition to the
initial state, or we need a way to create new registers. That could be done with an action for
allocating a new register:

Action(ACTION:Allocate(r),
EFFECT:Register(r))

Then the following sequence of steps constitues a valid plan:

Allocate(R3)
Assign(R3, R1)
Assign(R1, R2)
Assign(R2, R1)
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11.8 Flip can be described using conditional effects:

Action(Flip,
EFFECT:whenL: ¬L ∧ when¬L: L) .

To see that a 1-CNF belief state representation stays 1-CNF after Flip, observe that
there are three cases. IfL is true in the belief state, then it is false afterFlip; conversely if it
is false. Finally, ifL is unknown before, then it is unknown after: eitherL or ¬L can obtain.
All other components of the belief state remain unchanged, since it is 1-CNF.

11.9 Using the second definition ofClear in the chapter—namely, that there is a clear space
for a block—the only change is that the destination remains clear if it is the table:

Action(Move(b, x, y),
PRECOND:On(b, x) ∧ Clear(b) ∧ Clear(y),
EFFECT:On(b, y) ∧Clear(x) ∧ ¬On(b, x) ∧ (wheny 6= Table: ¬Clear(y)))

11.10 LetCleanH be true iff the robot’s current square is clean andCleanO be true iff the
other square is clean. ThenSuck is characterized by

Action(Suck,PRECOND:,EFFECT:CleanH)

Unfortunately, moving affects these new literals! ForLeft we have

Action(Left,PRECOND:AtR,
EFFECT:AtL ∧ ¬AtR ∧ whenCleanH: CleanO ∧ whenCleanO: CleanH

∧ when¬CleanO: ¬CleanH ∧when¬CleanH: ¬CleanO)

with the dual forRight.

11.11 The main thing to notice here is that the vacuum cleaner movesrepeatedly over dirty
areas—presumably, until they are clean. Also, each forwardmove is typically short, followed
by an immediate reversing over the same area. This is explained in terms of a disjunctive
outcome: the area may be fully cleaned or not, the reversing enables the agent to check, and
the repetition ensures completion (unless the dirt is ingrained). Thus, we have a strong cyclic
plan with sensing actions.

11.12 One solution plan is[Test, ifCultureGrowth then[Drink,Medicate]].



Solutions for Chapter 12
Knowledge Representation

12.1 Sortal predicates:
Player(p)
Mark(m)
Square(q)

Constants:
Xp,Op: Players.
X,O,Blank: Marks.
Q11, Q12 . . . Q33: Squares.
S0: Situation.

Atemporal:
MarkOf(p): Function mapping player p to his/her mark.
Winning(q1, q2, q3): Predicate. Squaresq1, q2, q3 constitute a winning position.
Opponent(p): Function mapping playerp to his opponent.

Situation Calculus:
Result(a, s).
Poss(a, s).

State:
TurnAt(s): Function mapping situations to the player whose turn it is.
Marked(q, s): Function mapping squareq and situations to the mark inq ats.
Wins(p, s). Playerp has won in situations.

Action:
Play(p, q): Function mapping playerp and squareq to the action ofp markingq.

Atemporal axioms:
A1. MarkOf(Xp)=X.
A2. MarkOf(Op)=O.
A3. Opponent(Xp)=Op.
A4. Opponent(Op)=Xp.
A5. ∀ p P layer(p) ⇔ p=Xp ∨ p=Op.
A6. ∀m Mark(m) ⇔ m=X ∨m=O ∨m=Blank.
A7. ∀ q Square(q) ⇔ q=Q11 ∨ q=Q12 ∨ . . . ∨ q=Q33.
A8. ∀ q1, q2, q3 WinningPosition(q1, q2, q3) ⇔

98



99

[q1=Q11 ∧ q2=Q12 ∧ q3=Q13]∨
[q1=Q21 ∧ q2=Q22 ∧ q3=Q23]∨
. . . (Similarly for the other six winning positions∨
[q1=Q31 ∧ q2=Q22 ∧ q3=Q13].

Definition of winning:

A9. ∀ p, s Wins(p, s) ⇔
∃ q1, q2, q3 WinningPosition(q1, q2, q3)∧

MarkAt(q1, s)=MarkAt(q2, s)=MarkAt(q3, s)=MarkOf(p)

Causal Axioms:
A10. ∀ p, q P layer(p) ∧ Square(q) ⇒

MarkAt(q,Result(Play(p, q), s))=MarkOf(p).
A11. ∀ p, a, s TurnAt(p, s) ⇒ TurnAt(Opponent(p), Result(a, s)).

Precondition Axiom:
A12. Poss(Play(p, q), s) ⇒ TurnAt(s)= p ∧MarkAt(q, s)=Blank.

Frame Axiom: A13. q1 6= q2⇒MarkAt(q1, Result(Play(p, q2), s))=MarkAt(q1, s).
Unique names:

A14.X 6= O 6= Blank.
(Note: the unique property on playersXp 6= Op follows from A14, A1, and A2.)

A15-A50. For eachi, j, k,m between 1 and 3 such that eitheri 6= k or j 6= m assert
the axiomQij 6= Qkm.

Note: In many theories it is useful to posit unique names axioms between entities of
different sorts e.g.∀ p, q P layer(p) ∧ Square(q) ⇒ p 6= q. In this theory these are not
actually necessary; if you want to imagine a circumstance inwhich playerXp is actually
the same entity as squareQ23 or the same as the actionPlay(Xp,Q23) there is no harm in
it.

12.2 This exercise and the following two are rather complex, perhaps suitable for term
projects. At this point, we want to strongly urge that you do assign some of these exercises
(or ones like them) to give your students a feeling of what it is really like to do knowl-
edge representation. In general, students find classification hierarchies easier than other rep-
resentation tasks. A recent twist is to compare one’s hierarchy with online ones such as
yahoo.com .

12.3 A plausible language might contain the following primitives:
Temporal Predicates:

Poss(a, s) – Predicate: Actiona is possible in situations. As in section 10.3
Result(a, s) – Function from actiona and situations to situation. As in section
10.3.

Arithmetic: x < y, x ≤ y, x+ y, 0.
Window State:
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Minimized(w, s),Displayed(w, s),Nonexistent(w, s),Active(w, s) – Pred-
icates. In all thesew is a window ands is a situation. (“Displayed(w, s)” means
existent and non-minimized; it includes the case where all of w is actually oc-
cluded by other windows.)

Window Position:

RightEdge(w, s), LeftEdge(w, s), TopEdge(w, s),BottomEdge(w, s): Func-
tions from a windoww and situations to a coordinate.

ScreenWidth, ScreenHeight: Constants.

Window Order:

InFront(w1, w2, s): Predicate. Windoww1 is in front of windoww2 in situa-
tion s.

Actions:

Minimize(w), MakeV isible(w), Destroy(w), BringToFront(w) – Func-
tions from a windoww to an action.

Move(w, dx, dy) – Move windoww by dx to the left anddy upward. (Quan-
titiesdx anddy may be negative.)

Resize(w, dxl, dxr, dyb, dyt) – Resize windoww by dxl on the left,dxr on
the right,dyb on bottom, anddyt on top.

12.4

a LeftEdge(W1, S0) < LeftEdge(W2, S0)∧RightEdge(W2, S0) < RightEdge(W1, S0)∧
TopEdge(W1, S0) ≤ TopEdge(W2, S0)∧BottomEdge(W2, S0) ≤ BottomEdge(W1, S0)∧
InFront(W2,W1, S0).

b ∀w, s Displayed(w, s) ⇒ BottomEdge(w, s) < TopEdge(w, s).

c ∀w, s Poss(Create(w), s) ⇒ Displayed(w,Result(Create(w), s)).

d Displayed(w, s) ⇒ Poss(Minimize(w), s)

12.5 This is the most involved representation problem. It is suitable for a group project of
2 or 3 students over the course of at least 2 weeks. Solutions should include a taxonomy, a
choice of situation calculus, fluent calculus, or event calculus for handling time and change,
and enough background knowledge. If a logic programming system or theorem prover is not
used, students might want to write out the proofs for at leastsome of the answers.

12.6 Normally one would assign the preceding exercise in one assignment, and then when it
is done, add this exercise (posibly varying the questions).That way, the students see whether
they have made sufficient generalizations in their initial answer, and get experience with
debugging and modifying a knowledge base.

12.7 Remember that we defined substances so thatWater is a category whose elements
are all those things of which one might say “it’s water.” One tricky part is that the English
language is ambiguous. One sense of the word “water” includes ice (“that’s frozen water”),
while another sense excludes it: (“that’s not water—it’s ice”). The sentences here seem to
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use the first sense, so we will stick with that. It is the sense that is roughly synonymous with
H2O.

The other tricky part is that we are dealing with objects thatchange (freeze and melt)
over time. Thus, it won’t do to sayw∈Liquid, becausew (a mass of water) might be a
liquid at one time and a solid at another. For simplicity, we will use a situation calculus
representation, with sentences such asT (w∈Liquid, s). There are many possible correct
answers to each of these. The key thing is to beconsistentin the way that information is
represented. For example, do not useLiquid as a predicate on objects ifWater is used as a
substance category.

a. “Water is a liquid between 0 and 100 degrees.” We will translate this as “For any
water and any situation, the water is liquid iff and only if the water’s temperature in the
situation is between 0 and 100 centigrade.”

∀w, s w∈Water ⇒
(Centigrade(0) < Temperature(w, s) < Centigrade(100)) ⇔

T (w∈Liquid, s)
b. “Water boils at 100 degrees.” It is a good idea here to do sometool-building. On

page 243 we usedMeltingPoint as a predicate applying to individual instances of
a substance. Here, we will defineSBoilingPoint to denote the boiling point of all
instances of a substance. The basic meaning of boiling is that instances of the substance
becomes gaseous above the boiling point:

SBoilingPoint(c, bp) ⇔
∀x, s x∈ c ⇒

(∀ t T (Temperature(x, t), s) ∧ t > bp ⇒ T (x∈Gas, s))
Then we need only saySBoilingPoint(Water,Centigrade(100)).

c. “The water in John’s water bottle is frozen.”
We will use the constantNow to represent the situation in which this sentence holds.

Note that it is easy to make mistakes in which one asserts thatonly some of the water
in the bottle is frozen.

∃ b ∀w w∈Water ∧ b∈WaterBottles ∧Has(John, b,Now)
∧ Inside(w, b,Now) ⇒ (w∈Solid,Now)

d. “Perrier is a kind of water.”

Perrier ⊂Water

e. “John has Perrier in his water bottle.”
∃ b ∀w w∈Water ∧ b∈WaterBottles ∧Has(John, b,Now)

∧ Inside(w, b,Now) ⇒ w∈Perrier
f. “All liquids have a freezing point.”

Presumably what this means is that all substances that are liquid at room temper-
ature have a freezing point. If we useRTLiquidSubstance to denote this class of
substances, then we have

∀ c RTLiquidSubstance(c) ⇒ ∃ t SFreezingPoint(c, t)
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whereSFreezingPoint is defined similarly toSBoilingPoint. Note that this state-
ment is false in the real world: we can invent categories suchas “blue liquid” which do
not have a unique freezing point. An interesting exercise would be to define a “pure”
substance as one all of whose instances have the same chemical composition.

g. “A liter of water weighs more than a liter of alcohol.”

∀w, a w∈Water ∧ a∈Alcohol ∧ V olume(w)=Liters(1)
∧V olume(a)=Liters(1) ⇒ Mass(w) > Mass(a)

12.8 This is a fairly straightforward exercise that can be done indirect analogy to the cor-
responding definitions for sets.

a. ExhaustivePartDecomposition holds between a set of parts and a whole, saying
that anything that is a part of the whole must be a part of one ofthe set of parts.

∀ s,w ExhaustivePartDecomposition(s,w) ⇔
(∀ p PartOf(p,w) ⇒ ∃ p2 p2 ∈ s ∧ PartOf(p, p2))

b. PartPartition holds between a set of parts and a whole when the set is disjoint and is
an exhaustive decomposition.

∀ s,w PartPartition(s,w) ⇔
PartwiseDisjoint(s) ∧ ExhaustivePartDecomposition(s,w)

c. A set of parts isPartwiseDisjoint if when you take any two parts from the set, there
is nothing that is a part of both parts.

∀ s PartwiseDisjoint(s) ⇔
∀ p1, p2 p1 ∈ s ∧ p2 ∈ s ∧ p1 6= p2 ⇒ ¬∃p3 PartOf(p3, p1) ∧ PartOf(p3, p2)

It is not the case thatPartPartition(s,BunchOf (s)) for any s. A set s may consist of
physically overlapping objects, such as a hand and the fingers of the hand. In that case,
BunchOf (s) is equal to the hand, buts is not a partition of it. We need to ensure that the
elements ofs are partwise disjoint:

∀ s PartwiseDisjoint(s) ⇒ PartPartition(s,BunchOf (s)) .

12.9 In the scheme in the chapter, a conversion axiom looks like this:

∀x Centimeters(2.54 × x)= Inches(x) .

“50 dollars” is just$(50), the name of an abstract monetary quantity. For any measure func-
tion such as$, we can extend the use of> as follows:

∀x, y x > y ⇒ $(x) > $(y) .

Since the conversion axiom for dollars and cents has

∀x Cents(100 × x)= $(x)

it follows immediately that$(50) > Cents(50).
In the new scheme, we must introduce objects whose lengths are converted:

∀x Centimeters(Length(x)) = 2.54 × Inches(Length(x)) .
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There is no obvious way to refer directly to “50 dollars” or its relation to “50 cents”. Again,
we must introduce objects whose monetary value is 50 dollarsor 50 cents:

∀x, y $(V alue(x))= 50 ∧ Cents(V alue(y))= 50 ⇒ $(V alue(x)) > $(V alue(y))

12.10 Plurals can be handled by aPlural relation between strings, e.g.,

Plural (“computer” , “computers”)

plus an assertion that the plural (or singular) of a name is also a name for the same category:

∀ c, s1, s2 Name(s1, c) ∧ (Plural (s1, s2) ∨ Plural (s2, s1)) ⇒ Name(s2, c)

Conjunctions can be handled by saying that any conjunction string is a name for a category if
one of the conjuncts is a name for the category:

∀ c, s, s2 Conjunct(s2, s) ∧ Name(s2, c) ⇒ Name(s, c)

whereConjunct is defined appropriately in terms of concatenation. Probably it would be
better to redefineRelevantCategoryName instead.

12.11 Section 12.3 includes a couple of axioms for the wumpus world:

Initiates(e,HaveArrow(a), t) ⇔ e = Start

Terminates(e,HaveArrow(a), t) ⇔ e ∈ Shootings(a)

Here is an axiom for turning; the others are similar albeit more complex. Let the term
TurnRight(a) denote the event category of the agent turning right. We wantto say about
it that if (say) the agent is facing south up to the beginning of the action, then it is facing west
after the action ends, and so on.

T (TurnRight(a), i) ⇔
[∃h Meets(h, i) ∧ T (FacingSouth(a), h) ⇒

Clipped(FacingSouth(a), i) ∧ Restored (FacingWest(a), i)]

∨ . . .

12.12 Starts(IK,LK).
Finishes(PK,LK).
During(LK,LJ).
Meets(LK,PJ).
Overlap(LK,LC).
Before(IK,PK).
During(IK,LJ).
Before(IK,PJ).
Before(IK,LC).
During(PK,LJ).
Meets(PK,PJ).
During(PK,LC).
During(PJ,LJ).
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Overlap(LJ,LC).
During(PJ,LC).

12.13 The main difficulty with simultaneous (also called concurrent) events and actions is
how to account correctly for possible interference. A good starting point is the expository pa-
per by Shanahan (1999). Section 5 of that paper shows how to manage concurrent actions by
the introduction of additional generic predicatesCancels andCanceled, describing circum-
stances in which actions may interfere with each other. We avoid lots of “non-cancellation”
assertions using the same predicate-completion trick as insuccessor-state axioms, and the
meaning of cancellation is defined once and for all through its connection to clipping, restor-
ing, etc.

12.14 For quantities such as length and time, the conversion axioms such as

Centimeters(2.54 × d)= Inches(d)

are absolutes that hold (with a few exceptions) for all time.The same is true for conver-
sion axioms within a given currency; for example,US$(1)=US¢(100). When it comes to
conversionbetweencurrencies, we make the simplifying assumption that at any given timet
there is a prevailing exchange rate:

T (ExchangeRate(UK£(1), US$(1))= 1.55, t)

and the rate is reciprocal:

ExchangeRate(UK£(1), US$(1)) = 1/ExchangeRate(US$(1), UK£(1)) .

What we cannot do, however, is write

T (UK£(1)=US$(1.55), t)

therebyequatingabstract amounts of money in different currencies. At any given moment,
prevailing exchange rates across the world’s currencies need not be consistent, and using
equality across currencies would therefore introduce alogical inconsistency. Instead, ex-
change rates should be interpreted as indicating a willingness to exchange, perhaps with some
commission; and exchange rate inconsistency is an opportunity for arbitrage. A more sophis-
ticated model would include the entity offering the rate, limits on amounts and forms of
payment, etc.

12.15 Any objectx is an event, andLocation(x) is the event that for every subinterval of
time, refers to the place wherex is. For example,Location(Peter) is the complex event
consisting of his home from midnight to about 9:00 today, then various parts of the road, then
his office from 10:00 to 1:30, and so on. To say that an event is fixed is to say that any two
moments of the event have the same spatial extent:

∀ e F ixed(e) ⇔
(∀ a, b a∈Moments ∧ b∈Moments ∧ Subevent(a, e) ∧ Subevent(b, e)

⇒ SpatialExtent(a)=SpatialExtent(b))
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12.16 Let Trade(b, x, a, y) denote the class of events where personb trades objecty to
persona for objectx:

T (Trade(b, x, a, y), i) ⇔
T (Owns(b, y), Start(i)) ∧ T (Owns(a, x), Start(i))∧
T (Owns(b, x), End(i)) ∧ T (Owns(a, y), End(i))

Now the only tricky part about defining buying in terms of trading is in distinguishing a price
(a measurement) from an actual collection of money.

T (Buy(b, x, a, p), i) ⇔ ∃m Money(m) ∧ Trade(b, x, a,m) ∧ V alue(m)= p

12.17 There are many possible approaches to this exercise. The idea is for the students to
think about doing knowledge representation for real; to consider a host of complications and
find some way to represent the facts about them. Some of the keypoints are:

• Ownership occurs over time, so we need either a situation-calculus or interval-calculus
approach.

• There can be joint ownership and corporate ownership. Thissuggests the owner is a
group of some kind, which in the simple case is a group of one person.

• Ownership provides certain rights: to use, to resell, to give away, etc. Much of this is
outside the definition of ownershipper se, but a good answer would at least consider
how much of this to represent.

• Own can own abstract obligations as well as concrete objects. This is the idea behind
the futures market, and also behind banks: when you deposit adollar in a bank, you
are giving up ownership of that particular dollar in exchange for ownership of the right
to withdraw another dollar later. (Or it could coincidentally turn out to be the exact
same dollar.) Leases and the like work this way as well. This is tricky in terms of
representation, because it means we have to reify transactions of this kind. That is,
Withdraw(person,money, bank, time) must be an object, not a predicate.

12.18 We refer the reader to Faginet al.(1995) for several examples of the type of reasoning
needed. Just to get you started: In Game 1, Alice says “I don’tknow.” If Carlos had K-K,
and given that Alice can see Bob’s K-K, then she would know that Bob and Carlos had all
four kings between them and she would announce A-A. Therefore, Carlos does not have K-
K. Then Bob says “I don’t know.” If Carlos had A-A, and given that Bob can see Alice’s
A-A, then he would know that Alice and Carlos had all four acesbetween them and he would
announce A-A. Therefore, Carlos does not have A-A. Therefore Carlos should announce A-
K.

12.19

A. The logical omniscience assumption is a reasonable idealization. The limiting factor
here is generally the information available to the players,not the difficulty of making
inferences.

B. This kind of reasoning cannot be accommodated in a theory with logical omniscience.
If logical omniscience were true, then every player could always figure out the optimal
move instantaneously.



106 Chapter 12. Knowledge Representation

C. Logical omniscience is a reasonable idealization. The costs of getting the information
are almost always much greater than the costs of reasoning with it.

D. It depends on the kind of reasoning you want to do. If you want to reason about the re-
lation of cryptography to particular computational problems, then logical omniscience
cannot be assumed, because the assumption entails that any computational problem
can be solved instantly. On the other hand, if you are willingto idealize the encryp-
tion/decryption as a magical process with no computationalbasis, then it may be rea-
sonable to apply a theory with logical omniscience to other aspects of the theory.

12.20 This corresponds to the following open formula:

Man(x) ∧ ∃ s1, s2, s3 Son(s1, x) ∧ Son(s2, x) ∧ Son(s3, x)
∧s1 6= s2 ∧ s1 6= s3 ∧ s2 6= s3

∧¬∃ d1, d2, d3 Daughter(d1, x) ∧Daughter(d2, x) ∧Daughter(d3, x)
∧d1 6= d2 ∧ d1 6= d3 ∧ d2 6= d3

∧∀ s Son(s, x) ⇒ Unemployed(s) ∧Married(s) ∧Doctor(Spouse(s))
∧∀ d Daughter(d, x) ⇒ Professor(d)∧

(Department(d)=Physics ∨Department(d)=Math) .

12.21 In many AI and Prolog textbooks, you will find it stated plainly that implications
suffice for the implementation of inheritance. This is true in the logical but not the practical
sense.

a. Here are three rules, written in Prolog. We actually would need many more clauses on
the right hand side to distinguish between different models, different options, etc.

worth(X,575) :- year(X,1973), make(X,dodge), style(X,va n).
worth(X,27000) :- year(X,1994), make(X,lexus), style(X, sedan).
worth(X,5000) :- year(X,1987), make(X,toyota), style(X, sedan).

To find the value of JB, given a data base withyear(jb,1973) ,make(jb,dodge)
andstyle(jb,van) we would call the backward chainer with the goalworth(jb,D) ,
and read the value forD.

b. The time efficiency of this query isO(n), wheren in this case is the 11,000 entries in
the Blue Book. A semantic network with inheritance would allow us to follow a link
from JB to 1973-dodge-van , and from there to follow theworth slot to find the
dollar value inO(1) time.

c. With forward chaining, as soon as we are told the three factsabout JB, we add the new
fact worth(jb,575) . Then when we get the queryworth(jb,D) , it is O(1) to
find the answer, assuming indexing on the predicate and first argument. This makes
logical inference seem just like semantic networks except for two things: the logical
inference does a hash table lookup instead of pointer following, and logical inference
explicitly storesworth statements for each individual car, thus wasting space if there
are a lot of individual cars. (For this kind of application, however, we will probably
want to consider only a few individual cars, as opposed to the11,000 different models.)



107

d. If each category has many properties—for example, the specifications of all the replace-
ment parts for the vehicle—then forward-chaining on the implications will also be an
impractical way to figure out the price of a vehicle.

e. If we have a rule of the following kind:

worth(X,D) :- year-make-style(X,Yr,Mk,St),
year-make-style(Y,Yr,Mk,St), worth(Y,D).

together with facts in the database about some other specificvehicle of the same type
as JB, then the queryworth(jb,D) will be solved inO(1) time with appropriate
indexing, regardless of how many other facts are known aboutthat type of vehicle and
regardless of the number of types of vehicle.

12.22 When categories are reified, they can have properties as individual objects (such as
Cardinality andSupersets) that do not apply to their elements. Without the distinction be-
tween boxed and unboxed links, the sentenceCardinality(SingletonSets, 1) might mean
that every singleton set has one element, or that there si only one singleton set.

12.23 Here is an initial sketch of one approach. (Others are possible.) A given object to be
purchased mayrequiresome additional parts (e.g., batteries) to be functional, and there may
also beoptional extras. We can represent requirements as a relation betweenan individual
object and a class of objects, qualified by the number of objects required:

∀x x∈Coolpix995DigitalCamera ⇒ Requires(x,AABattery , 4) .

We also need to know that a particular object is compatible, i.e., fills a given role appropri-
ately. For example,

∀x, y x∈Coolpix995DigitalCamera ∧ y ∈DuracellAABattery

⇒ Compatible(y, x,AABattery)

Then it is relatively easy to test whether the set of ordered objects contains compatible re-
quired objects for each object.

12.24 Chapter 23 explains how to use logic to parse text strings andextract semantic infor-
mation. The outcome of this process is a definition of what objects are acceptable to the user
for a specific shopping request; this allows the agent to go out and find offers matching the
user’s requirements. We omit the full definition of the agent, although a skeleton may appear
on the AIMA project web pages.

12.25 Here is a simple version of the answer; it can be elaboratedad infinitum. Let the term
Buy(b, x, s, p) denote the event category of buyerb buying objectx from sellers for pricep.
We want to say about it thatb transfers the money tos, ands transfers ownership ofx to b.

T (Buy(b, x, s, p), i) ⇔
T (Owns(s, x), Start(i))∧
∃m Money(m) ∧ p=V alue(m) ∧ T (Owns(b,m), Start(i))∧
T (Owns(b, x), End(i)) ∧ T (Owns(s,m), End(i))



Solutions for Chapter 13
Quantifying Uncertainty

13.1 The “first principles” needed here are the definition of conditional probability,P (X|Y ) =
P (X ∧ Y )/P (Y ), and the definitions of the logical connectives. It is not enough to say that
if B ∧ A is “given” thenA must be true! From the definition of conditional probability, and
the fact thatA ∧A ⇔ A and that conjunction is commutative and associative, we have

P (A|B ∧A) =
P (A ∧ (B ∧A))

P (B ∧A)
=
P (B ∧A)

P (B ∧A)
= 1

13.2 The main axiom is axiom 3:P (a ∨ b) = P (a) + P (b) − P (a ∧ b). For the discrete
random variableX, let a be the event thatX = x1, andb be the event thatX has any other
value. Then we have

P (X = x1 ∨X = other) = P (X = x1) + P (X = other) + 0

where we know thatP (X = x1 ∧ X = other) is 0 because a variable cannot take on two
distinct values. If we now break down the case ofX = others, we eventually get

P (X = x1 ∨ · · · ∨X = xn) = P (X = x1) + · · ·+ P (X = xn) .

But the left-hand side is equivalent toP (true), which is 1 by axiom 2, so the sum of the
right-hand side must also be 1.

13.3

a. True. By the product rule we knowP (b, c)P (a|b, c) = P (a, c)P (b|a, c), which by
assumption reduces toP (b, c) = P (a, c). Dividing through byP (c) gives the result.

b. False. The statementP (a|b, c) = P (a) merely states thata is independent ofb andc,
it makes no claim regarding the dependence ofb andc. A counter-example:a andb
record the results of two independent coin flips, andc = b.

c. False. While the statementP (a|b) = P (a) implies thata is independent ofb, it does
not imply thata is conditionally independent ofb givenc. A counter-example:a andb
record the results of two independent coin flips, andc equals the xor ofa andb.

13.4 Probably the easiest way to keep track of what’s going on is tolook at the probabil-
ities of the atomic events. A probability assignment to a setof propositions is consistent
with the axioms of probability if the probabilities are consistent with an assignment to the
atomic events that sums to 1 and has all probabilities between 0 and 1 inclusive. We call the
probabilities of the atomic eventsa, b, c, andd, as follows:

108
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B ¬B
A a b

¬A c d

We then have the following equations:

P (A) = a+ b = 0.4
P (B) = a+ c = 0.3
P (A ∨B) = a+ b+ c = 0.5
P (True) = a+ b+ c+ d = 1

From these, it is straightforward to infer thata = 0.2, b = 0.2, c = 0.1, andd = 0.5.
Therefore,P (A ∧ B) = a = 0.2. Thus the probabilities given are consistent with a rational
assignment, and the probabilityP (A∧B) is exactly determined. (This latter fact can be seen
also from axiom 3 on page 422.)

If P (A ∨ B) = 0.7, thenP (A ∧ B) = a = 0. Thus, even though the bet outlined in
Figure 13.3 loses ifA andB are both true, the agent believes this to be impossible so thebet
is still rational.

13.5

a. Each atomic event is a conjunction ofn literals, one per variable, with each literal either
positive or negative. For the events to be distinct, at leastone pair of corresponding
literals must be nonidentical; hence, the conjunction of the two events contains the
literalsXi and¬Xi for somei, so the conjunction reduces toFalse .

b. Proof by induction onn. Forn= 0, the only event is the empty conjunctionTrue, and
the disjunction containing only this event is alsoTrue. Inductive step: assume the claim
holds forn variables. The disjunction forn+ 1 variables consists of pairs of disjuncts
of the form(Tn∧Xn+1)∨(Tn∧¬Xn+1) for all possible atomic event conjunctionsTn.
Each pair logically reduces toTn, so the entire disjunction reduces to the disjunction
for n variables, which by hypothesis is equivalent toTrue.

c. Let α be the sentence in question andµ1, . . . , µk be the atomic event sentences that
entail its truth. LetMi be the model corresponding toµi (its onlymodel). To prove that
µ1 ∨ . . . ∨ µk ≡ α, simply observe the following:

• Becauseµi |= α, α is true in all the models ofµi, soα is true inMi.
• The models ofµ1∨. . .∨µk are exactlyM1, . . . ,Mk because any two atomic events

are mutually exclusive, so any given model can satisfy at most one disjunct, and
a model that satisfies a disjunct must be the model corresponding to that atomic
event.

• If any modelM satisfiesα, then the corresponding atomic-event sentenceµ entails
α, so the models ofα are exactlyM1, . . . ,Mk.

Hence,α andµ1 ∨ . . . ∨ µk have the same models, so are logically equivalent.

13.6 Equation (13.4) states thatP (a ∨ b) = P (a) + P (b) − P (a ∧ b). This can be proved
directly from Equation (13.2), using obvious abbreviations for the possible-world probabili-
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ties:

P (a ∨ b) = pa,b + pa,¬b + p¬a,b

P (a) = pa,b + pa,¬b

P (b) = pa,b + p¬a,b

P (a ∧ b) = pa,b .

13.7 This is a classic combinatorics question that could appear in a basic text on discrete
mathematics. The point here is to refer to the relevant axioms of probability: principally,
axiom 3 on page 422. The question also helps students to graspthe concept of the joint
probability distribution as the distribution over all possible states of the world.

a. There are
(52

5

)

= (52× 51× 50× 49× 48)/(1 × 2× 3× 4× 5) = 2,598,960 possible
five-card hands.

b. By the fair-dealing assumption, each of these is equally likely. By axioms 2 and 3, each
hand therefore occurs with probability 1/2,598,960.

c. There are four hands that are royal straight flushes (one in each suit). By axiom 3, since
the events are mutually exclusive, the probability of a royal straight flush is just the sum
of the probabilities of the atomic events, i.e., 4/2,598,960 = 1/649,740. For “four of
a kind” events, There are 13 possible “kinds” and for each, the fifth card can be one
of 48 possible other cards. The total probability is therefore (13 × 48)/2, 598, 960 =
1/4, 165.

These questions can easily be augmented by more complicatedones, e.g., what is the proba-
bility of getting a full house given that you already have twopairs? What is the probability of
getting a flush given that you have three cards of the same suit? Or you could assign a project
of producing a poker-playing agent, and have a tournament among them.

13.8 The main point of this exercise is to understand the various notations of bold versus
non-bold P, and uppercase versus lowercase variable names.The rest is easy, involving a
small matter of addition.

a. This asks for the probability thatToothacheis true.

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

b. This asks for the vector of probability values for the random variableCavity. It has two
values, which we list in the order〈true, false〉. First add up0.108 + 0.012 + 0.072 +
0.008 = 0.2. Then we have

P(Cavity) = 〈0.2, 0.8〉 .

c. This asks for the vector of probability values forToothache, given thatCavity is true.

P(Toothache |cavity) = 〈(.108 + .012)/0.2, (0.072 + 0.008)/0.2〉 = 〈0.6, 0.4〉
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d. This asks for the vector of probability values forCavity, given that eitherToothacheor
Catchis true. First computeP (toothache ∨catch) = 0.108+0.012+0.016+0.064+
0.072 + 0.144 = 0.416. Then

P(Cavity |toothache ∨ catch) =
〈(0.108 + 0.012 + 0.072)/0.416, (0.016 + 0.064 + 0.144)/0.416〉 =
〈0.4615, 0.5384〉

13.9 Lete ando be the initial scores,m be the score required to win, andp be the probability
thatE wins each round. One can easily write down a recursive formula for the probability
thatE wins from the given initial state:

wE(p, e, o,m) =







1 if e=m
0 if o=m
p · wE(p, e+ 1, o,m) + (1− p) · wE(p, e, o+ 1,m) otherwise

This translates directly into code that can be used to compute the answer,

wE(0.5, 4, 2, 7) = 0.7734375 .

With a bit more work, we can derive a nonrecursive formula:

wE(p, e, o,m) = pm−e
m−o−1
∑

i =0

(

i+m− e− 1

i

)

(1− p)i .

Each term in the sum corresponds to the probability of winning by exactly a particular score;
e.g., starting from 4–2, one can win by 7–2, 7–3, 7–4, 7–5, or 7–6. Each final score requiresE
to win exactlym−e rounds while the opponent wins exactlyi rounds, wherei= 0, 1, . . . ,m−
o − 1; and the combinatorial term counts the number of ways this can happen withoutE
winning first by a larger margin. One can check the nonrecursive formula by showing that
it satisfies the recursive formula. (It may be helpful to suggest to students that they start by
building the lattice of states implied by the above recursive formula and calculating (bottom-
up) the symbolic win probabilities in terms ofp rather than 0.5, so that they can see the
general shape emerging.)

13.10

a. To compute the expected payback for the machine, we determine the probability for
each winning outcome, multiply it by the amount that would bewon in that instance,
and sum all possible winning combinations. Since each symbol is equally likely, the
first four cases have probability(1/4)3 = 1/64.

However, in the case of computing winning probabilities forcherries, we must only
consider the highest paying case, so we must subtract the probability for dominating
winning cases from each subsequent case (e.g., in the case oftwo cherries, we subtract
off the probability of getting three cherries):
CHERRY/CHERRY/? 3/64 = (1/4)2 − 1/64
CHERRY/?/? 12/64 = (1/4)1 − 3/64 − 1/64

The expectation is therefore

20 · 1/64 + 15 · 1/64 + 5 · 1/64 + 3 · 1/64 + 2 · 3/64 + 1 · 12/64 = 61/64.
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Thus, the expected payback percentage is 61/64 (which is less than 1 as we would
expect of a slot machine that was actually generating revenue for its owner).

b. We can tally up the probabilities we computed in the previous section, to get

1/64 + 1/64 + 1/64 + 1/64 + 3/64 + 12/64 = 19/64.

Alternatively, we can observe that we win if either all symbols are the same (denote
this eventS), or if the first symbol is cherry (denote this eventC). Then applying the
inclusion-exclusion identity for disjunction:

P (S ∨ C) = P (S) + P (C)− P (S ∧ C) = (1/4)2 + 1/4 − 1/64 = 19/64.

c. Using a simple Python simulation, we find a mean of about 210, and a median of 21.
This shows the distribution of number of plays is heavy tailed: most of the time you run
out of money relatively quickly, but occasionally you last for thousands of plays.

import random

def trial():
funds = 10
plays = 0
while funds >= 1:

funds -=1
plays += 1
slots = [random.choice(

["bar", "bell", "lemon", "cherry"])
for i in range(3)]

if slots[0] == slots[1]:
if slots[1] == slots[2]:

num_equal = 3
else:

num_equal = 2
else:

num_equal = 1
if slots[0] == "cherry":

funds += num_equal
elif num_equal == 3:

if slots[0] == "bar":
funds += 20

elif slots[0] == "bell":
funds += 15

else:
funds += 5

return plays

def test(trials):
results = [trial() for i in xrange(trials)]
mean = sum(results) / float(trials)
median = sorted(results)[trials/2]
print "%s trials: mean=%s, median=%s" % (trials, mean, medi an)
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test(10000)

13.11 The correct message is received if either zero or one of then + 1 bits are corrupted.
Since corruption occurs independently with probabilityǫ, the probability that zero bits are
corrupted is(1 − ǫ)n+1. There aren + 1 mutually exclusive ways that exactly one bit can
be corrupted, one for each bit in the message. Each has probability ǫ(1 − ǫ)n, so the overall
probability that exactly one bit is corrupted isnǫ(1 − ǫ)n. Thus, the probability that the
correct message is received is(1− ǫ)n+1 + nǫ(1− ǫ)n.

The maximum feasible value ofn, therefore, is the largestn satisfying the inequality

(1− ǫ)n+1 + nǫ(1− ǫ)n ≥ 1− δ.

Numerically solving this forǫ = 0.001, δ = 0.01, we findn = 147.

13.12 Independence is symmetric (that is,a andb are independent iffb anda are indepen-
dent) soP (a|b) = P (a) is the same asP (b|a) = P (b). So we need only prove thatP (a|b) =
P (a) is equivalent toP (a ∧ b) = P (a)P (b). The product rule,P (a ∧ b) = P (a|b)P (b), can
be used to rewriteP (a ∧ b) = P (a)P (b) asP (a|b)P (b) = P (a)P (b), which simplifies to
P (a|b) = P (a).

13.13
Let V be the statement that the patient has the virus, andA andB the statements that

the medical testsA andB returned positive, respectively. The problem statement gives:

P (V ) = 0.01

P (A|V ) = 0.95

P (A|¬V ) = 0.10

P (B|V ) = 0.90

P (B|¬V ) = 0.05

The test whose positive result is more indicative of the virus being present is the one whose
posterior probability,P (V |A) or P (V |B) is largest. One can compute these probabilities
directly from the information given, finding thatP (V |A) = 0.0876 andP (V |B) = 0.1538,
soB is more indicative.

Equivalently, the questions is asking which test has the highest posterior odds ratio
P (V |A)/P (¬V |A). From the odd form of Bayes theorem:

P (V |A)

P (¬V |A)
=

P (A|V )

P (A|¬V )

P (V )

P (¬V )

we see that the ordering is independent of the probability ofV , and that we just need to
compare the likelihood ratiosP (A|V )/P (A|¬V ) = 9.5 andP (B|V )/P (V |¬V ) = 18 to
find the answer.

13.14
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If the probabilityx is known, then successive flips of the coin are independent ofeach
other, since we know that each flip of the coin will landheads with probabilityx. Formally,
if F1 andF2 represent the results of two successive flips, we have

P (F1 = heads, F2 = heads|x) = x ∗ x = P (F1 = heads|x)P (F2 = heads|x)
Thus, the eventsF1 = heads andF2 = heads are independent.

If we do not know the value ofx, however, the probability of each successive flip is
dependent on the result of all previous flips. The reason for this is that each successive
flip gives us information to better estimate the probabilityx (i.e., determining the posterior
estimate forx given our prior probability and the evidence we see in the most recent coin
flip). This new estimate ofx would then be used as our “best guess” of the probability of the
coin coming upheads on the next flip. Since this estimate forx is based on all the previous
flips we have seen, the probability of the next flip coming upheads depends on how many
heads we saw in all previous flips, making them dependent.

For example, if we had a uniform prior over the probabilityx, then one can show that
aftern flips if m of them come up heads then the probability that the next one comes up heads
is (m+ 1)/(n + 2), showing dependence on previous flips.

13.15 We are given the following information:

P (test|disease) = 0.99

P (¬test|¬disease) = 0.99

P (disease) = 0.0001

and the observationtest. What the patient is concerned about isP (disease|test). Roughly
speaking, the reason it is a good thing that the disease is rare is thatP (disease|test) is propor-
tional toP (disease), so a lower prior fordiseasewill mean a lower value forP (disease|test).
Roughly speaking, if 10,000 people take the test, we expect 1to actually have the disease, and
most likely test positive, while the rest do not have the disease, but 1% of them (about 100
people) will test positive anyway, soP (disease|test) will be about 1 in 100. More precisely,
using the normalization equation from page 480:

P (disease|test)
= P (test|disease)P (disease)

P (test|disease)P (disease)+P (test|¬disease)P (¬disease)

= 0.99×0.0001
0.99×0.0001+0.01×0.9999

= .009804

The moral is that when the disease is much rarer than the test accuracy, a positive test result
does not mean the disease is likely. A false positive readingremains much more likely.

Here is an alternative exercise along the same lines: A doctor says that an infant who
predominantly turns the head to the right while lying on the back will be right-handed, and
one who turns to the left will be left-handed. Isabella predominantly turned her head to the
left. Given that 90% of the population is right-handed, whatis Isabella’s probability of being
right-handed if the test is 90% accurate? If it is 80% accurate?

The reasoning is the same, and the answer is 50% right-handedif the test is 90% accu-
rate, 69% right-handed if the test is 80% accurate.
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13.16 The basic axiom to use here is the definition of conditional probability:

a. We have

P(A,B|E) =
P(A,B,E)

P(E)

and

P(A|B,E)P(B|E) =
P(A,B,E)

P(B,E)

P(B,E)

P(E)
=

P(A,B,E)

P(E)

hence

P(A,B|E) = P(A|B,E)P(B|E)

b. The derivation here is the same as the derivation of the simple version of Bayes’ Rule
on page 426. First we write down the dual form of the conditionalized product rule,
simply by switchingA andB in the above derivation:

P(A,B|E) = P(B|A,E)P(A|E)

Therefore the two right-hand sides are equal:

P(B|A,E)P(A|E) = P(A|B,E)P(B|E)

Dividing through byP(B|E) we get

P(A|B,E) =
P(B|A,E)P(A|E)

P(B|E)

13.17 The key to this exercise is rigorous and frequent application of the definition of con-
ditional probability,P(X|Y ) = P(X,Y )/P(Y ). The original statement that we are given
is:

P(A,B|C) = P(A|C)P(B|C)

We start by applying the definition of conditional probability to two of the terms in this
statement:

P(A,B|C) =
P(A,B,C)

P(C)
and P(B|C) =

P(B,C)

P(C)

Now we substitute the right hand side of these definitions forthe left hand sides in the original
statement to get:

P(A,B,C)

P(C)
= P(A|C)

P(B,C)

P(C)

Now we need the definition once more:

P(A,B,C) = P(A|B,C)P(B,C)

We substitute this right hand side forP(A,B,C) to get:

P(A|B,C)P(B,C)

P(C)
= P(A|C)

P(B,C)

P(C)

Finally, we cancel theP(B,C) andP(C)s to get:

P(A|B,C) = P(A|C)
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The second part of the exercise follows from by a similar derivation, or by noticing thatA
andB are interchangeable in the original statement (because multiplication is commutative
andA,B means the same asB,A).

In Chapter 14, we will see that in terms of Bayesian networks,the original statement
means thatC is the lone parent ofA and also the lone parent ofB. The conclusion is that
knowing the values ofB andC is the same as knowing just the value ofC in terms of telling
you something about the value ofA.

13.18

a. A typical “counting” argument goes like this: There aren ways to pick a coin, and 2
outcomes for each flip (although with the fake coin, the results of the flip are indistin-
guishable), so there are2n total atomic events, each equally likely. Of those, only 2
pick the fake coin, and2 + (n − 1) result in heads. So the probability of a fake coin
given heads,P (fake|heads), is 2/(2 + n− 1) = 2/(n + 1).

Often such counting arguments go astray when the situation gets complex. It may
be better to do it more formally:

P(Fake|heads) = αP(heads|Fake)P(Fake)

= α〈1.0, 0.5〉〈1/n, (n − 1)/n〉
= α〈1/n, (n − 1)/2n〉
= 〈2/(n + 1), (n − 1)/(n + 1)〉

b. Now there are2kn atomic events, of which2k pick the fake coin, and2k +(n−1) result
in heads. So the probability of a fake coin given a run ofk heads,P (fake|headsk), is
2k/(2k + (n− 1)). Note this approaches 1 ask increases, as expected. Ifk = n = 12,
for example, thanP (fake|heads10) = 0.9973.

Doing it the formal way:

P(Fake|headsk) = αP(headsk|Fake)P(Fake)

= α〈1.0, 0.5k〉〈1/n, (n − 1)/n〉
= α〈1/n, (n − 1)/2kn〉
= 〈2k/(2k + n− 1), (n − 1)/(2k + n− 1)〉

c. The procedure makes an error if and only if a fair coin is chosen and turns up headsk
times in a row. The probability of this

P (headsk|¬fake)P (¬fake) = (n− 1)/2kn .

13.19 The important point here is that although there are often many possible routes by
which answers can be calculated in such problems, it is usually better to stick to systematic
“standard” routes such as Bayes’ Rule plus normalization. Chapter 14 describes general-
purpose, systematic algorithms that make heavy use of normalization. We could guess that
P (S|¬M) ≈ 0.05, or we could calculate it from the information already given(although the
idea here is to assume thatP (S) is not known):

P (S|¬M) =
P (¬M |S)P (S)

P (¬M)
=

(1− P (M |S))P (S)

1− P (¬M)
=

0.9998 × 0.05

0.99998
= 0.049991
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Normalization proceeds as follows:

P (M |S) ∝ P (S|M)P (M) = 0.5/50, 000 = 0.00001
P (¬M |S) ∝ P (S|¬M)P (¬M) = 0.049991 × 0.99998 = 0.04999
P (M |S) = 0.00001

0.00001+0.04999 = 0.0002

P (¬M |S) = 0.00001
0.00001+0.04999 = 0.9998

13.20 Let the probabilities be as follows:

x y z P (x, y, z)
F F F a
F F T b
F T F c
F T T d
T F F e
T F T f
T T F g
T T T h

Conditional independence asserts that

P(X,Y |Z) = P(X |Z)P(Y |Z)

which we can rewrite in terms of the joint distribution usingthe definition of conditional
probability and marginals:

P(X,Y,Z)

P(Z)
=

P(X,Z)

P(Z)
· P(Y,Z)

P(Z)

P(X,Y,Z) =
P(X,Z)P(Y,Z)

P(Z)
=

(

∑

y P(X, y,Z)
)

(
∑

x P(x, Y, Z))
∑

x,y P(x, y, Z)
.

Now we instantiateX,Y,Z in all 8 ways to obtain the following 8 equations:

a = (a+ c)(a + e)/(a+ c+ e+ g) or ag = ce

b = (b+ d)(b + f)/(b+ d+ f + h) or bh = df

c = (a+ c)(c + g)/(a + c+ e+ g) or ce = ag

d = (b+ d)(d + h)/(b + d+ f + h) or df = bh

e = (e+ g)(a+ e)/(a + c+ e+ g) or ce = ag

f = (f + h)(b+ f)/(b+ d+ f + h) or df = bh

g = (e+ g)(c + g)/(a + c+ e+ g) or ag = ce

h = (f + h)(d+ h)/(b + d+ f + h) or bh = df .

Thus, there are only 2 nonredundant equations,ag= ce andbh= df . This is what we would
expect: the general distribution requires8− 1= 7 parameters, whereas the Bayes net withZ
as root andX andY as conditionally indepednent children requires 1 parameter for Z and
2 each forX andY , or 5 in all. Hence the conditional independence assertion removes two
degrees of freedom.
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13.21 The relevant aspect of the world can be described by two random variables:B means
the taxiwasblue, andLB means the taxilooked blue. The information on the reliability of
color identification can be written as

P (LB|B) = 0.75 P (¬LB|¬B) = 0.75

We need to know the probability that the taxi was blue, given that it looked blue:

P (B|LB) ∝ P (LB|B)P (B) ∝ 0.75P (B)
P (¬B|LB) ∝ P (LB|¬B)P (¬B) ∝ 0.25(1 − P (B))

Thus we cannot decide the probability without some information about the prior probability
of blue taxis,P (B). For example, if we knew that all taxis were blue, i.e.,P (B) = 1, then
obviouslyP (B|LB) = 1. On the other hand, if we adopt Laplace’sPrinciple of Indifference,
which states that propositions can be deemed equally likelyin the absence of any differenti-
ating information, then we haveP (B) = 0.5 andP (B|LB) = 0.75. Usually we will have
somedifferentiating information, so this principle does not apply.

Given that 9 out of 10 taxis are green, andassuming the taxi in question is drawn
randomly from the taxi population, we haveP (B) = 0.1. Hence

P (B|LB) ∝ 0.75 × 0.1 ∝ 0.075
P (¬B|LB) ∝ 0.25 × 0.9 ∝ 0.225
P (B|LB) = 0.075

0.075+0.225 = 0.25

P (¬B|LB) = 0.225
0.075+0.225 = 0.75

13.22 This question is essentially previewing material in Chapter 23 (page 842), but stu-
dents should have little difficulty in figuring out how to estimate a conditional probability
from complete data.

a. The model consists of the prior probabilityP(Category) and the conditional probabil-
ities P(Wordi|Category). For each categoryc, P(Category= c) is estimated as the
fraction of all documents that are of categoryc. Similarly,P(Wordi = true|Category= c)
is estimated as the fraction of documents of categoryc that contain wordi.

b. See the answer for 13.17. Here, every evidence variable is observed, since we can tell
if any given word appears in a given document or not.

c. The independence assumption is clearly violated in practice. For example, the word pair
“artificial intelligence” occurs more frequently in any given document category than
would be suggested by multiplying the probabilities of “artificial” and “intelligence”.

13.23 This probability model is also appropriate for Minesweeper(Ex. 7.11). If the total
number of pits is fixed, then the variablesPi,j andPk,l are no longer independent. In general,

P (Pi,j = true|Pk,l = true) < P (Pi,j = true|Pk,l = false)

because learning thatPk,l = true makes it less likely that there is a mine at[i, j] (as there are
now fewer to spread around). The joint distribution places equal probability on all assign-
ments toP1,2 . . . P4,4 that have exactly 3 pits, and zero on all other assignments. Since there
are 15 squares, the probability of each 3-pit assignment is1/

(15
3

)

= 1/455.
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To calculate the probabilities of pits in[1, 3] and[2, 2], we start from Figure 13.7. We
have to consider the probabilities of complete assignments, since the probability of the “other”
region assignment does not cancel out. We can count the totalnumber of 3-pit assignments
that are consistent with each partial assignment in 13.7(a)and 13.7(b).

In 13.7(a), there are three partial assignments withP1,3 = true:

• The first fixes all three pits, so corresponds to 1 complete assignment.

• The second leaves 1 pit in the remaining 10 squares, so corresponds to 10 complete
assignments.

• The third also corresponds to 10 complete assignments.

Hence, there are 21 complete assignments withP1,3 = true.
In 13.7(b), there are two partial assignments withP1,3 = false:

• The first leaves 1 pit in the remaining 10 squares, so corresponds to 10 complete assign-
ments.

• The second leaves 2 pits in the remaining 10 squares, so corresponds to
(

10
2

)

= 45 com-
plete assignments.

Hence, there are 55 complete assignments withP1,3 = false. Normalizing, we obtain

P(P1,3) = α〈21, 55〉 = 〈0.276, 0.724〉 .
With P2,2 = true, there are four partial assignments with a total of

(

10
2

)

+ 2 ·
(

10
1

)

+
(10

0

)

= 66 complete assignments. WithP2,2 = false, there is only one partial assignment with
(10

1

)

= 10 complete assignments. Hence

P(P2,2) = α〈66, 10〉 = 〈0.868, 0.132〉 .

13.24 First we redo the calculations ofP (frontier) for each model in Figure 13.6. The
three models withP1,3 = true have probabilities 0.0001, 0.0099, 0.0099; the two models
with P1,3 = false have probabilities 0.0001, 0.0099. Then

P(P1,3 | known , b) = α′ 〈0.01(0.0001 + 0.0099 + 0.0099), 0.99(0.0001 + 0.0099)〉
≈ 〈0.1674, 0.8326〉 .

The four models withP2,2 = true have probabilities 0.0001, 0.0099, 0.0099, 0.9801; the one
model withP2,2 = false has probability 0.0001. Then

P(P2,2 | known , b) = α′ 〈0.01(0.0001 + 0.0099 + 0.0099 + 0.9801), 0.99× 0.0001〉
≈ 〈0.9902, 0.0098〉 .

This means that [2,2] is almost certain death; a probabilistic agent can figure this out and
choose [1,3] or [3,1] instead. Its chance of death at this stage will be 0.1674, while a log-
ical agent choosing at random among the three squares will die with probability(0.1674 +
0.9902 + 0.1674)/3= 0.4416. The reason that [2,2] is so much more likely to be a pit in
this case is that, for itnot to be a pit,bothof [1,3] and [3,1] must contain pits, which is very
unlikely. Indeed, as the prior probability of pits tends to 0, the posterior probability of [2,2]
tends to 1.
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13.25 The solution for this exercise is omitted. The main modification to the agent in Fig-
ure 7.20 is to calculate, after each move, the safety probability for each square that is not
provably safe or fatal, and choose the safest if there is no unvisited safe square.



Solutions for Chapter 14
Probabilistic Reasoning

14.1

a. With the random variableC denoting which coin{a, b, c} we drew, the network hasC
at the root andX1,X2, andX3 as children.

The CPT forC is:
C P (C)

a 1/3
b 1/3
c 1/3

The CPT forXi givenC are the same, and equal to:

C X1 P (C)

a heads 0.2
b heads 0.6
c heads 0.8

b. The coin most likely to have been drawn from the bag given this sequence is the value
of C with greatest posterior probabilityP (C|2 heads, 1 tails). Now,

P (C|2 heads, 1 tails) = P (2 heads, 1 tails|C)P (C)/P (2 heads, 1 tails)

∝ P (2 heads, 1 tails|C)P (C)

∝ P (2 heads, 1 tails|C)

where in the second line we observe that the constant of proportionality 1/P (2 heads, 1 tails)
is independent ofC, and in the last we observe thatP (C) is also independent of the
value ofC since it is, by hypothesis, equal to1/3.

From the Bayesian network we can see thatX1,X2, andX3 are conditionally inde-
pendent givenC, so for example

P (X1 = tails,X2 = heads,X3 = heads|C = a)

= P (X1 = tails|C = a)P (X2 = heads|C = a)P (X3 = heads|C = a)

= 0.8 × 0.2 × 0.2 = 0.032

Note that since the CPTs for each coin are the same, we would get the same probability
above for any ordering of 2 heads and 1 tails. Since there are three such orderings, we
have

P (2heads, 1tails|C = a) = 3× 0.032 = 0.096.
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Similar calculations to the above find that

P (2heads, 1tails|C = b) = 0.432

P (2heads, 1tails|C = c) = 0.384

showing that coinb is most likely to have been drawn.
Alternatively, one could directly compute the value ofP (C|2 heads, 1 tails).

14.2 This question is quite tricky and students may require additional guidance, particularly
on the last part. It does, however, help them become comfortable with operating on complex
sum-of-product expressions, which are at the heart of graphical models.

a. By Equations (13.3) and (13.6), we have

P (z | y) =
P (y, z)

P (y)
=

∑

x P (x, y, z)
∑

x,z′ P (x, y, z′)
.

b. By Equation (14.1), this can be written as

P (z | y) =

∑

x θ(x)θ(y | x)θ(z | y)
∑

x,z′ θ(x)θ(y | x)θ(z′ | y)
.

c. For students who are not familiar with direct manipulationof summation expressions,
the expanding-out step makes it a bit easier to see how to simplify the expressions. Ex-
panding out the sums, collecting terms, using the sum-to-1 property of the parameters,
and finally cancelling, we have

P (z | y) =
θ(x)θ(y |x)θ(z | y) + θ(¬x)θ(y | ¬x)θ(z | y)

θ(x)θ(y | x)θ(z | y)+θ(x)θ(y | x)θ(¬z | y)+θ(¬x)θ(y | ¬x)θ(z | y)+θ(¬x)θ(y | ¬x)θ(¬z | y)

=
θ(z | y) [θ(x)θ(y | x) + θ(¬x)θ(y | ¬x)]

[θ(x)θ(y | x) + θ(¬x)θ(y | ¬x)] [θ(z | y) + θ(¬z | y)]

=
θ(z | y) [θ(x)θ(y | x) + θ(¬x)θ(y | ¬x)]

[θ(x)θ(y | x) + θ(¬x)θ(y | ¬x)]
= θ(z | y) .

If, instead, students are prepared to work on the summationsdirectly, the key step is
moving the sum overz′ inwards::

P (z | y) =
θ(z | y) ∑x θ(x)θ(y |x)

∑

x θ(x)θ(y |x)
∑

z′ θ(z
′ | y)

=
θ(z | y) ∑x θ(x)θ(y | x)

∑

x θ(x)θ(y |x)
= θ(z | y) .

(Note that the first printing has a typo, asking forθ(x | y) instead ofθ(z | y).)
d. The general case is a bit more difficult—the key to a simple proof is figuring out how to

split up all the variables. First, however, we need a little lemma: for any set of variables
V, we have

∑

v

∏

i

θ(vi | pa(Vi)) = 1 .
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This generalizes the sum-to-1 rule for a single variable, and is easily proved by induc-
tion given any topological ordering for the variables inV.

One of the principal rules for manipulating nested summations is that a particular
summation can be pushed to the right as long as all occurrences of that variable remain
to the right of the summation. For this reason, thedescendantsof Z, which we will
call U, are a very useful subset of the variables in the network. In particular, they have
the property that they cannot be parents of any other variable in the network. (If there
was such a variable, it would be a descendant ofZ by definition!) We will divide
the variables intoZ, Y (the parents ofZ), U (the descendants ofZ), andX (all other
variables). We know that variables inX andY have no parents inZ andU. So we have

P (z | y) =

∑

x,u P (x, y, z,u)
∑

x,z′,u P (x, y, z′,u)

=

∑

x,u
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))θ(z | y)
∏

k θ(uk | pa(Uk))
∑

x,z′,u
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))θ(z′ | y)
∏

k θ(uk | pa(Uk))

=

∑

x
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))θ(z | y)
∑

u
∏

k θ(uk | pa(Uk))
∑

x
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))
∑

z′ θ(z
′ | y)

∑

u
∏

k θ(uk | pa(Uk))

(moving the sums in as far as possible)

=

∑

x

∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))θ(z | y)
∑

x
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))
∑

z′ θ(z
′ | y)

(using the generalized sum-to-1 rule foru)

=

∑

x
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))θ(z | y)
∑

x
∏

i θ(xi | pa(Xi))
∏

j θ(yj | pa(Yj))

(using the sum-to-1 rule forz′)

= θ(z | y) .

14.3

a. Suppose thatX andY sharel parents. After the reversalY will gainm− l new parents,
them− l original parents ofX that it does not share withY , and loses one parent:X.
After the reversalX will gain n−l new parents, then−l−1 original parents ofY that it
does not share withX and isn’tX itself, and plusY . So, after the reversalY will have
n+(m− l−1) = m+(n− l−1) parents, andX will havem+(n− l) = n+(m− l)
parents.

Observe thatm− l ≥ 0, since this is the number of original parents ofX not shared
with Y , and thatn − l − 1 ≥ 0, since this is the number of original parents ofY not
shared withX and not equal toX. This shows the number of parameters can only
increase: before we hadkm + kn, after we havekm+(n−l−1) + kn+(m−l).

(As a sanity check on our counting above, if are reversing a single arc without any
extra parents, we havel = 0, m = 0, andn = 1; the previous formulas say we will
havem′ = 0 andn′ = 1 afterwards, which is correct.)

b. For the number of parameters to remain constant, assumingthatk > 1, requires by our
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previous calculation thatm− l = 0 andn− l− 1 = 0. This holds exactly whenX and
Y share all their parents originally (exceptY also hasX as a parent).

c. For clarity, denote byP ′(Y |U, V,W ) andP ′(X|U, V,W, Y ) the new CPTs, and note
that the set of variablesV ∪W does not includeX. It suffices to show that

P ′(X,Y |U, V,W ) = P (X,Y |U, V,W )

To see this, letD denote the variables, outside of{X,Y } ∪ U ∪ V ∪W , which have
eitherX or Y as ancestor in the original network, andD those which don’t. Since the
arc reversed graph only adds or removes arcs incoming toX or Y , it cannot change
which variables lie inD orD. We then have

P (D,D,X, Y,U, V,W ) = P (D,U, V,W )P (X,Y |U, V,W )P (D|X,Y,U, V,W )

= P ′(D,U, V,W )P (X,Y |U, V,W )P (D|X,Y,U, V,W )

= P ′(D,U, V,W )P (X,Y |U, V,W )P ′(D|X,Y,U, V,W )

= P ′(D,U, V,W )P ′(X,Y |U, V,W )P ′(D|X,Y,U, V,W )

= P ′(D,D,X, Y,U, V,W )

the second as arc reversal does not change the CPTs of variables inD,U, V,W contains
all its parents, the third as if we condition onX,Y,U, V,W the original and arc-reversed
Bayesian networks are the same, and the fourth by hypothesis.

Then, calculating:

P ′(X,Y |U, V,W )

= P ′(Y |U, V,W )P ′(X|U, V,W, Y )

=

(

∑

x

P (Y |V,W, x)P (x|U, V )

)

P (Y |X,V,W )P (X|U, V )

=

(

∑

x

P (Y |U, V,W, x)P (x|U, V )/P (Y |U, V,W )

)

P (Y |X,V,W )P (X|U, V )

=

(

∑

x

P (Y,U, V,W, x)P (x,U, V )P (U, V,W )

P (U, V,W, x)P (U, V )P (Y,U, V,W )

)

P (Y |X,V,W )P (X|U, V )

=

(

∑

x

P (x|Y,U, V,W )P (x|U, V )/P (x|U, V,W )

)

P (Y |X,V,W )P (X|U, V )

=

(

∑

x

P (x|Y,U, V,W )

)

P (Y |X,V,W )P (X|U, V )

= P (Y |X,V,W )P (X|U, V )

where the third step follows asV,W, x is the parent set ofY it’s conditionally inde-
pendent ofU , and the second to last step follows asU, V is the parent set ofX it’s
conditionally independent ofx.

14.4
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a. Yes. Numerically one can compute thatP (B,E) = P (B)P (E). TopologicallyB and
E are d-separated byA.

b. We check whetherP (B,E|a) = P (B|a)P (E|a). First computingP (B,E|a)
P (B,E|a) = αP (a|B,E)P (B,E)

= α















.95× 0.001 × 0.002 if B = b andE = e

.94× 0.001 × 0.998 if B = b andE = ¬e

.29× 0.999 × 0.002 if B = ¬b andE = e

.001 × 0.999 × 0.998 if B = ¬b andE = ¬e

= α















0.0008 if B = b andE = e
0.3728 if B = b andE = ¬e
0.2303 if B = ¬b andE = e
0.3962 if B = ¬b andE = ¬e

whereα is a normalization constant. Checking whetherP (b, e|a) = P (b|a)P (e|a) we
find

P (b, e|a) = 0.0008 6= 0.0863 = 0.3736 × 0.2311 = P (b|a)P (e|a)
showing thatB andE are not conditionally independent givenA.

14.5 The question is not very specific about what “remove” means. When a node is a leaf
node with no children, removing it and its CPT leaves the restof the network unchanged.
When a node has children, however, we have to decide what to doabout the CPTs of those
children, since one parent has disappeared. The only reasonable interpretation is that removal
has to leave the posterior of all other variables unchangedregardlessof what new CPTs are
supplied forY ’s children.

a. Let X be the set of all variables in the Bayesian Network except forY andMB(Y ).
SinceY is conditionally independent of all other nodes in the network, givenMB(Y ),
we haveP (X|Y,mb(Y )) = P (X|mb(Y )) = αP (X,mb(Y )). By definition, the par-
ents ofY ’s children are a subset of{Y }∪MB(Y ), so not include any variables inX.
Hence, if we expand outP (X,mb(Y )) in terms of CPT entries, all the CPT entries for
Y ’s children are constants that can be subsumed inα.

b. We have argued that any removal operation as described above leaves posteriors un-
changed; therefore, both algorithms will still return the correct answers.

14.6

a. (c) matches the equation. The equation describes absoluteindependence of the three
genes, which requires no links among them.

b. (a) and (b). Theassertionsare theabsentlinks; the extra links in (b) may be unnecessary
but they do not assert an actual dependence. (c) asserts independence of genes which
contradicts the inheritance scenario.

c. (a) is best. (b) has spurious links among theH variables, which are not directly causally
connected in the scenario described. (In reality, handedness may also be passed down
by example/training.)
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d. Notice that thel → r and r → l mutations cancel when the parents have different
genes, so we still get 0.5.

Gmother Gfather P (Gchild = l| . . .) P (Gchild = r| . . .)
l l 1−m m
l r 0.5 0.5
r l 0.5 0.5
r r m 1−m

e. This is a straightforward application of conditioning:

P (Gchild = l) =
∑

gm,gf

P (Gchild = l|gm, gf )P (gm, gf )

=
∑

gm,gf

P (Gchild = l|gm, gf )P (gm)P (gf )

= (1−m)q2 + 0.5q(1 − q) + 0.5(1 − q)q +m(1− q)2

= q2 −mq2 + q − q2 +m− 2mq +mq2

= q +m− 2mq

f. Equilibrium means thatP (Gchild = l) (the prior, with no parent information) must equal
P (Gmother = l) andP (Gfather = l), i.e.,

q +m− 2mq = q, henceq = 0.5.

But few humans are left-handed (x ≈ 0.08 in fact), so something is wrong with the
symmetric model of inheritance and/or manifestation. The “high-school” explanation is
that the “right-hand gene is dominant,” i.e., preferentially inherited, but current studies
suggest also that handedness is not the result of a single gene and may also involve
cultural factors. An entire journal (Laterality) is devoted to this topic.

14.7 These proofs are tricky for those not accustomed to manipulating probability expres-
sions, and students may require some hints.

a. There are several ways to prove this. Probably the simplestis to work directly from the
global semantics. First, we rewrite the required probability in terms of the full joint:

P (xi|x1, . . . , xi−1, xi+1, . . . , xn) =
P (x1, . . . , xn)

P (x1, . . . , xi−1, xi+1, . . . , xn)

=
P (x1, . . . , xn)

∑

xi
P (x1, . . . , xn)

=

∏n
j = 1 P (xj |parentsXj)

∑

xi

∏n
j = 1 P (xj |parentsXj)

Now, all terms in the product in the denominator that do not containxi can be moved
outside the summation, and then cancel with the corresponding terms in the numerator.
This just leaves us with the terms that do mentionxi, i.e., those in whichXi is a child
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or a parent. Hence,P (xi|x1, . . . , xi−1, xi+1, . . . , xn) is equal to

P (xi|parentsXi)
∏

Yj∈Children(Xi)
P (yj|parents(Yj))

∑

xi
P (xi|parentsXi)

∏

Yj∈Children(Xi)
P (yj|parents(Yj))

Now, by reversing the argument in part (b), we obtain the desired result.
b. This is a relatively straightforward application of Bayes’ rule. Let Y =Y1, . . . , yℓ be the

children ofXi and letZj be the parents ofYj other thanXi. Then we have

P(Xi|MB(Xi))

= P(Xi|Parents(Xi),Y,Z1, . . . ,Zℓ)

= αP(Xi|Parents(Xi),Z1, . . . ,Zℓ)P(Y|Parents(Xi),Xi,Z1, . . . ,Zℓ)

= αP(Xi|Parents(Xi))P(Y|Xi,Z1, . . . ,Zℓ)

= αP(Xi|Parents(Xi))
∏

Yj∈Children(Xi)

P (Yj |Parents(Yj))

where the derivation of the third line from the second relieson the fact that a node is
independent of its nondescendants given its children.

14.8 Adding variables to an existing net can be done in two ways. Formally speaking,
one should insert the variables into the variable ordering and rerun the network construction
process from the point where the first new variable appears. Informally speaking, one never
really builds a network by a strict ordering. Instead, one asks what variables are direct causes
or influences on what other ones, and builds local parent/child graphs that way. It is usually
easy to identify where in such a structure the new variable goes, but one must be very careful
to check for possible induced dependencies downstream.

a. IcyWeather is not caused by any of the car-related variables, so needs noparents.
It directly affects the battery and the starter motor.StarterMotor is an additional
precondition forStarts. The new network is shown in Figure S14.1.

b. Reasonable probabilities may vary a lot depending on the kind of car and perhaps the
personal experience of the assessor. The following values indicate the general order of
magnitude and relative values that make sense:

• A reasonable prior for IcyWeather might be 0.05 (perhaps depending on location
and season).

• P (Battery|IcyWeather) = 0.95, P (Battery|¬IcyWeather) = 0.997.
• P (StarterMotor|IcyWeather) = 0.98, P (Battery|¬IcyWeather) = 0.999.
• P (Radio|Battery) = 0.9999, P (Radio|¬Battery) = 0.05.
• P (Ignition|Battery) = 0.998, P (Ignition|¬Battery) = 0.01.
• P (Gas) = 0.995.
• P (Starts|Ignition, StarterMotor,Gas) = 0.9999, other entries 0.0.
• P (Moves|Starts) = 0.998.

c. With 8 Boolean variables, the joint has28 − 1 = 255 independent entries.
d. Given the topology shown in Figure S14.1, the total number of independent CPT entries

is 1+2+2+2+2+1+8+2= 20.
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Radio

Battery

Ignition Gas

Starts

Moves

IcyWeather

1

2

2

2

2

8

1

2

StarterMotor

Figure S14.1 Car network amended to include IcyWeather and
StarterMotorWorking (SMW ).

e. The CPT forStarts describes a set of nearly necessary conditions that are together
almost sufficient. That is, all the entries are nearly zero except for the entry where all
the conditions are true. That entry will be not quite 1 (because there is always some
other possible fault that we didn’t think of), but as we add more conditions it gets closer
to 1. If we add aLeak node as an extra parent, then the probability is exactly 1 when
all parents are true. We can relate noisy-AND to noisy-OR using de Morgan’s rule:
A ∧ B ≡ ¬(¬A ∨ ¬B). That is, noisy-AND is the same as noisy-OR except that the
polarities of the parent and child variables are reversed. In the noisy-OR case, we have

P (Y = true|x1, . . . , xk) = 1−
∏

{i:xi = true}

qi

whereqi is the probability that thepresenceof the ith parentfails to cause the child to
betrue. In the noisy-AND case, we can write

P (Y = true|x1, . . . , xk) =
∏

{i:xi = false}

ri

whereri is the probability that theabsenceof the ith parentfails to cause the child to
befalse(e.g., it is magically bypassed by some other mechanism).

14.9 This exercise is a little tricky and will appeal to more mathematically oriented students.

a. The basic idea is to multiply the two densities, match the result to the standard form for
a multivariate Gaussian, and hence identify the entries in the inverse covariance matrix.
Let’s begin by looking at the multivariate Gaussian. From page 982 in Appendix A we
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have

P (x) =
1

√

(2π)n|Σ|
e
− 1

2

“

(x−µ)⊤Σ
−1

(x−µ)
”

,

whereµ is the mean vector andΣ is the covariance matrix. In our case,x is (x1 x2)
⊤

and let the (as yet) unknownµ be(m1 m2)
⊤. Suppose the inverse covariance matrix is

Σ
−1 =

(

c d
d e

)

Then, if we multiply out the exponent, we obtain

−1
2

(

(x−µ)⊤Σ
−1(x− µ)

)

=
−1

2 · c(x1 −m1)
2 + 2d(x1 −m1)(x2 −m2) + f(x2 −m2)

2

Looking at the distributions themselves, we have

P (x1) =
1

σ1

√
2π
e−(x1−µ1)2/(2σ2

1)

and

P (x2|x1) =
1

σ2

√
2π
e−(x2−(ax1+b))2/(2σ2

2)

hence

P (x1, x2) =
1

σ1σ2(2π)
e−(σ2

2(x2−(ax1+b))2+σ2
1(x2−(ax1+b))2)/(2σ2

1σ2
2)

We can obtain equations forc, d, ande by picking out the coefficients ofx2
1, x1x2, and

x2
2:

c = (σ2
2 + a2σ2

1)/σ
2
1σ

2
2

2d = −2a/σ2
2

e = 1/σ2
2

We can check these by comparing the normalizing constants.
1

σ1σ2(2π)
=

1
√

(2π)n|Σ|
=

1

(2π)
√

1/|Σ−1|
=

1

(2π)
√

1/(ce − d2)

from which we obtain the constraint

ce− d2 = 1/σ2
1σ

2
2

which is easily confirmed. Similar calculations yieldm1 andm2, and plugging the re-
sults back shows thatP (x1, x2) is indeed multivariate Gaussian. The covariance matrix
is

Σ =

(

c d
d e

)−1

=
1

ce− d2

(

e −d
−d c

)

=

(

σ2
1 aσ2

1

aσ2
1 σ2

2 + a2σ2
1

)

b. The induction is onn, the number of variables. The base case forn=1 is trivial.
The inductive step asks us to show that if anyP (x1, . . . , xn) constructed with linear–
Gaussian conditional densities is multivariate Gaussian,then anyP (x1, . . . , xn, xn+1)
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constructed with linear–Gaussian conditional densities is also multivariate Gaussian.
Without loss of generality, we can assume thatXn+1 is a leaf variable added to a net-
work defined in the firstn variables. By the product rule we have

P (x1, . . . , xn, xn+1) = P (xn+1|x1, . . . , xn)P (x1, . . . , xn)

= P (xn+1|parents(Xn+1))P (x1, . . . , xn)

which, by the inductive hypothesis, is the product of a linear Gaussian with a multivari-
ate Gaussian. Extending the argument of part (a), this is in turn a multivariate Gaussian
of one higher dimension.

14.10

a. With multiple continuous parents, we must find a way to map the parent value vector to
a single threshold value. The simplest way to do this is to take a linear combination of
the parent values.

b. For ordered valuesy1 < y2 < · · · < yd, we assume some unobserved continuous
dependent variabley∗ that is normally distributed conditioned on the parent variables,
and define cutpointscj such thatY = yj iff cj−1 ≤ y∗ ≤ cj . The probability of this
event is given by subtracting the cumulative distributionsat the adjacent cutpoints.

The unordered case is not obviously meaningful if we insist that the relationship
between parents and child be mediated by a single, real-valued, normally distributed
variable.

14.11 This question exercises many aspects of the student’s understanding of Bayesian net-
works and uncertainty.

a. A suitable network is shown in Figure S14.2. The key aspectsare: the failure nodes are
parents of the sensor nodes, and the temperature node is a parent of both the gauge and
the gauge failure node. It is exactly this kind of correlation that makes it difficult for
humans to understand what is happening in complex systems with unreliable sensors.

T G A

FG FA

Figure S14.2 A Bayesian network for the nuclear alarm problem.

b. No matter which way the student draws the network, it shouldnot be a polytree because
of the fact that the temperature influences the gauge in two ways.

c. The CPT forG is shown below. Students should pay careful attention to thesemantics
of FG, which is true when the gauge isfaulty, i.e.,not working.
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T =Normal T =High

FG ¬FG FG ¬FG

G=Normal y x 1− y 1− x
G=High 1− y 1− x y x

d. The CPT forA is as follows:

G=Normal G=High

FA ¬FA FA ¬FA

A 0 0 0 1
¬A 1 1 1 0

e. This part actually asks the student to do something usuallydone by Bayesian network
algorithms. The great thing is that doing the calculation without a Bayesian network
makes it easy to see the nature of the calculations that the algorithms are systematizing.
It illustrates the magnitude of the achievement involved increating complete and correct
algorithms.

AbbreviatingT =High andG=High by T andG, the probability of interest here
is P (T |A,¬FG,¬FA). Because the alarm’s behavior is deterministic, we can reason
that if the alarm is working and sounds,G must beHigh. BecauseFA andA are
d-separated fromT , we need only calculateP (T |¬FG, G).

There are several ways to go about doing this. The “opportunistic” way is to notice
that the CPT entries give usP (G|T,¬FG), which suggests using the generalized Bayes’
Rule to switchG andT with ¬FG as background:

P (T |¬FG, G) ∝ P (G|T,¬FG)P (T |¬FG)

We then use Bayes’ Rule again on the last term:

P (T |¬FG, G) ∝ P (G|T,¬FG)P (¬FG|T )P (T )

A similar relationship holds for¬T :

P (¬T |¬FG, G) ∝ P (G|¬T,¬FG)P (¬FG|¬T )P (¬T )

Normalizing, we obtain

P (T |¬FG, G) =
P (G|T,¬FG)P (¬FG|T )P (T )

P (G|T,¬FG)P (¬FG|T )P (T )+P (G|¬T,¬FG)P (¬FG|¬T )P (¬T )

The “systematic” way to do it is to revert to joint entries (noticing that the subgraph
of T ,G, andFG is completely connected so no loss of efficiency is entailed). We have

P (T |¬FG, G) =
P (T,¬FG, G)

P (G,¬FG)
=

P (T,¬FG, G)

P (T,G,¬FG) + P (T,G,¬FG)

Now we use the chain rule formula (Equation 15.1 on page 439) to rewrite the joint
entries as CPT entries:

P (T |¬FG, G) =
P (T )P (¬FG|T )P (G|T,¬FG)

P (T )P (¬FG|T )P (G|T,¬FG)+P (¬T )P (¬FG|¬T )P (G|¬T,¬FG)
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which of course is the same as the expression arrived at above. Letting P (T ) = p,
P (FG|T ) = g, andP (FG|¬T ) = h, we get

P (T |¬FG, G) =
p(1− g)(1 − x)

p(1− g)(1 − x) + (1− p)(1− h)x

14.12

a. Although (i) in some sense depicts the “flow of information”during calculation, it is
clearly incorrect as a network, since it says that given the measurementsM1 andM2,
the number of stars is independent of the focus. (ii) correctly represents the causal
structure: each measurement is influenced by the actual number of stars and the focus,
and the two telescopes are independent of each other. (iii) shows a correct but more
complicated network—the one obtained by ordering the nodesM1, M2, N , F1, F2. If
you orderM2 beforeM1 you would get the same network except with the arrow from
M1 toM2 reversed.

b. (ii) requires fewer parameters and is therefore better than (iii).

c. To computeP(M1|N), we will need to condition onF1 (that is, consider both possible
cases forF1, weighted by their probabilities).

P(M1|N) = P(M1|N,F1)P(F1|N) + P(M1|N,¬F1)P(¬F1|N)

= P(M1|N,F1)P(F1) + P(M1|N,¬F1)P(¬F1)

Let f be the probability that the telescope is out of focus. The exercise states that this
will cause an “undercount of three or more stars,” but ifN = 3 or less the count will
be 0 if the telescope is out of focus. If it is in focus, then we will assume there is a
probability ofe of counting one two few, ande of counting one too many. The rest of
the time(1− 2e), the count will be accurate. Then the table is as follows:

N = 1 N = 2 N =3

M1 = 0 f + e(1-f) f f
M1 = 1 (1-2e)(1-f) e(1-f) 0.0
M1 = 2 e(1-f) (1-2e)(1-f) e(1-f)
M1 = 3 0.0 e(1-f) (1-2e)(1-f)
M1 = 4 0.0 0.0 e(1-f)

Notice that each column has to add up to 1. Reasonable values for e andf might be
0.05 and 0.002.

d. This question causes a surprising amount of difficulty, so it is important to make sure
students understand the reasoning behind an answer. One approach uses the fact that
it is easy to reason in the forward direction, that is, try each possible number of stars
N and see whether measurementsM1 = 1 andM2 = 3 are possible. (This is a sort of
mental simulation of the physical process.) An alternativeapproach is to enumerate the
possible focus states and deduce the value ofN for each. Either way, the solutions are
N = 2, 4, or≥ 6.



133

e. We cannot calculate the most likely number of stars withoutknowing the prior distribu-
tion P (N). Let the priors bep2, p4, andp≥6. The posterior forN = 2 is p2e

2(1 − f)2;
for N = 4 it is at mostp4ef (at most, because withN = 4 the out-of-focus telescope
could measure 0 instead of 1); forN ≥ 6 it is at mostp≥6f

2. If we assume that the
priors are roughly comparable, thenN =2 is most likely because we are told thatf is
much smaller thane.

For follow-up or alternate questions, it is easy to come up with endless variations on the
same theme involving sensors, failure nodes, hidden state.One can also add in complex
mechanisms, as for theStarts variable in exercise 14.1.

14.13 The symbolic expression evaluated by the enumeration algorithm is

P(N |M1 = 2,M2 = 2) = α
∑

f1,f2

P(f1, f2,N,M1 = 2,M2 =2)

= α
∑

f1,f2

P (f1)P (f2)P(N)P (M1 = 2 | f1,N)P (M2 =2 | f2,N) .

Because an out-of-focus telescope cannot report 2 stars in the given circumstances, the only
non-zero term in the summation is forF1 =F2 = false , so the answer is

P(N |M1 = 2,M2 = 2) = α(1− f)(1− f)〈p1, p2, p3〉〈e, (1 − 2e), e〉〈e, (1 − 2e), e〉
= α′〈p1e

2, p2(1− 2e)2, p3e
2〉 .

14.14

a. The network asserts (ii) and (iii). (For (iii), consider the Markov blanket ofM .)

b. P (b, i,¬m, g, j)= P (b)P (¬m)P (i|b,¬m)P (g|b, i,¬m)P (j|g)
= .9× .9× .5× .8× .9 = .2916

c. SinceB, I,M are fixed true in the evidence, we can treatG as having a prior of 0.9 and
just look at the submodel withG, J :
P(J |b, i,m) = α

∑

g P(J, g) = α[P(J, g) + P(J,¬g)]
= α[〈P (j, g), P (¬j, g)〉 + 〈P (j,¬g), P (¬j,¬g)〉
= α[〈.81, .09〉 + 〈0, 0.1〉] = 〈.81, .19〉
That is, the probability of going to jail is 0.81.

d. Intuitively, a person cannot be found guilty if not indicted, regardless of whether they
broke the law and regardless of the prosecutor. This is what the CPT forG says; soG
is context-specifically independent ofB andM givenI = false.

e. A pardon is unnecessary if the person is not indicted or not found guilty; soI andG
are parents ofP . One could also addB andM as parents ofP , since a pardon is more
likely if the person is actually innocent and if the prosecutor is politically motivated.
(There are other causes ofPardon, such asLargeDonationToPresidentsParty,
but such variables are not currently in the model.) The pardon (presumably) is a get-
out-of-jail-free card, soP is a parent ofJ .
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14.15 This question definitely helps students get a solid feel for variable elimination. Stu-
dents may need some help with the last part if they are to do it properly.

a.

P (B|j,m)

= αP (B)
∑

e

P (e)
∑

a

P (a|b, e)P (j|a)P (m|a)

= αP (B)
∑

e

P (e)

[

.9× .7×
(

.95 .29

.94 .001

)

+ .05× .01×
(

.05 .71

.06 .999

)]

= αP (B)
∑

e

P (e)

(

.598525 .183055

.59223 .0011295

)

= αP (B)

[

.002×
(

.598525

.183055

)

+ .998×
(

.59223

.0011295

)]

= α

(

.001

.999

)

×
(

.59224259

.001493351

)

= α

(

.00059224259

.0014918576

)

≈ 〈.284, .716〉
b. Including the normalization step, there are 7 additions, 16 multiplications, and 2 divi-

sions. The enumeration algorithm has two extra multiplications.

c. To computeP(X1|Xn = true) using enumeration, we have to evaluate two complete
binary trees (one for each value ofX1), each of depthn− 2, so the total work isO(2n).
Using variable elimination, the factors never grow beyond two variables. For example,
the first step is

P(X1|Xn = true)

= αP(X1) . . .
∑

xn−2

P (xn−2|xn−3)
∑

xn−1

P (xn−1|xn−2)P (Xn = true|xn−1)

= αP(X1) . . .
∑

xn−2

P (xn−2|xn−3)
∑

xn−1

fXn−1(xn−1, xn−2)fXn(xn−1)

= αP(X1) . . .
∑

xn−2

P (xn−2|xn−3)fXn−1Xn
(xn−2)

The last line is isomorphic to the problem withn − 1 variables instead ofn; the work
done on the first step is a constant independent ofn, hence (by induction onn, if you
want to be formal) the total work isO(n).

d. Here we can perform an induction on the number of nodes in thepolytree. The base
case is trivial. For the inductive hypothesis, assume that any polytree withn nodes can
be evaluated in time proportional to the size of the polytree(i.e., the sum of the CPT
sizes). Now, consider a polytree withn + 1 nodes. Any node ordering consistent with
the topology will eliminate first some leaf node from this polytree. To eliminate any
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leaf node, we have to do work proportional to the size of its CPT. Then,because the
network is a polytree, we are left withindependentsubproblems, one for each parent.
Each subproblem takes total work proportional to the sum of its CPT sizes, so the total
work for n+ 1 nodes is proportional to the sum of CPT sizes.

14.16

a. Consider a 3-CNF formulaC1 ∧ . . . Cn with n clauses where each clause is a disjunct
Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3) of literals i.e., eachℓij is eitherPk or ¬Pk for some atomic
propositionP1, . . . , Pm.

Construct a Bayesian network with a (boolean) variableS for the whole formula,
Ci for each clause, andPk for each atomic proposition. We will define parents and
CPTs such that for any assignment to the atomic propositions, S is true if and only if
the 3-CNF formula is true.

Atomic propositions have no parents, and are true with probability 0.5. Each clause
Ci has as its parents the atomic propositions corresponding tothe literalsℓi1, ℓi2, and
ℓi3). The clause variable is true iff one of its literals is true. Note that this is a determin-
istic CPT. Finally,S has all the clause variablesCi as its parents, and if true if any only
if all clause variables are true.

Notice thatP (S = True) > 0 if and only if the formula is satisfiable, and exact
inference will answer this question.

b. Using the same network as in part (a), notice thatP (S = True) = s2−m wheres is
the number of satisfying assignments to the atomic propositionsP1, . . . , Pm.

14.17

a. To calculate the cumulative distribution of a discrete variable, we start from a vector
representationp of the original distribution and a vectorP of the same dimension.
Then, we loop throughi, adding up thepi values as we go along and settingPi to the
running sum,

∑i
j = i pj. To sample from the distribution, we generate a random number

r uniformly in [0, 1], and then returnxi for the smallesti such thatPi ≥ r. A naive
way to find this is to loop throughi starting at 1 untilPi ≥ r. This takesO(k) time. A
more efficient solution is binary search: start with the fullrange[1, k], choosei at the
midpoint of the range. IfPi < r, set the range fromi to the upper bound, otherwise set
the range from the lower bound toi. After O(log k) iterations, we terminate when the
bounds are identical or differ by 1.

b. If we are generatingN ≫ k samples, we can afford to preprocess the cumulative
distribution. The basic insight required is thatif the original distribution were uniform,
it would be possible to sample inO(1) time by returning⌈kr⌉. That is, we can index
directly into the correct part of the range (analog random access, one might say) instead
of searching for it. Now, suppose we divide the range[0, 1] into k equal parts and
construct ak-element vector, each of whose entries is a list of all thosei for which
Pi is in the corresponding part of the range. Thei we want is in the list with index
⌈kr⌉. We retrieve this list inO(1) time and search through it in order (as in the naive



136 Chapter 14. Probabilistic Reasoning

implementation). Letnj be the number of elements in listj. Then the expected runtime
is given by

k
∑

j = 1

nj · 1/k = 1/k ·
k
∑

j = 1

nj = 1/k ·O(k) = O(1)

The variance of the runtime can be reduced by further subdividing any part of the range
whose list contains more than some small constant number of elements.

c. One way to generate a sample from a univariate Gaussian is tocompute the discretized
cumulative distribution (e.g., integrating by Taylor’s rule) and use the algorithm de-
scribed above. We can compute the table once and for all for the standard Gaussian
(mean 0, variance 1) and then scale each sampled valuez to σz + µ. If we had a
closed-form, invertible expression for the cumulative distributionF (x), we could sam-
ple exactly, simply by returningF−1(r). Unfortunately the Gaussian density is not
exactly integrable. Now, the densityαxe−x2/2 is exactly integrable, and there are cute
schemes for using two samples and this density to obtain an exact Gaussian sample. We
leave the details to the interested instructor.

d. When querying a continuous variable using Monte carlo inference, an exact closed-form
posterior cannot be obtained. Instead, one typically defines discrete ranges, returning
a histogram distribution simply by counting the (weighted)number of samples in each
range.

14.18

a. There are two uninstantiated Boolean variables (Cloudy andRain) and therefore four
possible states.

b. First, we compute the sampling distribution for each variable, conditioned on its Markov
blanket.

P(C|r, s) = αP(C)P(s|C)P(r|C)

= α〈0.5, 0.5〉〈0.1, 0.5〉〈0.8, 0.2〉 = α〈0.04, 0.05〉 = 〈4/9, 5/9〉
P(C|¬r, s) = αP(C)P(s|C)P(¬r|C)

= α〈0.5, 0.5〉〈0.1, 0.5〉〈0.2, 0.8〉 = α〈0.01, 0.20〉 = 〈1/21, 20/21〉
P(R|c, s, w) = αP(R|c)P(w|s,R)

= α〈0.8, 0.2〉〈0.99, 0.90〉 = α〈0.792, 0.180〉 = 〈22/27, 5/27〉
P(R|¬c, s, w) = αP(R|¬c)P(w|s,R)

= α〈0.2, 0.8〉〈0.99, 0.90〉 = α〈0.198, 0.720〉 = 〈11/51, 40/51〉

Strictly speaking, the transition matrix is only well-defined for the variant of MCMC in
which the variable to be sampled is chosen randomly. (In the variant where the variables
are chosen in a fixed order, the transition probabilities depend on where we are in the
ordering.) Now consider the transition matrix.
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• Entries on the diagonal correspond to self-loops. Such transitions can occur by
samplingeithervariable. For example,

q((c, r)→ (c, r)) = 0.5P (c|r, s) + 0.5P (r|c, s, w) = 17/27

• Entries where one variable is changed must sample that variable. For example,

q((c, r)→ (c,¬r)) = 0.5P (¬r|c, s, w) = 5/54

• Entries where both variables change cannot occur. For example,

q((c, r)→ (¬c,¬r)) = 0

This gives us the following transition matrix, where the transition is from the state given
by the row label to the state given by the column label:

(c, r)
(c,¬r)
(¬c, r)
(¬c,¬r)

(c, r) (c,¬r) (¬c, r) (¬c,¬r)








17/27 5/54 5/18 0
11/27 22/189 0 10/21

2/9 0 59/153 20/51
0 1/42 11/102 310/357









c. Q2 represents the probability of going from each state to each state in two steps.

d. Qn (asn → ∞) represents the long-term probability of being in each state starting in
each state; for ergodicQ these probabilities are independent of the starting state,so
every row ofQ is the same and represents the posterior distribution over states given
the evidence.

e. We can produce very large powers ofQ with very few matrix multiplications. For
example, we can getQ2 with one multiplication,Q4 with two, andQ2k

with k. Unfor-
tunately, in a network withn Boolean variables, the matrix is of size2n× 2n, so each
multiplication takesO(23n) operations.

14.19

a. Supposing thatq1 andq2 are in detailed balance we have:

π(x)(αq1(x→ x′) + (1− α)q2(x→ x′))

= απ(x)q1(x→ x′) + (1− α)π(x)q2(x→ x′)

= απ(x)q1(x′ → x) + (1− α)π(x)q2(x′ → x)

= π(x)(αq1(x′ → x) + (1− α)q2(x′ → x))

b. The sequential composition is defined by

(q1 ◦ q2)(x→ x′) =
∑

x′′

q1(x→ x′′)q2(x′′ → x′).

If q1 andq2 both haveπ as their stationary distribution, then:
∑

x
π(x)(q1 ◦ q2)(x→ x′) =

∑

x
π(x)

∑

x′′

q1(x→ x′′)q2(x′′ → x′)

=
∑

x′′

q2(x′′ → x′)
∑

x
π(x)q1(x→ x′′)
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=
∑

x′′

q2(x′′ → x′)π(x′′)

= π(x′)

14.20

a. Because a Gibbs transition step is in detailed balance with π, we have that the accep-
tance probability is one:

α(x′ | x) = min

(

1,
π(x′)q(x | x′)
π(x)q(x′ | x)

)

= 1

since by definition of detailed balance we have

π(x′)q(x | x′) = π(x)q(x′ | x) .

b. Two prove this in two stages. Forx 6= x′ the transition probability distribution is
q(x′ | x)α(x′ | x) and we have:

π(x)q(x′ |x)α(x′ | x) = π(x)q(x′ |x)min

(

1,
π(x′)q(x | x′)
π(x)q(x′ | x)

)

= min
(

π(x)q(x′ | x), π(x′)q(x | x′)
)

= π(x′)q(x | x′)min

(

π(x)q(x′ | x)

π(x′)q(x | x′) , 1
)

π(x′)q(x | x′)α(x | x′)
Forx = x′ the transition probability is someq′(x | x) which always satisfies the equation
for detailed balance:

π(x)q′(x | x) = π(x)q′(x | x).

14.21

a. The classes areTeam, with instancesA, B, andC, andMatch, with instancesAB,
BC, andCA. Each team has a qualityQ and each match has aTeam1 andTeam2 and
anOutcome. The team names for each match are of course fixed in advance. The prior
over quality could be uniform and the probability of a win forteam 1 should increase
with Q(Team1)−Q(Team2).

b. The random variables areA.Q,B.Q,C.Q,AB.Outcome,BC.Outcome, andCA.Outcome.
The network is shown in Figure S14.3.

c. The exact result will depend on the probabilities used in the model. With any prior on
quality that is the same across all teams, we expect that the posterior overBC.Outcome
will show thatC is more likely to win thanB.

d. The inference cost in such a model will beO(2n) because all the team qualities become
coupled.

e. MCMC appears to do well on this problem, provided the probabilities are not too
skewed. Our results show scaling behavior that is roughly linear in the number of
teams, although we did not investigate very largen.
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A.Q B.Q C.Q

AB.Outcome BC.Outcome CA.Outcome

Figure S14.3 Bayes net showing the dependency structure for the team quality and game
outcome variables in the soccer model.



Solutions for Chapter 15
Probabilistic Reasoning over Time

15.1 For each variableUt that appears as a parent of a variableXt+2, define an auxiliary
variableUold

t+1, such thatUt is parent ofUold
t+1 andUold

t+1 is a parent ofXt+2. This gives us
a first-order Markov model. To ensure that the joint distribution over the original variables
is unchanged, we keep the CPT forXt+2 is unchanged except for the new parent name, and
we require thatP(Uold

t+1|Ut) is an identity mapping, i.e., the child has the same value as the
parent with probability 1. Since the parameters in this model are fixed and known, there is no
effective increase in the number of free parameters in the model.

15.2

a. For all t, we have the filtering formula

P(Rt|u1:t) = αP(ut|Rt)
∑

Rt−1

P(Rt|Rt−1)P (Rt−1|u1:t−1) .

At the fixed point, we additionally expect thatP(Rt|u1:t) = P(Rt−1|u1:t−1). Let the
fixed-point probabilities be〈ρ, 1− ρ〉. This provides us with a system of equations:

〈ρ, 1− ρ〉 = α〈0.9, 0.2〉〈0.7, 0.3〉ρ+ 〈0.3, 0.7〉(1− ρ)
= α〈0.9, 0.2〉(〈0.4ρ, −0.4ρ〉+ 〈0.3, 0.7〉)

=
1

0.9(0.4ρ+ 0.3) + 0.2(−0.4ρ+ 0.7)
〈0.9, 0.2〉(〈0.4ρ, −0.4ρ〉+ 〈0.3, 0.7〉)

Solving this system, we find thatρ ≈ 0.8933.
b. The probability converges to〈0.5, 0.5〉 as illustrated in Figure S15.1. This convergence

makes sense if we consider a fixed-point equation forP(R2+k|U1, U2):

P(R2+k|U1, U2) = 〈0.7, 0.3〉P (r2+k−1 |U1, U2) + 〈0.3, 0.7〉P (¬r2+k−1|U1, U2)

P(r2+k|U1, U2) = 0.7P (r2+k−1|U1, U2) + 0.3(1 − P (r2+k−1|U1, U2))

= 0.4P (r2+k−1|U1, U2) + 0.3

That is,P (r2+k|U1, U2) = 0.5.

Notice that the fixed point does not depend on the initial evidence.

15.3 This exercise develops the Island algorithm for smoothing in DBNs (Binderet al.,
1997).

140
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Figure S15.1 A graph of the probability of rain as a function of time, forecast into the
future.

a. The chapter shows thatP(Xk|e1:t) can be computed as

P(Xk|e1:t) = αP(Xk|e1:k)P(ek+1:t|Xk) = α f1:kbk+1:t

The forward recursion (Equation 15.3) shows thatf1:k can be computed fromf1:k−1 and
ek, which can in turn be computed fromf1:k−2 andek−1, and so on down tof1:0 and
e1. Hence,f1:k can be computed fromf1:0 ande1:k. The backward recursion (Equation
15.7) shows thatbk+1:t can be computed frombk+2:t andek+1, which in turn can be
computed frombk+3:t andek+2, and so on up tobh+1:t andeh. Hence,bk+1:t can be
computed frombh+1:t andek+1:h. Combining these two, we find thatP(Xk|e1:t) can
be computed fromf1:0, bh+1:t, ande1:h.

b. The reasoning for the second half is essentially identical: for k betweenh and t,
P(Xk|e1:t) can be computed fromf1:h, bt+1:t, andeh+1:t.

c. The algorithm takes 3 arguments: an evidence sequence, an initial forward message,
and a final backward message. The forward message is propagated to the halfway point
and the backward message is propagated backward. The algorithm then calls itself
recursively on the two halves of the evidence sequence with the appropriate forward
and backward messages. The base case is a sequence of length 1or 2.

d. At each level of the recursion the algorithm traverses the entire sequence, doingO(t)
work. There areO(log2 t) levels, so the total time isO(t log2 t). The algorithm does
a depth-first recursion, so the total space is proportional to the depth of the stack,
i.e., O(log2 t). With n islands, the recursion depth isO(logn t), so the total time is
O(t logn t) but the space isO(n logn t).
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15.4 This is a very good exercise for deepening intuitions about temporal probabilistic rea-
soning. First, notice that the impossibility of the sequence of most likely states cannot come
from an impossible observation because the smoothed probability at each time step includes
the evidence likelihood at that time step as a factor. Hence,the impossibility of a sequence
must arise from an impossible transition. Now consider sucha transition fromXk = i to
Xk+1 = j for somei, j, k. ForXk+1 = j to be the most likely state at timek+1, even though
it cannot be reached from the most likely state at timek, we can simply have ann-state system
where, say, the smoothed probability ofXk = i is (1 + (n− 1)ǫ)/n and the remaining states
have probability(1− ǫ)/n. The remaining states all transition deterministically toXk+1 = j.
From here, it is a simple matter to work out a specific model that behaves as desired.

15.5 The propagation of theℓ message is identical to that for filtering:

ℓ1:t+1 = αOt+1T⊤ℓ1:t

Sinceℓ is a column vector, each entryℓi of which givesP (Xt = i,e1:t), the likelihood is
obtained simply by summing the entries:

L1:t = P (e1:t) =
∑

i

ℓi .

15.6 Let ℓ be the single possible location under deterministic sensing. Certainly, asǫ → 0,
we expect intuitively thatP (Xt = ℓ | e1:t) → 1. If we assume that all reachable locations
are equally likely to be reached under the uniform motion model, then the claim thatℓ is
the most likely location under noisy sensing follows immediately: any other location must
entail at least one sensor discrepancy—and hence a probability penalty factor ofǫ—on every
path reaching it int − 1 steps, otherwise it would be logically possible in the deterministic
setting. The assumption is incorrect, however: if the neighborhood graph has outdegreek,
the probability of reaching any two locations could differ by a factor ofO(kt). If we setǫ
smaller than this, the claim still holds. But for any fixedǫ, there are neighborhood graphs and
observation sequences such that the claim may be false for sufficiently large t. Essentially,
if t − 1 steps of random movement are much more likely to reachm thanℓ—e.g., if ℓ is at
the end of a long tunnel of length exactlyt− 1—then that can outweigh the cost of a sensor
error or two. Notice that this argument requires an environment of unbounded size; for any
bounded environment, we can bound the reachability ratio and setǫ accordingly.

15.7 This exercise is an important one: it makes very clear the difference between the ac-
tual environment and the agent’s model of it. To generate theequired data, the student will
need to run a world simulator (movment and percepts) using the true model (northwest prior,
southeat movement tendency), while running he agent’s state estimator using the assumed
model (uniform prior, uniformly random movement). The student will also begin to appreci-
ate the inexpressiveness of HMMs after constructing the64× 64 transition matrix from the
more natural representation in terms of coordinates.

Perhaps surprisingly, the data for expected localization error (expected Manhattan dis-
tance between true location and the posterior state estimate) show that having an incorrect
model is not too problematic. A “southeast” bias ofb was implemented by multiplying the
probability of any south or east move byb and then renormalizing the distribution before
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Figure S15.2 Graphs showiing the expected localization error as a function of time, for
bias values of 1.0 (unbiased), 2.0, 5.0, 10.0.

sampling. Graphs for four different values of the bias are shown in Figure S15.2. The re-
sults suggest that the sensor data sequence overwhelms any error introduced by the incorrect
motion model.

15.8 The code for this exercise is very similar to that for Exercise 15.6. The main difference
is the state space: instead of 64 locations, the state space has 256 location–heading pairs, and
the transition matrix is256× 256—starting to be a little painful when running hundreds of
trials. We also need to add a “bump” bit to the percept vector,and we assume this is perfectly
observed (else the robot could not always decide to pick a newheading). Generally we expect
localization to be more accurate, since the sensor sequenceneed only disambiguate among a
small number of possible headings rather than an exponentially growing set of random-walk
paths. Also the exact bump sensor will eliminate many possible states completely.

15.9 The code for this exercise is very similar to that for Exercise 15.7. The state is again a
location/heading pair with a256× 256 transition matrix. The observation model is different:
instead of a 4-bit percept (16 possible percepts), the percept is a location (or null), forn×m+
1 possible percepts. Generally speaking, tracking works well near the walls because any bump
(or even the lack thereof) helps to pin down the location. Away from the walls, the location
uncertainty will be slightly worse but still generally accurate because the location errors are
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independent and unbiased and the policy is fairly predictable. It is reasonable to expect
students to provide snapshots or movies of true location andposterior estimate, particularly
if they are given suitable graphics infrastructure to make this easy.

15.10

a. Looking at the fragment of the model containing justS0, X0, andX1, we have

P(X1) =
k
∑

s0 = 1

P (s0)

∫

x0

P (x0)P(X1|x0, s0)

From the properties of the Kalman filter, we know that the integral gives a Gaussian
for each different value ofs0. Hence, the prediction distribution is a mixture ofk
Gaussians, each weighted byP (s0).

b. The update equation for the switching Kalman filter is

P(Xt+1, St+1|e1:t+1)

= αP(et+1|Xt+1, St+1)
k
∑

st = 1

∫

xt

P(xt, st|e1:t)P(Xt+1, St+1|xt, st)

= αP(et+1|Xt+1)

k
∑

st = 1

P (st|e1:t)P(St+1|st)

∫

xt

P(xt|e1:t)P(Xt+1|xt, st)

We are given thatP(xt|e1:t) is a mixture ofm Gaussians. Each Gaussian is subject to
k different linear–Gaussian projections and then updated bya linear-Gaussian observa-
tion, so we obtain a sum ofkm Gaussians. Thus, aftert steps we havekt Gaussians.

c. Each weight represents the probability of one of thekt sequences of values for the
switching variable.

15.11 This is a simple exercise in algebra. We have

P (x1|z1) = αe
− 1

2

„

(z1−x1)2

σ2
z

«

e
− 1

2

„

(x1−µ0)2
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0+σ2

x

«
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− 1

2
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(σ2
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15.12

a. See Figure S15.3.
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Figure S15.3 Graph for Ex. 15.7, showing the posterior varianceσ2
t as a function oft for

various values ofσ2
x andσ2

z .

b. We can find a fixed point by solving

σ2 =
(σ2 + σ2

x)σ2
z

σ2 + σ2
x + σ2

z

for σ2. Using the quadratic formula and requiringσ2 ≥ 0, we obtain

σ2 =
−σ2

x +
√

σ4
x + 4σ2

xσ
2
z

σ2
z

We omit the proof of convergence, which, presumably, can be done by showing that the
update is a contraction (i.e., after updating, two different starting points forσt become
closer).

c. As σ2
x → 0, we see that the fixed pointσ2 → 0 also. This is becauseσ2

x = 0 implies
a deterministic path for the object. Each observation supplies more information about
this path, until its parameters are known completely.

Asσ2
z → 0, the variance update givesσt+1 → 0 immediately. That is, if we have an

exact observation of the object’s state, then the posterioris a delta function about that
observed value regardless of the transition variance.

15.13 The DBN has three variables:St, whether the student gets enough sleep;Rt, whether
they have red eyes in class;Ct, whether the student sleeps in class.St is a parent ofSt+1,Rt,
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andCt. The CPTs are given by

P (s0) = 0.7

P (st+1|st) = 0.8

P (st+1|¬st) = 0.3

P (rt|st) = 0.2

P (rt|¬st) = 0.7

P (ct|st) = 0.1

P (ct|¬st) = 0.3

To reformulate as an HMM with a single observation node, simply combine the 2-valued vari-
ables “having red eyes” and “sleeping in class” into a single4-valued variable, multiplying
together the emission probabilities. (Probability tablesomitted.)

15.14

a. We apply the forward algorithm to compute these probabilities.

P (S0) = 〈0.7, 0.3〉
P (S1) =

∑

s0

P (S1|s0)P (s0)

= (〈0.8, 0.2〉0.7 + 〈0.3, 0.7〉0.3)
= 〈0.65, 0.35〉

P (S1|e1) = αP (e1|S1)P (S1)

= α 〈0.8× 0.9, 0.3 × 0.7〉〈0.65, 0.35〉
= α 〈0.72, 0.21〉〈0.65, 0.35〉
= 〈0.8643, 0.1357〉

P (S2|e1) =
∑

s1

P (S2|s1)P (s1|e1)

= 〈0.7321, 0.2679〉
P (S2|e1:2) = αP (e2|S2)P (S2|e1)

= 〈0.5010, 0.4990〉
P (S3|e1:2) =

∑

s2

P (S3|s2)P (s2|e1:2)

= 〈0.5505, 0.4495〉
P (S3|e1:3) = αP (e3|S3)P (S3|e1:2)

= 〈0.1045, 0.8955〉
Similar to many students during the course of the school term, the student observed
here seems to have a higher likelihood of being sleep deprived as time goes on!

b. First we compute the backwards messages:

P (e3|S3) = 〈0.2 × 0.1, 0.7 × 0.3〉
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= 〈0.02, 0.21〉
P (e3|S2) =

∑

s3

P (e3|s3)P (|s3)P (s3|S2)

= 〈0.02 × 0.8 + 0.21 × 0.2, 0.02 × 0.3 + 0.21× 0.7〉
= 〈0.0588, 0.153〉

P (e2:3|S1) =
∑

s2

P (e2|s2)P (e3|s2)P (s2|S1)

= 〈0.0233, 0.0556〉
Then we combine these with the forwards messages computed previously and normal-
ize:

P (S1|e1:3) = αP (S1|e1)P (e2:3|S1)

= 〈0.7277, 0.2723〉
P (S2|e1:3) = αP (S2|e1:2)P (e3|S1)

= 〈0.2757, 0.7243〉
P (S3|e1:3) = 〈0.1045, 0.8955〉

c. The smoothed analysis places the time the student started sleeping poorly one step
earlier than than filtered analysis, integrating future observations indicating lack of sleep
at the last step.

15.15 The probability reaches a fixed point because there is alwayssome chance of spon-
taneously starting to sleep well again, and students who sleep well sometimes have red eyes
and sleep in class. Even if we knew for sure that the student didn’t sleep well on dayt, and
that they slept in class with red eyes on dayt+ 1, there would still be a chance that they slept
well on dayt+ 1.

Numerically one can repeatedly apply the forward equationsto find equilibrium proba-
bilities of 〈0.0432, 0.9568〉.

Analytically, we are trying to find the vector(p0, p1)
T which is the fixed point to the

forward equation, which one can pose in matrix form as

(p0, p1)
T = α

(

0.016 0.006
0.042 0.147

)

(p0, p1)
T

whereα is a normalization constant. That is,(p0, p1)
T is an eigenvector of the given ma-

trix. Computing, we find that the only positive eigenvalue is0.1487, which has eigenvector
(normalized to sum to one)(0.0432, 0.9568)T , just as we numerically computed.

15.16

a. The curve of interest is the one forE(Battery t| . . . 5555000000 . . .). In the absence
of any useful sensor information from the battery meter, theposterior distribution for
the battery level is the same as the projection without evidence. The transition model
for the battery includes a small probability for downward transitions in the battery level
at each time step, but zero probability for upward transitions (there are no recharging
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actions in the model). Thus, the stationary distribution towards which the battery level
tends has value 0 with probability 1. The curve forE(Battery t| . . . 5555000000 . . .)
will asymptote to 0.

b. See Figure S15.4. The CPT forBMeter1 has a probability of transient failure (i.e.,
reporting 0) that increases with temperature.

c. The agent can obviously calculate the posterior distribution overTempt by filtering
the observation sequence in the usual way. This posterior can be informative if the
effect of temperature on transient failure is non-negligible and transient failures occur
more frequently than do major changes in temperature. Essentially, the temperature is
estimated from the frequency of “blips” in the sequence of battery meter readings.

1BatteryBattery0

1BMeter

0BMBroken 1BMBroken

0Temp 1Temp

Figure S15.4 Modification of Figure 15.13(a) to include the effect of external temperature
on the battery meter.

15.17 The process works exactly as on page 507. We start with the full expression:

P(R3|u1, u2, u3) = α
∑

r1

∑

r2

P (r1)P (u1|r1)P (r2|r1)P (u2|r2)P(R3|r2)P(u3|R3)

Whichever order we push in the summations, the variable elimination process never creates
factors containing more than two variables, which is the same size as the CPTs in the original
network. In fact, given an HMM sequence of arbitrary length,we can eliminate the state
variables in any order.



Solutions for Chapter 16
Making Simple Decisions

16.1 It is interesting to create a histogram of accuracy on this task for the students in the
class. It is also interesting to record how many times each student comes within, say, 10% of
the right answer. Then you get a profile of each student: this one is an accurate guesser but
overly cautious about bounds, etc.

16.2
Pat is more likely to have a better car than Chris because she has more information with

which to choose. She is more likely to be disappointed, however, if she takes the expected
utility of the best car at face value. Using the results of exercise 16.11, we can compute the
expected disappointment to be about 1.54 times the standarddeviation by numerical integra-
tion.

16.3

a. The probability that the first heads appears on thenth toss is2−n, so

EMV (L) =

∞
∑

n = 1

2−n · 2n =

∞
∑

n= 1

1 =∞

b. Typical answers range between $4 and $100.

c. Assume initial wealth (after payingc to play the game) of$(k − c); then

U(L) =

∞
∑

n= 1

2−n · (a log2(k − c+ 2n) + b)

Assumek − c = $0 for simplicity. Then

U(L) =

∞
∑

n= 1

2−n · (a log2(2
n) + b)

=
∞
∑

n= 1

2−n · an+ b

= 2a+ b

d. The maximum amountc is given by the solution of

a log2 k + b =

∞
∑

n= 1

2−n · (a log2(k − c+ 2n) + b)
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For our simple case, we have

a log2 c+ b = 2a+ b

or c= $4.

16.4 The program itself is pretty trivial. But note that there aresome studies showing you
get better answers if you ask subjects to move a slider to indicate a proportion, rather than
asking for a probability number. So having a graphical user interface is an advantage. The
main point of the exercise is to examine the data, expose inconsistent behavior on the part of
the subjects, and see how people vary in their choices.

16.5

a. Networks (ii) and (iii) can represent this network but not(i).
(ii) is fully connected, so it can represent any joint distribution.
(iii) follows the generative story given in the problem: theflavor is determined (pre-

sumably) by which machine the candy is made by, then the shapeis randomly cut, and
the wrapper randomly chosen, the latter choice independently of the former.

(i) cannot represent this, as this network implies that the wrapper color and shape
are marginally independent, which is not so: a round candy islikely to be strawberry,
which is in turn likely to be wrapped in red, whilst conversely a square candy is likely
to be anchovy which is likely to be wrapped in brown.

b. Unlike (ii), (iii) has no cycles which we have seen simplifies inference. Its edges also
follow the, so probabilities will be easier to elicit. Indeed, the problem statement has
already given them.

c. Yes, because Wrapper and Shape are d-separated.
d. Once we know the Flavor we know the probability its wrapperwill be red or brown. So

we marginalize Flavor out:

P(Wrapper = red) =
∑

f

P(Wrapper = red, F lavor = f)

=
∑

f

P(Flavor = f)P(Wrapper = red|Flavor = f)

= 0.7 × 0.8 + 0.3× 0.1

= 0.59

e. We apply Bayes theorem, by first computing the joint probabilities

P(Flavor = strawberry, Shape = round,Wrapper = red)

= P(Flavor = strawberry)×P(Shape = round|Flavor = strawberry)

×P(Wrapper = red|Flavor = strawberry)

= 0.7 × 0.8 × 0.8

= 0.448

P(Flavor = anchovy, Shape = round,Wrapper = red)

= P(Flavor = anchovy)×P(Shape = round|Flavor = anchovy)
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×P(Wrapper = red|Flavor = anchovy)

= 0.3 × 0.1 × 0.1

= 0.003

Normalizing these probabilities yields that it is strawberry with probability0.448/(0.448+
0.003) ≈ 0.9933.

f. Its value is the probability that you have a strawberry upon unwrapping times the value
of a strawberry, plus the probability that you have a anchovyupon unwrapping times
the value of an anchovy or

0.7s + 0.3a .

g. The value is the same, by the axiom of decomposability.

16.6
First observe thatC ∼ [0.25, A; 0.75, $0] andD ∼ [0.25, B; 0.75$0]. This follows

from the axiom of decomposability. But by substitutabilitythis means that the preference
ordering between the lotteriesA andB must be the same as that betweenC andD.

16.7
As mentioned in the text, agents whose preferences violate expected utility theory

demonstrate irrational behavior, that is they can be made either to accept a bet that is a guar-
anteed loss for them (the case of violating transitivity is given in the text), or reject a bet that
is a guaranteed win for them. This indicates a problem for theagent.

16.8 The expected monetary value of the lotteryL is

EMV (L) =
1

50
× $10 +

1

2000000
× $1000000 = $0.70

Although$0.70 < $1, it is not necessarilyirrational to buy the ticket. First we will consider
just the utilities of the monetary outcomes, ignoring the utility of actually playing the lottery
game. UsingU(Sk+n) to represent the utility to the agent of havingn dollars more than the
current state, and assuming that utility is linear for smallvalues of money (i.e.,U(Sk+n) ≈
n(U(Sk+1)− U(Sk)) for −10 ≤ n ≤ 10), the utility of the lottery is:

U(L) =
1

50
U(Sk+10) +

1

2, 000, 000
U(Sk+1,000,000)

≈ 1

5
U(Sk+1) +

1

2, 000, 000
U(Sk+1,000,000)

This is more thanU(Sk+1) whenU(Sk+1,000,000) > 1, 600, 000U($1). Thus, for a purchase
to be rational (when only money is considered), the agent must be quite risk-seeking. This
would be unusual for low-income individuals, for whom the price of a ticket is non-trivial. It
is possible that some buyers do not internalize the magnitude of the very low probability of
winning—to imagine an event is to assign it a “non-trivial” probability, in effect. Apparently,
these buyers are better at internalizing the large magnitude of the prize. Such buyers are
clearly acting irrationally.
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Some people may feel their current situation is intolerable, that is,U(Sk) ≈ U(Sk±1) ≈
u⊥. Therefore the situation of having one dollar more or less would be equally intolerable,
and it would be rational to gamble on a high payoff, even if onethat has low probability.

Gamblers also derive pleasure from the excitement of the lottery and the temporary
possession of at least a non-zero chance of wealth. So we should add to the utility of playing
the lottery the termt to represent the thrill of participation. Seen this way, thelottery is just
another form of entertainment, and buying a lottery ticket is no more irrational than buying
a movie ticket. Either way, you pay your money, you get a smallthrill t, and (most likely)
you walk away empty-handed. (Note that it could be argued that doing this kind of decision-
theoretic computation decreases the value oft. It is not clear if this is a good thing or a bad
thing.)

16.9 This is an interesting exercise to do in class. ChooseM1 = $100, M2 = $100, $1000,
$10000, $1000000. Ask for a show of hands of those preferringthe lottery at different values
of p. Students will almost always display risk aversion, but there may be a wide spread in its
onset. A curve can be plotted for the class by finding the smallestp yielding a majority vote
for the lottery.

16.10 The protocol would be to ask a series of questions of the form “which would you
prefer” involving a monetary gain (or loss) versus an increase (or decrease) in a risk of death.
For example, “would you pay $100 for a helmet that would eliminate completely the one-in-
a-million chance of death from a bicycle accident.”

16.11
First observe that the cumulative distribution function for max{X1, . . . ,Xk} is (F (x))k

since

P (max{X1, . . . ,Xk} ≤ x) = P (X1 ≤ x, . . . ,Xk ≤ x)
= P (X1 ≤ x) . . . P (Xk ≤ x)
= F (x)k

the second to last step by independence. The result follows as the probability density function
is the derivative of the cumulative distribution function.

16.12

a. This question originally had a misprint:U(x) = −ex/R instead ofU(x) = −e−x/R.
With the former utility function, the agent would be rather unhappy receiving $1000000
dollars.

Getting $400 for sure has expected utility

−e−400/400 = −1/e ≈ −0.3679

while the getting $5000 with probability 0.6 and $0 otherwise has expected utility

0.6− e−5000/400 + 0.5− e−0/400 = −(0.6e−12.5 + 0.5) ≈ −0.5000

so one would prefer the sure bet.
b. We want to findR such that

e−100/R = 0.5e−500/R + 0.5
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Solving this numerically, we findR = 152 up to 3sf.

16.13 The information associated with the utility node in Figure 16.6 is an action-value
table, and can be constructed simply by averaging out theDeaths, Noise, andCost nodes
in Figure 16.5. As explained in the text , modifications to aircraft noise levels or to the
importance of noise do not result in simple changes to the action-value table. Probably the
easiest way to do it is to go back to the original table in Figure 16.5. The exercise therefore
illustrates the tradeoffs involved in using compiled representations.

16.14 The answer to this exercise depends on the probability values chosen by the stu-
dent.

16.15

a. See Figure S16.1.

U

BuyBook

PassMastery

Figure S16.1 A decision network for the book-buying problem.

b. For each ofB = b andB = ¬b, we computeP (p|B) and thusP (¬p|B) by marginal-
izing outM , then use this to compute the expected utility.

P (p|b) =
∑

m

P (p|b,m)P (m|b)

= 0.9 × 0.9 + 0.5× 0.1

= 0.86

P (p|¬b) =
∑

m

P (p|¬b,m)P (m|¬b)

= 0.8 × 0.7 + 0.3× 0.3

= 0.65

The expected utilities are thus:

EU [b] =
∑

p

P (p|b)U(p, b)

= 0.86(2000 − 100) + 0.14(−100)

= 1620

EU [¬b] =
∑

p

P (p|¬b)U(p,¬b)

= 0.65× 2000 + 0.14 × 0

= 1300
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c. Buy the book, Sam.

16.16 This exercise can be solved using an influence diagram package such as IDEAL. The
specific values are not especially important. Notice how thetedium of encoding all the entries
in the utility table cries out for a system that allows the additive, multiplicative, and other
forms sanctioned by MAUT.

One of the key aspects of the fully explicit representation in Figure 16.5 is its amenabil-
ity to change. By doing this exercise as well as Exercise 16.9, students will augment their
appreciation of the flexibility afforded by declarative representations, which can otherwise
seem tedious.

a. For this part, one could use symbolic values (high, medium,low) for all the variables
and not worry too much about the exact probability values, orone could use actual
numerical ranges and try to assess the probabilities based on some knowledge of the
domain. Even with three-valued variables, the cost CPT has 54 entries.

b. This part almost certainly should be done using a software package.

c. If each aircraft generates half as much noise, we need to adjust the entries in theNoise
CPT.

d. If the noise attribute becomes three times more important,the utility table entries must
all be altered. If an appropriate (e.g., additive) representation is available, then one
would only need to adjust the appropriate constants to reflect the change.

e. This part should be done using a software package. Some packages may offer VPI
calculation already. Alternatively, one can invoke the decision-making package repeat-
edly to do all the what-if calculations of best actions and their utilities, as required in
the VPI formula. Finally, one can write general-purpose VPIcode as an add-on to a
decision-making package.

16.17 This question is a simple exercise in sequential decision making, and helps in making
the transition to Chapter 17. It also emphasizes the point that the value of information is
computed by examining theconditionalplan formed by determining the best action for each
possible outcome of the test. It may be useful to introduce “decision trees” (as the term is
used in the decision analysis literature) to organize the information in this question. (See Pearl
(1988), Chapter 6.) Each part of the question analyzes some aspect of the tree. Incidentally,
the question assumes that utility and monetary value coincide, and ignores the transaction
costs involved in buying and selling.

a. The decision network is shown in Figure S16.2.

b. The expected net gain in dollars is

P (q+)(2000 − 1500) + P (q−)(2000 − 2200) = 0.7 × 500 + 0.3×−200 = 290

c. The question could probably have been stated better: Bayes’ theorem is used to compute
P (q+|Pass), etc., whereas conditionalization is sufficient to computeP (Pass).

P (Pass) = P (Pass|q+)P (q+) + P (Pass|q−)P (q−)
= 0.8× 0.7 + 0.35 × 0.3 = 0.665
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Using Bayes’ theorem:

P (q+|Pass) =
P (Pass|q+)P (q+)

P (Pass)
=

0.8× 0.7

0.665
≈ 0.8421

P (q−|Pass) ≈ 1− 0.8421 = 0.1579

P (q+|¬Pass) =
P (¬Pass|q+)P (q+)

P (¬Pass) =
0.2 × 0.7

0.335
≈ 0.4179

P (q−|¬Pass) ≈ 1− 0.4179 = 0.5821

d. If the car passes the test, the expected value of buying is

P (q+|Pass)(2000 − 1500) + P (q−|Pass)(2000 − 2200)

= 0.8421 × 500 + 0.1579 ×−200 = 378.92

Thus buying is the best decision given a pass. If the car failsthe test, the expected value
of buying is

P (q+|¬Pass)(2000 − 1500) + P (q−|¬Pass)(2000 − 2200)

= 0.4179 × 500 + 0.5821 ×−200 = 92.53

Buying is again the best decision.

e. Since the action is the same for both outcomes of the test, the test itself is worthless (if
it is the only possible test) and the optimal plan is simply tobuy the car without the test.
(This is a trivial conditional plan.) For the test to be worthwhile, it would need to be
more discriminating in order to reduce the probabilityP (q+|¬Pass). The test would
also be worthwhile if the market value of the car were less, orif the cost of repairs were
more.

An interesting additional exercise is to prove the general proposition that ifα is the
best action for all the outcomes of a test then it must be the best action in the absence
of the test outcome.

Test

Buy
U

Outcome

Quality

Figure S16.2 A decision network for the car-buying problem.
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16.18

a. Intuitively, the value of information is nonnegative because in the worst case one could
simply ignore the information and act as if it was not available. A formal proof therefore
begins by showing that this policy results in the same expected utility. The formula for
the value of information is

V PIE(Ej) =

(

∑

k

P (Ej = ejk|E)EU(αejk
|E,Ej = ejk)

)

− EU(α|E)

If the agent doesα given the informationEj, its expected utility is
∑

k

P (Ej = ejk|E)EU(α|E,Ej = ejk) = EU(α|E)

where the equality holds because the LHS is just the conditionalization of the RHS with
respect toEj . By definition,

EU(αejk
|E,Ej = ejk) ≥ EU(α|E,Ej = ejk)

henceV PIE(Ej) ≥ 0.

b. One explanation is that people are aware of their own irrationality and may want to
avoid making a decision on the basis of the extra information. Another might be that
the value of information is small compared to the value of surprise—for example, many
people prefer not to know in advance what their birthday present is going to be.

c. Value of information is not submodular in general. SupposethatA is the empty set and
B is the setY =1; and suppose that the optimal decision remains unchanged unless
bothX =1 andY = 1 are observed.
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Making Complex Decisions

17.1 The best way to calculate this is NOT by thinking of all ways toget to any given square
and how likely all those ways are, but to compute the occupancy probabilities at each time
step. These are as follows:

Up Up Right Right Right

(1,1) 1 .1 .02 .026 .0284 .02462
(1,2) .8 .24 .258 .2178 .18054
(1,3) .64 .088 .0346 .02524
(2,1) .1 .09 .034 .0276 .02824
(2,3) .512 .1728 .06224
(3,1) .01 .073 .0346 .02627
(3,2) .001 .0073 .04443
(3,3) .4097 .17994
(4,1) .008 .0656 .08672
(4,2) .0016 .01400
(4,3) .32776

Projection in an HMM involves multiplying the vector of occupancy probabilities by
the transition matrix. Here, the only difference is that there is a different transition matrix for
each action.

17.2 If we pick the policy that goesRight in all the optional states, and construct the cor-
responding transition matrixT, we find that the equilibrium distribution—the solution to
Tx = x—has occupancy probabilities of 1/12 for (2,3), (3,1), (3,2), (3,3) and 2/3 for (4,1).
These can be found most simply by computingTnx for any initial occupancy vectorx, for n
large enough to achieve convergence.

17.3 Stationarity requires the agent to have identical preferences between the sequence pair
[s0, s1, s2, . . .], [s0, s

′
1, s

′
2, . . .] and between the sequence pair[s1, s2, . . .], [s′1, s

′
2, . . .]. If the

utility of a sequence is its maximum reward, we can easily violate stationarity. For example,

[4, 3, 0, 0, 0, . . .] ∼ [4, 0, 0, 0, 0, . . .]

but

[3, 0, 0, 0, . . .] ≻ [0, 0, 0, 0, . . .] .

157
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We can still defineUπ(s) as the expected maximum reward obtained by executingπ starting
in s. The agent’s preferences seem peculiar, nonetheless. For example, if the current state
s has rewardRmax, the agent will be indifferent among all actions, but once the action is
executed and the agent is no longer ins, it will suddenly start to care about what happens
next.

17.4 This is a deceptively simple exercise that tests the student’s understanding of the for-
mal definition of MDPs. Some students may need a hint or an example to get started.

a. The key here is to get the max and summation in the right place. ForR(s, a) we have

U(s) = max
a

[R(s, a) + γ
∑

s′

T (s, a, s′)U(s′)

and forR(s, a, s′) we have

U(s) = max
a

∑

s′

T (s, a, s′)[R(s, a, s′) + γU(s′)] .

b. There are a variety of solutions here. One is to create a “pre-state” pre(s, a, s′) for
everys, a, s′, such that executinga in s leads not tos′ but topre(s, a, s′). In this state
is encoded the fact that the agent came froms and dida to get here. From the pre-state,
there is just one actionb that always leads tos′. Let the new MDP have transitionT ′,
rewardR′, and discountγ′. Then

T ′(s, a, pre(s, a, s′)) = T (s, a, s′)
T ′(pre(s, a, s′), b, s′) = 1
R′(s, a) = 0

R′(pre(s, a, s′), b) = γ−
1
2R(s, a, s′)

γ′ = γ
1
2

c. In keeping with the idea of part (b), we can create statespost(s, a) for everys, a, such
that

T ′(s, a, post(s, a, s′)) = 1
T ′(post(s, a, s′), b, s′) = T (s, a, s′)
R′(s) = 0

R′(post(s, a, s′)) = γ−
1
2R(s, a)

γ′ = γ
1
2

17.5 This can be done fairly simply by:

• Callpolicy-iteration (from "uncertainty/algorithms/dp.lisp" )on
the Markov Decision Processes representing the 4x3 grid, with values for the step cost
ranging from, say, 0.0 to 1.0 in increments of 0.02.

• For any two adjacent policies that differ, run binary search on the step cost to pinpoint
the threshold value.

• Convince yourself that you haven’t missed any policies, either by using too coarse an
increment in step size (0.02), or by stopping too soon (1.0).
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One useful observation in this context is that the expected total reward of any fixed
policy is linear inr, the per-step reward for the empty states. Imagine drawing the total reward
of a policy as a function ofr—a straight line. Now draw all the straight lines corresponding
to all possible policies. The reward of theoptimalpolicy as a function ofr is just the max of
all these straight lines. Therefore it is a piecewise linear, convex function ofr. Hence there
is a very efficient way to findall the optimal policy regions:

• For any two consecutive values ofr that have different optimal policies, find the optimal
policy for the midpoint. Once two consecutive values ofr give the same policy, then
the interval between the two points must be covered by that policy.

• Repeat this until two points are known for each distinct optimal policy.

• Suppose(ra1, va1) and(ra2, va2) are points for policya, and(rb1, vb1) and(rb2, vb2)
are the next two points, for policyb. Clearly, we can draw straight lines through these
pairs of points and find their intersection. This does not mean, however, that there is no
other optimal policy for the intervening region. We can determine this by calculating
the optimal policy for the intersection point. If we get a different policy, we continue
the process.

The policies and boundaries derived from this procedure areshown in Figure S17.1. The
figure shows that there arenine distinct optimal policies! Notice that asr becomes more
negative, the agent becomes more willing to dive straight into the –1 terminal state rather
than face the cost of the detour to the +1 state.

The somewhat ugly code is as follows. Notice that because thelines for neighboring
policies are very nearly parallel, numerical instability is a serious problem.

(defun policy-surface (mdp r1 r2 &aux prev (unchanged nil))
"returns points on the piecewise-linear surface

defined by the value of the optimal policy of mdp as a
function of r"

(setq rvplist
(list (cons r1 (r-policy mdp r1)) (cons r2 (r-policy mdp r2)) ))

(do ()
(unchanged rvplist)

(setq unchanged t)
(setq prev nil)
(dolist (rvp rvplist)

(let * ((rest (cdr (member rvp rvplist :test #’eq)))
(next (first rest))
(next-but-one (second rest)))

(dprint (list (first prev) (first rvp)
’ * (first next) (first next-but-one)))

(when next
(unless (or (= (first rvp) (first next))

(policy-equal (third rvp) (third next) mdp))
(dprint "Adding new point(s)")
(setq unchanged nil)
(if (and prev next-but-one

(policy-equal (third prev) (third rvp) mdp)
(policy-equal (third next) (third next-but-one) mdp))
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(let * ((intxy (policy-vertex prev rvp next next-but-one))
(int (cons (xy-x intxy) (r-policy mdp (xy-x intxy)))))

(dprint (list "Found intersection" intxy))
(cond ((or (< (first int) (first rvp))

(> (first int) (first next)))
(dprint "Intersection out of range!")
(let ((int-r (/ (+ (first rvp) (first next)) 2)))

(setq int (cons int-r (r-policy mdp int-r))))
(push int (cdr (member rvp rvplist :test #’eq))))

((or (policy-equal (third rvp) (third int) mdp)
(policy-equal (third next) (third int) mdp))

(dprint "Found policy boundary")
(push (list (first int) (second int) (third next))

(cdr (member rvp rvplist :test #’eq)))
(push (list (first int) (second int) (third rvp))

(cdr (member rvp rvplist :test #’eq))))
(t (dprint "Found new policy!")

(push int (cdr (member rvp rvplist :test #’eq))))))
(let * ((int-r (/ (+ (first rvp) (first next)) 2))

(int (cons int-r (r-policy mdp int-r))))
(dprint (list "Adding split point" (list int-r (second int) )))
(push int (cdr (member rvp rvplist :test #’eq))))))))

(setq prev rvp))))

(defun r-policy (mdp r &aux U)
(set-rewards mdp r)
(setq U (value-iteration mdp

(copy-hash-table (mdp-rewards mdp) #’identity)
:epsilon 0.0000000001))

(list (gethash ’(1 1) U) (optimal-policy U (mdp-model mdp) ( mdp-rewards mdp))))

(defun set-rewards (mdp r &aux (rewards (mdp-rewards mdp))
(terminals (mdp-terminal-states mdp)))

(maphash #’(lambda (state reward)
(unless (member state terminals :test #’equal)

(setf (gethash state rewards) r)))
rewards))

(defun policy-equal (p1 p2 mdp &aux (match t)
(terminals (mdp-terminal-states mdp)))

(maphash #’(lambda (state action)
(unless (member state terminals :test #’equal)

(unless (eq (caar (gethash state p1)) (caar (gethash state p 2)))
(setq match nil))))

p1)
match)

(defun policy-vertex (rvp1 rvp2 rvp3 rvp4)
(let ((a (make-xy :x (first rvp1) :y (second rvp1)))

(b (make-xy :x (first rvp2) :y (second rvp2)))
(c (make-xy :x (first rvp3) :y (second rvp3)))
(d (make-xy :x (first rvp4) :y (second rvp4))))
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(intersection-point (make-line :xy1 a :xy2 b)
(make-line :xy1 c :xy2 d))))

(defun intersection-point (l1 l2)
;;; l1 is line ab; l2 is line cd
;;; assume the lines cross at alpha a + (1-alpha) b,
;;; also known as beta c + (1-beta) d
;;; returns the intersection point unless they’re parallel

(let * ((a (line-xy1 l1))
(b (line-xy2 l1))
(c (line-xy1 l2))
(d (line-xy2 l2))
(xa (xy-x a)) (ya (xy-y a))
(xb (xy-x b)) (yb (xy-y b))
(xc (xy-x c)) (yc (xy-y c))
(xd (xy-x d)) (yd (xy-y d))
(q (- ( * (- xa xb) (- yc yd))

( * (- ya yb) (- xc xd)))))
(unless (zerop q)

(let ((alpha (/ (- ( * (- xd xb) (- yc yd))
( * (- yd yb) (- xc xd)))

q)))
(make-xy :x (float (+ ( * alpha xa) ( * (- 1 alpha) xb)))

:y (float (+ ( * alpha ya) ( * (- 1 alpha) yb))))))))

17.6

a. To find the proof, it may help first to draw a picture of two arbitrary functionsf and
g and mark the maxima; then it is easy to find a point where the difference between
the functions is bigger than the difference between the maxima. Assume, w.l.o.g., that
maxa f(a) ≥ maxa g(a), and letf have its maximum value ata∗. Then we have

|max
a

f(a)−max
a
g(a)| = max

a
f(a)−max

a
g(a) (by assumption)

= f(a∗)−max
a
g(a)

≤ f(a∗)− g(a∗)
≤ max

a
|f(a)− g(a)| (by definition of max)

b. From the definition of theB operator (Equation (17.6)) we have

|(B Ui −B U ′
i)(s)| = |R(s) + γ max

a∈A(s)

∑

s′

P (s′ | s, a)Ui(s
′)

−R(s)− γ max
a∈A(s)

∑

s′

P (s′ | s, a)U ′
i(s

′)|

= γ| max
a∈A(s)

∑

s′

P (s′ | s, a)Ui(s
′)− max

a∈A(s)

∑

s′

P (s′ | s, a)U ′
i(s

′)|

≤ γ max
a∈A(s)

|
∑

s′

P (s′ | s, a)Ui(s
′)−

∑

s′

P (s′ | s, a)U ′
i(s

′)|
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r = [−1.6284 : −1.3702] r = [−1.3702 : −0.7083]

r = [−0.7083 : −0.4278] r = [−0.4278 : −0.0850] r = [−0.0850 : −0.0480]

r = [−0.0480 : −0.0274] r = [−0.0274 : −0.0218] r = [−0.0218 : 0.0000]

r = [−      : −1.6284]8

Figure S17.1 Optimal policies for different values of the cost of a step inthe4 × 3 envi-
ronment, and the boundaries of the regions with constant optimal policy.

= γ|
∑

s′

P (s′ | s, a∗(s))Ui(s
′)−

∑

s′

P (s′ | s, a∗(s))U ′
i(s

′)|

= γ|
∑

s′

P (s′ | s, a∗(s))(Ui(s
′)− U ′

i(s
′)|

Inserting this into the expression for the max norm, we have

||B Ui −B U ′
i)|| = max

s
|(B Ui −B U ′

i)(s)|

≤ γmax
s
|
∑

s′

P (s′ | s, a∗(s))(Ui(s
′)− U ′

i(s
′))|

≤ γmax
s
|Ui(s)− U ′

i(s)| = γ||Ui − U ′
i ||

17.7
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a. ForUA we have

UA(s)=R(s) + max
a

∑

s′

P (s′|a, s)UB(s′)

and forUB we have

UB(s)=R(s) + min
a

∑

s′

P (s′|a, s)UA(s′) .

b. To do value iteration, we simply turn each equation from part (a) into a Bellman update
and apply them in alternation, applying each to all states simultaneously. The process
terminates when the utility vector for one player is the sameas the previous utility
vectorfor the same player(i.e., two steps earlier). (Note that typicallyUA andUB are
not the same in equilibrium.)

c. The state space is shown in Figure S17.2.
d. We mark the terminal state values in bold and initialize other values to 0. Value iteration

proceeds as follows:

(1,4) (2,4) (3,4) (1,3) (2,3) (4,3) (1,2) (3,2) (4,2) (2,1) (3,1)
UA 0 0 0 0 0 +1 0 0 +1 –1 –1
UB 0 0 0 0 –1 +1 0 –1 +1 –1 –1
UA 0 0 0 –1 +1 +1 –1 +1 +1 –1 –1
UB –1 +1 +1 –1 –1 +1 –1 –1 +1 –1 –1
UA +1 +1 +1 –1 +1 +1 –1 +1 +1 –1 –1
UB –1 +1 +1 –1 –1 +1 –1 –1 +1 –1 –1

and the optimal policy for each player is as follows:

(1,4) (2,4) (3,4) (1,3) (2,3) (4,3) (1,2) (3,2) (4,2) (2,1) (3,1)
π∗A (2,4) (3,4) (2,4) (2,3) (4,3) (3,2) (4,2)
π∗B (1,3) (2,3) (3,2) (1,2) (2,1) (1,3) (3,1)

(1,4)

(1,3)

(1,2)

(2,4)

(2,3)

(2,1)

(3,4)

(3,2)

(3,1)

(4,3)

(4,2)

−1 −1

+1

+1

Figure S17.2 State-space graph for the game in Figure 5.17.

17.8

a. r = 100.
u l .
u l d
u l l
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See the comments for part d. This should have beenr = −100 to illustrate an
alternative behavior:

r r .
d r u
r r u
Here, the agent tries to reach the goal quickly, subject to attempting to avoid the

square(1, 3) as much as possible. Note that the agent will choose to move Down in
square(1, 2) in order to actively avoid the possibility of “accidentally” moving into the
square(1, 3) if it tried to move Right instead, since the penalty for moving into square
(1, 3) is so great.

b. r = −3.
r r .
r r u
r r u
Here, the agent again tries to reach the goal as fast as possible while attempting to

avoid the square(1, 3), but the penalty for square(1, 3) is not so great that the agent
will try to actively avoid it at all costs. Thus, the agent will choose to move Right in
square(1, 2) in order to try to get closer to the goal even if it occasionally will result in
a transition to square(1, 3).

c. r = 0.
r r .
u u u
u u u
Here, the agent again tries to reach the goal as fast as possible, but will try to do so

via a path that includes square(1, 3) if possible. This results from the fact that square
(1, 3) does not incur the reward of−1 in all other non-goal states, so it reaching the goal
via a path through that square can potentially have slightlygreater reward than another
path of equal length that does not pass through(1, 3).

d. r = 3.
u l .
u l d
u l l

17.9 The utility of Up is

50γ −
101
∑

t=2

γt = 50γ − γ2 1− γ100

1− γ ,

while the utility of Down is

−50γ +
101
∑

t=2

γt = −50γ + γ2 1− γ100

1− γ .

Solving numerically we find the indifference point to beγ ≈ 0.9844: larger than this
and we want to go Down to avoid the expensive long-term consequences, smaller than this
and we want to go Up to get the immediate benefit.
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17.10

a. Intuitively, the agent wants to get to state 3 as soon as possible, because it will pay a
cost for each time step it spends in states 1 and 2. However, the only action that reaches
state 3 (actionb) succeeds with low probability, so the agent should minimize the cost
it incurs while trying to reach the terminal state. This suggests that the agent should
definitely try actionb in state 1; in state 2, it might be better to try actiona to get to state
1 (which is the better place to wait for admission to state 3),rather than aiming directly
for state 3. The decision in state 2 involves a numerical tradeoff.

b. The application of policy iteration proceeds in alternating steps of value determination
and policy update.

• Initialization: U ← 〈−1, −2, 0〉, P ← 〈b, b〉.
• Value determination:

u1 = −1 + 0.1u3 + 0.9u1

u2 = −2 + 0.1u3 + 0.9u2

u3 = 0

That is,u1 = −10 andu2 = −20.
Policy update: In state 1,
∑

j

T (1, a, j)uj = 0.8×−20 + 0.2×−10 = −18

while
∑

j

T (1, b, j)uj = 0.1× 0× 0.9×−10 = −9

so actionb is still preferred for state 1.
In state 2,
∑

j

T (1, a, j)uj = 0.8×−10 + 0.2×−20 = −12

while
∑

j

T (1, b, j)uj = 0.1× 0× 0.9×−20 = −18

so actiona is preferred for state 1. We setunchanged?← false and proceed.

• Value determination:

u1 = −1 + 0.1u3 + 0.9u1

u2 = −2 + 0.8u1 + 0.2u2

u3 = 0

Once moreu1 = −10; now,u2 = −15. Policy update: In state 1,
∑

j

T (1, a, j)uj = 0.8×−15 + 0.2×−10 = −14
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while
∑

j

T (1, b, j)uj = 0.1× 0× 0.9×−10 = −9

so actionb is still preferred for state 1.
In state 2,
∑

j

T (1, a, j)uj = 0.8×−10 + 0.2×−15 = −11

while
∑

j

T (1, b, j)uj = 0.1× 0× 0.9×−15 = −13.5

so actiona is still preferred for state 1.unchanged? remainstrue, and we termi-
nate.

Note that the resulting policy matches our intuition: when in state 2, try to move to state
1, and when in state 1, try to move to state 3.

c. An initial policy with actiona in both states leads to an unsolvable problem. The initial
value determination problem has the form

u1 = −1 + 0.2u1 + 0.8u2

u2 = −2 + 0.8u1 + 0.2u2

u3 = 0

and the first two equations are inconsistent. If we were to tryto solve them iteratively,
we would find the values tending to−∞.

Discounting leads to well-defined solutions by bounding thepenalty (expected dis-
counted cost) an agent can incur at either state. However, the choice of discount factor
will affect the policy that results. Forγ small, the cost incurred in the distant future
plays a negligible role in the value computation, becauseγn is near 0. As a result,
an agent could choose actionb in state 2 because the discounted short-term cost of re-
maining in the non-terminal states (states 1 and 2) outweighs the discounted long-term
cost of actionb failing repeatedly and leaving the agent in state 2. An additional exer-
cise could ask the student to determine the value ofγ at which the agent is indifferent
between the two choices.

17.11 The framework for this problem is in"uncertainty/domains/4x3-mdp.lisp" .
There is still some synthesis for the student to do for answerb. For c. some experimental de-
sign is necessary.

17.12 (Note: Early printings used “value determination,” a term accidentally left over from
the second edition, instead of “policy evaluation.”) The policy evaluation algorithm calculates
Uπ(s) for a given policyπ. The policy for an agent that thinksU is the true utility andP is
the true model would be based on Equation (17.4):

π(s) = argmax
a∈A(s)

∑

s′

P (s′ | s, a)U(s′) .
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Given this policy, the policy loss compared to the true optimal policy, starting in states, is
justUπ∗

(s)− Uπ(s).

17.13 The belief state update is given by Equation (17.11), i.e.,

b′(s′) = αP (e | s′)
∑

s

P (s′ | s, a)b(s) .

It may be helpful to compute this in two stages: update for theaction, then update for the ob-
servation. The observation probabilitiesP (e | s′) are all either 0.9 (for squares that actually
have one wall) or 0.1 (for squares with two walls). The following table shows the results.
Note in particular how the probability mass concentrates on(3,2).

Left 1 wall Left 1 wall
(1,1) .11111 .20000 .06569 .09197 .02090
(1,2) .11111 .11111 .03650 .04234 .00962
(1,3) .11111 .20000 .06569 .09197 .02090
(2,1) .11111 .11111 .03650 .27007 .06136
(2,3) .11111 .11111 .03650 .05985 .01360
(3,1) .11111 .11111 .32847 .06861 .14030
(3,2) .11111 .11111 .32847 .30219 .61791
(3,3) .11111 .02222 .06569 .03942 .08060
(4,1) .11111 .01111 .00365 .00036 .00008
(4,2) 0 .01111 .03285 .03321 .06791
(4,3) 0 0 0 0 0

17.14 In a sensorless environment, POMDP value iteration is essentially the same as ordi-
nary state-space search—the branching ocurs only on acton choices, not observations. Hence
the time complexity isO(|A|d).
17.15 Policies for the 2-state MDP all have a threshold beliefp, such that ifb(0) > p then
the optimal action isGo, otherwise it isStay . The question is, what does this change do to
the threshold? By making sensing more informative in state 0and less informative in state 1,
the change has made state 0 more desirable, hence the threshold valuep increases.

17.16 This question is simple a matter of examining the definitions. In a dominant strat-
egy equilibrium [s1, . . . , sn], it is the case that for every playeri, si is optimal for every
combinationt−i by the other players:

∀ i ∀ t−i ∀ s′i [si, t−i]
≻∼ [s′i, t−i] .

In a Nash equilibrium, we simply require thatsi is optimal for the particular current combi-
nations−i by the other players:

∀ i ∀ s′i [si, s−i]
≻∼ [s′i, s−i] .

Therefore, dominant strategy equilibrium is a special caseof Nash equilibrium. The converse
does not hold, as we can show simply by pointing to the CD/DVD game, where neither of the
Nash equilibria is a dominant strategy equilibrium.
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17.17 In the following table, the rows are labelled by A’s move and the columns by B’s
move, and the table entries list the payoffs to A and B respectively.

R P S F W
R 0,0 –1,1 1,-1 –1,1 1,-1
P 1,-1 0,0 –1,1 –1,1 1,-1
S –1,1 1,-1 0,0 –1,1 1,-1
F 1,-1 1,-1 1,-1 0,0 –1,1
W –1,1 –1,1 –1,1 1,-1 0,0

SupposeA chooses a mixed strategy[r : R; p : P ; s : S; f : F ; w : W ], wherer + p+ s+
f + w= 1. The payoffto Aof B’s possible pure responses are as follows:

R : +p− s+ f − w
P : −r + s+ f − w
S : +r − p+ f − w
F : −r − p− s+ w

W : +r + p+ s− f
It is easy to see that no option is dominated over the whole region. Solving for the intersection
of the hyperplanes, we findr= p= s=1/9 andf =w= 1/3. By symmetry, we will find the
same solution whenB chooses a mixed strategy first.

17.18 We apply iterated strict dominance to find the pure strategy.First, Pol: do nothing
dominatesPol: contract, so we drop thePol: contractrow. Next,Fed: contractdominates
Fed: do nothingandFed: expandon the remaining rows, so we drop those columns. Finally,
Pol: expanddominatesPol: do nothingon the one remaining column. Hence the only Nash
equilibrium is a dominant strategy equilibrium withPol: expandandFed: contract. This is
not Pareto optimal: it is worse for both players than the fourstrategy profiles in the top right
quadrant.

17.19 This question really has two answers, depending on what assumption is made about
the probability distribution over bidder’s private valuationsvi for the item.

In a Dutch auction, just as in a first-price sealed-bid auction, bidders must estimate the
likely private values of the other bidders. When the price ishigher thanvi, agenti will not
bid, but as soon as the price reachesvi, he faces a dilemma: bid now and win the item at a
higher price than necessary, or wait and risk losing the itemto another bidder. In the standard
models of auction theory, each bidder, in addition to a private valuevi, has a probability
densitypi(v1, . . . , vn) over the private values of alln bidders for the item. In particular, we
considerindependent private values, so that the distribution over the other bidders’ valuesINDEPENDENT

PRIVATE VALUES

is independent ofvi. Each bidder will choose a bid—i.e., the first price at which they will bid
if that price is reached—through a bidding functionbi(vi).

We are interested in finding a Nash equilibrium (technicallyaBayes–Nash equilibrium
in which each bidder’s bidding function is optimal given thebidding functions of the other
agents. Under risk-neutrality, optimality of a bidb is determined by the expected payoff, i.e.,
the probability of winning the auction with bidb times the profit when paying that amount
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for the item. Now, agenti wins the auction with bidb if all the other bids are less thanb;
let the probability of this happening beWi(b) for whatever fixed bidding functions the other
bidders use. (Wi(b) is thus a cumulative probability distribution and nondecreasing inb;
under independent private values, it does not depend onvi.) Then we can write the expected
payoff for agenti as

Qi(vi, b) = Wi(b)(vi − b)
and the optimality condition in equilibrium is therefore

∀ i, b Wi(bi(vi))(vi − bi(vi)) ≥Wi(b)(vi − b) . (17.1)

We now prove that the bidding functionsbi(vi) must bemonotonic, i.e.,nondecreasingin the
private valuationvi. Let v andv′ be two different valuations, withb= bi(v) andb′ = bi(v

′).
Applying Equation (17.1) twice, first to say that(v, b) is better than(v, b′) and then to say
that(v′, b′) is better than(v′, b), we obtain

Wi(b)(v − b) ≥ Wi(b
′)(v − b′)

Wi(b
′)(v′ − b′) ≥ Wi(b)(v

′ − b)
Rearranging, these become

v(Wi(b)−Wi(b
′)) ≥ Wi(b)b−Wi(b

′)b′

v′(Wi(b
′)−Wi(b)) ≥ Wi(b

′)b′ −Wi(b)b

Adding these equations, we have

(v′ − v)(Wi(b
′)−Wi(b)) ≥ 0

from which it follows that ifv′ > v, thenWi(b
′) ≥ Wi(b). Monotonicity does not follow

immediately, however; we have to handle two cases:

• If Wi(b
′) > Wi(b), or if Wi is strictly increasing, thenb′ ≥ b andbi(·) is monotonic.

• Otherwise,Wi(b
′)=Wi(b) andWi is flat betweenb andb′. Now if Wi is flat in any

interval [x, y], then an optimal bidding function will preferx over any other bid in the
interval since that maximizes the profit on winning without affecting the probability of
winning; hence, we must haveb′ = b and againbi(·) is monotonic.

Intuitively, the proof amounts to the following: if a highervaluation could result in a lower
bid, then by swapping the two bids the agent could increase the sumof the payoffs for the
two bids, which means thatat least oneof the two original bids is suboptimal.

Returning to the question of efficiency—the property that the item goes to the bidder
with the highest valuation—we see that it follows immediately from monotonicity in the
case where the bidders’ prior distributions over valuations aresymmetric or identically dis-
tributed.1

1 According to Milgrom (1989), Vickrey (1961) proved that under this assumption, the Dutch auction is efficient.
Vickrey’s argument in Appendix III for the monotonicity of the bidding function is similar to the argument
above but, as written, seems to apply only to the uniform-distribution case he was considering. Indeed, much
of his analysis beginning with Appendix II is based on an inverse bidding function, which implicitlyassumes
monotonicity of the bidding function. Many other authors also begin by assuming monotonicity, then derive the
form of the optimal bidding function, and then show it is monotonic. This proves the existence of an equilibrium
with monotonic bidding functions, but not that all equilibria have this property.
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Vickrey (1961) proves that the auction isnotefficient in the asymmetric case where one
player’s distribution is uniform over[0, 1] and the other’s is uniform over[a, b] for a > 0.
Milgrom (1989) provides another, more transparent exampleof inefficiency: Suppose Alice
has a known, fixed value of $101 for an item, while Bob’s value is $50 with probability 0.8
and $75 with probability 0.2. Given that Bob will never bid higher than his valuation, Alice
can see that a bid of $51 will winat least80% of the time, giving an expected profit ofat
least0.8× ($101 − $51)= $40. On the other hand, any bid of $62 or more cannot yield an
expected profit at most $39, regardless of Bob’s bid, and so isdominated by the bid of $51.
Hence, in any equilibrium, Alice’s bid at most $61. Knowing this, Bob can bid $62 whenever
his valuation is $75 and be sure of winning. Thus, with 20% probability, the item goes to
Bob, whose valuation for it is lower than Alice’s. This violates efficiency.

Besides efficiency in the symmetric case, monotonicity has another important conse-
quence for the analysis of the Dutch (and first-price) auction : it makes it possible to derive
the exact form of the bidding function. As it stands, Equation (17.1) is difficult or impossible
to solve because the cumulative distribution of the other bidders’ bids,Wi(b), depends on
their bidding functions, so all the bidding functions are coupled together. (Note the similar-
ity to the Bellman equations for an MDP.) With monotonicity,however, we can defineWi

in terms of the known valuation distributions. Assuming independence and symmetry, and
writing b−1

i (b) for the inverse of the (monotonic) bidding function, we have

Qi(vi, b) = (P (b−1
i (b)))n−1(vi − b)

whereP (v) is the probability that an individual valuation is less thanv. At equilibrium,
whereb maximizesQi, the first derivative must be zero:

∂Q

∂b
= 0 =

(n− 1)(P (b−1
i (b)))n−2p(b−1

i (b))(vi − b)
b′i(b

−1
i (b))

− (P (b−1
i (b)))n−1

where we have used the fact thatdf−1(x)/dx= 1/f ′(f−1(x)).
For an equilibrium bidding function, of course,b−1

i (b)= vi; substituting this and sim-
plifying, we find the following differential equation forbi:

b′i(vi) = (vi − bi(vi)) · (n − 1)p(vi)/P (vi) .

To find concrete solutions we also need to establish a boundary condition. Supposev0 is the
lowest possible valuation for the item; then we must havebi(v0)= v0 (Milgrom and Weber,
1982). Then the solution, as shown by McAfee and McMillan (1987), is

bi(vi) = vi −
∫ vi

v0
(P (v))n−1dv

(P (vi))n−1
.

For example, supposep is uniform in[0, 1]; thenP (v)= v andbi(vi) = vi · (n−1)/n, which
is the classical result obtained by Vickrey (1961).

17.20 In such an auction it is rational to continue bidding as long as winning the item would
yield a profit, i.e., one is willing to bid up to2vi. The auction will end at2vo+d, so the winner
will pay vo + d/2, slightly less than in the regular version.
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17.21 Every game is either a win for one side (and a loss for the other) or a tie. With 2 for a
win, 1 for a tie, and 0 for a loss, 2 points are awarded for everygame, so this is a constant-sum
game.

If 1 point is awarded for a loss in overtime, then for some games 3 points are awarded
in all. Therefore, the game is no longer constant-sum.

Suppose we assume that team A has probabilityr of winning in regular time and team
B has probabilitys of winning in regular time (assuming normal play). Furthermore, assume
team B has a probabilityq of winning in overtime (which occurs if there is a tie after regular
time). Once overtime is reached (by any means), the expectedutilities are as follows:

UO
A = 1 + p

UO
B = 1 + q

In normal play, the expected utilities are derived from the probability of winning plus the
probability of tying times the expected utility of overtimeplay:

UA = 2r + (1− r − s)(1 + p)

UB = 2s + (1− r − s)(1 + q)

Hence A has an incentive to agree ifUO
A > UA, or

1 + p > 2r + (1− r − s)(1 + p) or rp− r + sp+ s > 0 or p >
r − s
r + s

and B has an incentive to agree ifUO
B > UB , or

1 + q > 2s+ (1− r − s)(1 + q) or sq − s+ rq + r > 0 or q >
s− r
r + s

When both of these inequalities hold, there is an incentive to tie in regulation play. For any
values ofr ands, there will be values ofp andq such that both inequalities hold.

For an in-depth statistical analysis of the actual effects of the rule change and a more
sophisticated treatment of the utility functions, see “Overtime! Rules and Incentives in the
National Hockey League” by Stephen T. Easton and Duane W. Rockerbie, available at
http://people.uleth.ca/˜rockerbie/OVERTIME.PDF .



Solutions for Chapter 18
Learning from Examples

18.1 The aim here is to couch language learning in the framework ofthe chapter, not to
solve the problem! This is a very interesting topic for classdiscussion, raising issues of
nature vs. nurture, the indeterminacy of meaning and reference, and so on. Basic references
include Chomsky (1957) and Quine (1960).

The first step is to appreciate the variety of knowledge that goes under the heading
“language.” The infant must learn to recognize and produce speech, learn vocabulary, learn
grammar, learn the semantic and pragmatic interpretation of a speech act, and learn strategies
for disambiguation, among other things. The performance elements for this (in humans) and
their associated learning mechanisms are obviously very complex and as yet little is known
about them.

A naive model of the learning environment considers just theexchange of speech sounds.
In reality, the physical context of each utterance is crucial: a child must see the context in
which “watermelon” is uttered in order to learn to associate“watermelon” with watermel-
ons. Thus, the environment consists not just of other humansbut also the physical objects
and events about which discourse takes place. Auditory sensors detect speech sounds, while
other senses (primarily visual) provide information on thephysical context. The relevant
effectors are the speech organs and the motor capacities that allow the infant to respond to
speech or that elicit verbal feedback.

The performance standard could simply be the infant’s general utility function, however
that is realized, so that the infant performs reinforcementlearning to perform and respond to
speech acts so as to improve its well-being—for example, by obtaining food and attention.
However, humans’ built-in capacity for mimicry suggests that the production of sounds sim-
ilar to those produced by other humans is a goal in itself. Thechild (once he or she learns to
differentiate sounds and learn about pointing or other means of indicating salient objects) is
also exposed to examples of supervised learning: an adult says “shoe” or “belly button” while
indicating the appropriate object. So sentences produced by adults provide labelled positive
examples, and the response of adults to the infant’s speech acts provides further classification
feedback.

Mostly, it seems that adults do not correct the child’s speech, so there are very few neg-
ative classifications of the child’s attempted sentences. This is significant because early work
on language learning (such as the work of Gold, 1967) concentrated just on identifying the
set of strings that are grammatical, assuming a particular grammatical formalism. If there are
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only positive examples, then there is nothing to rule out thegrammarS → Word∗. Some
theorists (notably Chomsky and Fodor) used what they call the “poverty of the stimulus” argu-
ment to say that the basic universal grammar of languages must be innate, because otherwise
(given the lack of negative examples) there would be no way that a child could learn a lan-
guage (under the assumptions of language learning as learning a set of grammatical strings).
Critics have called this the “poverty of the imagination” argument—I can’t think of a learning
mechanism that would work, so it must be innate. Indeed, if wego to probabilistic context
free grammars, then it is possible to learn a language without negative examples.

18.2 Learning tennis is much simpler than learning to speak. The requisite skills can be
divided into movement, playing strokes, and strategy. The environment consists of the court,
ball, opponent, and one’s own body. The relevant sensors arethe visual system and propri-
oception (the sense of forces on and position of one’s own body parts). The effectors are
the muscles involved in moving to the ball and hitting the stroke. The learning process in-
volves both supervised learning and reinforcement learning. Supervised learning occurs in
acquiring the predictive transition models, e.g., where the opponent will hit the ball, where
the ball will land, and what trajectory the ball will have after one’s own stroke (e.g., if I hit
a half-volley this way, it goes into the net, but if I hit itthat way, it clears the net). Rein-
forcement learning occurs when points are won and lost—thisis particularly important for
strategic aspects of play such as shot placement and positioning (e.g., in 60% of the points
where I hit a lob in response to a cross-court shot, I end up losing the point). In the early
stages, reinforcement also occurs when a shot succeeds in clearing the net and landing in the
opponent’s court. Achieving this small success is itself a sequential process involving many
motor control commands, and there is no teacher available totell the learner’s motor cortex
which motor control commands to issue.

18.3 The algorithm may not return the “correct” tree, but it will return a tree that is logi-
cally equivalent, assuming that the method for generating examples eventually generates all
possible combinations of input attributes. This is true because any two decision tree defined
on the same set of attributes that agree on all possible examples are, by definition, logically
equivalent. The actually form of the tree may differ becausethere are many different ways to
represent the same function. (For example, with two attributesA andB we can have one tree
with A at the root and another withB at the root.) The root attribute of the original tree may
not in fact be the one that will be chosen by the information gain geuristic when applied to
the training examples.

18.4 This question brings a little bit of mathematics to bear on the analysis of the learning
problem, preparing the ground for Chapter 20. Error minimization is a basic technique in
both statistics and neural nets. The main thing is to see thatthe error on a given training
set can be written as a mathematical expression and viewed asa function of the hypothesis
chosen. Here, the hypothesis in question is a single numberα ∈ [0, 1] returned at the leaf.

a. If α is returned, the absolute error is

E = p(1− α) + nα = α(n − p) + p = n whenα = 1
= p whenα = 0
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This is minimized by setting

α = 1 if p > n
α = 0 if p < n

That is,α is the majority value.

b. First calculate the sum of squared errors, and its derivative:

E = p(1− α)2 + nα2

dE
dα = 2αn− 2p(1 − α) = 2α(p + n)− 2p

The fact that the second derivative,d2E
dα2 = 2(p + n), is greater than zero means thatE

is minimized (not maximized) wheredE
dα = 0, i.e., whenα = p

p+n .

18.5 This result emphasizes the fact that any statistical fluctuations caused by the random
sampling process will result in an apparent information gain.

The easy part is showing that the gain is zero when each subsethas the same ratio of
positive examples. The gain is defined as
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nk, if pk/(pk +nk) is the same for allk we must havepk/(pk +
nk) = p/(p+ n) for all k. From this, we obtain
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Note that this holds for all values ofpk +nk. To prove that the value is positive elsewhere, we
can apply the method of Lagrange multipliers to show that this is the only stationary point;
the gain is clearly positive at the extreme values, so it is positive everywhere but the stationary
point. In detail, we have constraints

∑

k pk = p and
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k nk =n, and the Lagrange function is
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Setting its derivatives to zero, we obtain, for eachk,

∂Λ
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log
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( −pk
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− λ2 = 0 .

Subtracting these two, we obtainlog(pk/nk)= (p + n)(λ2 − λ1) for all k, implying that at
any stationary point the ratiospk/nk must be the same for allk. Given the two summation
constraints, the only solution is the one given in the question.
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18.6 Note that to compute each split, we need to computeRemainder(Ai) for each at-
tributeAi, and select the attribute the provides the minimal remaining information, since the
existing information prior to the split is the same for all attributes we may choose to split on.

Computations for first split: remainders forA1, A2, andA3 are

(4/5)(−2/4 log(2/4) − 2/4 log(2/4)) + (1/5)(−0 − 1/1 log(1/1)) = 0.800

(3/5)(−2/3 log(2/3) − 1/3 log(1/3)) + (2/5)(−0 − 2/2 log(2/2)) ≈ 0.551

(2/5)(−1/2 log(1/2) − 1/2 log(1/2)) + (3/5)(−1/3 log(1/3) − 2/3 log(2/3)) ≈ 0.951

ChooseA2 for first split since it minimizes the remaining informationneeded to classify all
examples. Note that all examples withA2 = 0, are correctly classified asB = 0. So we only
need to consider the three remaining examples(x3, x4, x5) for whichA2 = 1.

After splitting onA2, we compute the remaining information for the other two attributes
on the three remaining examples(x3, x4, x5) that haveA2 = 1. The remainders forA1 and
A3 are

(2/3)(−2/2 log(2/2) − 0) + (1/3)(−0 − 1/1 log(1/1)) = 0

(1/3)(−1/1 log(1/1) − 0) + (2/3)(−1/2 log(1/2) − 1/2 log(1/2)) ≈ 0.667.

So, we select attribute A1 to split on, which correctly classifies all remaining examples.

18.7 See Figure S18.1, where nodes on successive rows measure attributesA1,A2, andA3.
(Any fixed ordering works.)

 0                   1

0 0 0 0 11 1 1

 0         1  0         1  0         1  0         1

 0             1  0             1

1

0 0
11

0 0
11

0 1

0
(a) (b)

Figure S18.1 XOR function representations: (a) decision tree, and (b) decision graph.

18.8 This is a fairly small, straightforward programming exercise. The only hard part is the
actualχ2 computation; you might want to provide your students with a library function to do
this.

18.9 This is another straightforward programming exercise. Thefollow-up exercise is to
run tests to see if the modified algorithm actually does better.

18.10 Let the prior probabilities of each attribute value beP (v1), . . . , P (vn). (These prob-
abilities are estimated by the empirical fractions among the examples at the current node.)
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From page 540, the intrinsic information content of the attribute is

I(P (v1), . . . , P (vn)) =

n
∑

i=1

−P (vi) log vi

Given this formula and the empirical estimates ofP (vi), the modification to the code is
straightforward.

18.11 If we leave out an example of one class, then the majority of the remaining examples
are of the other class, so the majority classifier will alwayspredict the wrong answer.

18.12
Test If yes If no
A1 = 1 1 next test
A3 = 1 ∧A4 = 0 0 next test
A2 = 0 0 1

18.13
Proof (sketch): Each path from the root to a leaf in a decisiontree represents a logical

conjunction that results in a classification at the leaf node. We can simply create a decision
list by producing one rule to correspond to each such path through the decision tree where the
rule in the decision list has the test given by the logical conjunction in the path and the output
for the rule is the corresponding classification at the leaf of the path. Thus we produce one
rule for each leaf in the decision tree (since each leaf determines a unique path), constructing
a decision list that captures the same function representedin the decision tree.

A simple example of a function that can be represented with strictly fewer rules in a de-
cision list than the number of leaves in a minimal sized decision tree is the logical conjunction
of two boolean attributes:A1 ∧A2 ⇒ T .

The decision list has the form:
Test If yes If no
A1 = T ∧A2 = T T F

Note: one could consider this either one rule, or at most two rules if we were to represent

it as follows:
Test If yes If no
A1 = T ∧A2 = T T next test
T F

In either case, the corresponding decision tree has three leaves.

18.14 Note: this is the only exercise to cover the material in section 18.6. Although the
basic ideas of computational learning theory are both important and elegant, it is not easy to
find good exercises that are suitable for an AI class as opposed to a theory class. If you are
teaching a graduate class, or an undergraduate class with a strong emphasis on learning, it
might be a good idea to use some of the exercises from Kearns and Vazirani (1994).

a. If each test is an arbitrary conjunction of literals, then adecision list can represent
an arbitrary DNF (disjunctive normal form) formula directly. The DNF expression
C1 ∨ C2 ∨ · · · ∨ Cn, whereCi is a conjunction of literals, can be represented by a
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decision list in whichCi is theith test and returnsTrue if successful. That is:

C1 → True;
C2 → True;
. . .
Cn → True;
True→ False

Since any Boolean function can be written as a DNF formula, then any Boolean function
can be represented by a decision list.

b. A decision tree of depthk can be translated into a decision list whose tests have at most
k literals simply by encoding each path as a test. The test returns the corresponding leaf
value if it succeeds. Since the decision tree has depthk, no path contains more thank
literals.

18.15 TheL1 loss is minimized by the median, in this case 7, and theL2 loss by the mean,
in this case143/7.

For the first, suppose we have an odd number2n + 1 of elementsy−n < . . . < y0 <
. . . < yn. Forn = 0, ŷ = y0 is the median and minimizes the loss. Then, observe that theL1

loss forn+ 1 is

1

2n+ 3

n+1
∑

i=−(n+1)

|ŷ − yi| =
1

2n+ 3

(

|ŷ − yn+1|+ |ŷ − y−(n+1)|
)

+
1

2n + 3

n
∑

i=−n

|ŷ − yi|

The first term is equal to|yn+1 − y−(n+1)| wheneveryn+1 ≤ ŷ ≤ y−(n+1), e.g. forŷ = y0,
and is strictly larger otherwise. But by inductive hypothesis the second term also is minimized
by ŷ = y0, the median.

For the second, notice that as theL2 loss ofŷ given datay1, . . . , yn

1

n

∑

i

(ŷ − yi)
2

is differentiable we can find critical points:

0 =
2

n

∑

i

(ŷ − yi)

or ŷ = (1/n)
∑

i yi. Taking the second derivative we see this is the unique localminimum,
and thus the global minimum as the loss is infinite whenŷ tends to either infinity.

18.16

a. The circle equation expands into five terms

0 = x2
1 + x2

2 − 2ax1 − 2bx2 + (a2 + b2 − r2)
corresponding to weightsw = (2a, 2b, 1, 1) and intercepta2 + b2− r2. This shows that
a circular boundary is linear in this feature space, allowing linear separability.

In fact, the three featuresx1, x2, x
2
1 + x2

2 suffice.
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b. The (axis-aligned) ellipse equation expands into six terms

0 = cx2
1 + dx2

2 − 2acx1 − 2bdx2 + (a2c+ b2d− 1)

corresponding to weightsw = (2ac, 2bd, c, d, 0) and intercepta2 + b2−r2. This shows
that an elliptical boundary is linear in this feature space,allowing linear separability.

In fact, the four featuresx1, x2, x
2
1, x

2
2 suffice for any axis-aligned ellipse.

18.17 The examples map from[x1, x2] to [x1, x1, x2] coordinates as follows:
[−1,−1] (negative) maps to[−1,+1]
[−1,+1] (positive) maps to[−1,−1]
[+1,−1] (positive) maps to[+1,−1]
[+1,+1] (negative) maps to[+1,+1]
Thus, the positive examples havex1x2 = − 1 and the negative examples havex1x2 = + 1.
The maximum margin separator is the linex1x2 = 0, with a margin of 1. The separator
corresponds to thex1 = 0 andx2 = 0 axes in the original space—this can be thought of as the
limit of a hyperbolic separator with two branches.

18.18

18.19 XOR (in fact any Boolean function) is easiest to construct using step-function units.
Because XOR is not linearly separable, we will need a hidden layer. It turns out that just one
hidden node suffices. To design the network, we can think of the XOR function as OR with
the AND case (both inputs on) ruled out. Thus the hidden layercomputes AND, while the
output layer computes OR but weights the output of the hiddennode negatively. The network
shown in Figure S18.2 does the trick.

t = 0.5 t = 0.2
W = 0.3

W = 0.3

W = 0.3

W = 0.3

W =− 0.6

Figure S18.2 A network of step-function neurons that computes the XOR function.

18.20 According to Rojas (1996), the number of linearly separableBoolean functions with
n inputs is

sn = 2

n
∑

i = 0

(

2n − 1

i

)

Forn ≥ 2 we have

sn ≤ 2(n + 1)

(

2n − 1

n

)

= 2(n + 1) · (2n − 1)!

n!(2n − n− 1)!
≤ 2(n+ 1)(2n)n

n!
≤ 2n2

so the fraction of representable functions vanishes asn increases.
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18.21 This question introduces some of the concepts that are studied in depth in Chapter 20;
it could be used as an exercise for that chapter too, but is interesting to see at this stage also.

The logistic output is

p =
1

1 + e−w·x =
1

1 + e−
P

j wj xj
.

Taking the log and differentiating, we have

log p = − log
(

1 + e−w·x)

∂log p

∂wi
= −

(

1

1 + e−w·x

∂

∂wi

(

1 + e−w·x)
)

= −p · (−xi) · e−w·x = (1− p)xi .

For a negative example, we have

log(1− p) = − log 1/(1 − p) = − log (1 + ew·x)

∂log p

∂wi
= −

(

1

1 + ew·x

∂

∂wi
(1 + ew·x)

)

= −(1− p) · xi · ew·x = −(1− p) · xi · p/(1− p) = −pxi .

The loss function isL= − log p for a positive example (y= 1) andL= − log(1 − p) for a
negative example (y= 0). We can write this as a single rule:

L = − log py(1− p)(1−y) = −y log p− (1− y) log(1− p) .
Using the above results, we obtain

∂L

∂wi
= −y(1− p)xi + (1− y)pxi = −xi(y − p) = −xi(y − hw(x))

which has the same form as the linear regression and perceptron learning rules.

18.22 This exercise reinforces the student’s understanding of neural networks as mathemat-
ical functions that can be analyzed at a level of abstractionabove their implementation as a
network of computing elements. For simplicity, we will assume that the activation function
is the same linear function at each node:g(x) = cx + d. (The argument is the same (only
messier) if we allow differentci anddi for each node.)

a. The outputs of the hidden layer are

Hj = g

(

∑

k

wk,jIk

)

= c
∑

k

wk,jIk + d

The final outputs are

Oi = g





∑

j

wj,iHj



 = c





∑

j

wj,i

(

c
∑
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wk,jIk + d

)



+ d

Now we just have to see that this is linear in the inputs:

Oi = c2
∑

k

Ik
∑

j

wk,jwj,i + d



1 + c
∑

j

wj,i
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Thus we can compute the same function as the two-layer network using just a one-layer
perceptron that has weightswk,i =

∑

j wk,jwj,i and an activation functiong(x) =

c2x+ d
(

1 + c
∑

j wj,i

)

.

b. The above reduction can be used straightforwardly to reduce ann-layer network to an
(n − 1)-layer network. By induction, then-layer network can be reduced to a single-
layer network. Thus, linear activation function restrict neural networks to represent only
linearly functions.

c. The original network withn input and outout nodes andh hidden nodes has2hn
weights, whereas the “reduced” network hasn2 weights. Whenh ≪ n, the origi-
nal network has far fewer weights and thus represents the i/omapping more concisely.
Such networks are known to learn much faster than the reducednetwork; so the idea of
using linear activation functions is not without merit.

18.23 This question is especially important for students who are not expected to implement
or use a neural network system. Together with 20.15 and 20.17, it gives the student a concrete
(if slender) grasp of what the network actually does. Many other similar questions can be
devised.

Intuitively, the data suggest that a probabilistic prediction P (Output= 1) = 0.8 is
appropriate. The network will adjust its weights to minimize the error function. The error is

E =
1

2

∑

i

(yi − ai)
2 =

1

2
[80(1 − a1)

2 + 20(0 − a1)
2] = 50O2

1 − 80O1 + 50

The derivative of the error with respect to the single outputa1 is

∂E

∂a1
= 100a1 − 80

Setting the derivative to zero, we find that indeeda1 = 0.8. The student should spot the
connection to Ex. 18.8.

18.24 This is just a simple example of the general cross-validation model-selection method
described in the chapter. For each possible size of hidden layer up to some reasonable bound,
the k-fold cross-validation score is obtained given the existing training data and the best
hidden layer size is chosen. This can be done using the AIMA code or with any of several
public-domain machine learning toolboxes such as WEKA.

18.25 The main purpose of this exercise is to make concrete the notion of thecapacityof a
function class (in this case, linear halfspaces). It can be hard to internalize this concept, but
the examples really help.

a. Three points in general position on a plane form a triangle.Any subset of the points
can be separated from the rest by a line, as can be seen from thetwo examples in
Figure S18.3(a).

b. Figure S18.3(b) shows two cases where the positive and negative examples cannot be
separated by a line.
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c. Four points in general position on a plane form a tetrahedron. Any subset of the points
can be separated from the rest by a plane, as can be seen from the two examples in
Figure S18.3(c).

d. Figure S18.3(d) shows a case where a negative point is inside the tetrahedron formed
by four positive points; clearly no plane can separate the two sets.

e. Proof omitted.

(a) (b)

(c) (d)

Figure S18.3 Illustrative examples for VC dimensions.



Solutions for Chapter 19
Knowledge in Learning

19.1 In CNF, the premises are as follows:

¬Nationality(x, n) ∨ ¬Nationality(y, n) ∨ ¬Language(x, l) ∨ Language(y, l)
Nationality(Fernando,Brazil)
Language(Fernando, Portuguese)

We can prove the desired conclusion directly rather than by refutation. Resolve the first two
premises with{x/Fernando} to obtain

¬Nationality(y,Brazil) ∨ ¬Language(Fernando, l) ∨ Language(y, l)
Resolve this withLanguage(Fernando, Portuguese) to obtain

¬Nationality(y,Brazil) ∨ Language(y, Portuguese)
which is the desired conclusionNationality(y,Brazil) ⇒ Language(y, Portuguese).

19.2 This question is tricky in places. It is important to see the distinction between the
shared and unshared variables on the LHS and RHS of the determination. The shared vari-
ables will be instantiated to the objects to be compared in ananalogical inference, while the
unshared variables are instantiated with the objects’ observed and inferred properties.

a. Here the objects being reasoned about are coins, and design, denomination, and mass
are properties of coins. So we have

Coin(c) ⇒ (Design(c, d) ∧Denomination(c, a) ≻Mass(c,m))

This is (very nearly exactly) true because coins of a given denomination and design are
stamped from the same original die using the same material; size and shape determine
volume; and volume and material determine mass.

b. Here we have to be careful. The objects being reasoned aboutare not programs but
runs of a given program. (This determination is also one often forgotten by novice
programmers.) We can use situation calculus to refer to the runs:

∀ p Input(p, i, s) ≻ Output(p, o, s)
Here the∀ p captures thep variable so that it does not participate in the determination
as one of the shared or unshared variables. The situation is the shared variable. The
determination expands out to the following Horn clause:

Input(p, i, s1) ∧ Input(p, i, s2) ∧Output(p, o, s1) ⇒ Output(p, o, s2)

182
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That is, ifp has the same input in two different situations it will have the same output
in those situations. This is generally true because computers operate on programs and
inputs deterministically; however, it is important that “input” include the entire state of
the computer’s memory, file system, and so on. Notice that the“naive” choice

Input(p, i) ≻ Output(p, o)
expands out to

Input(p1, i) ∧ Input(p2, i) ∧Output(p1, o) ⇒ Output(p2, o)

which says that if any two programs have the same input they produce the same output!
c. Here the objects being reasoned are people in specific time intervals. (The intervals

could be the same in each case, or different but of the same kind such as days, weeks,
etc. We will stick to the same interval for simplicity. As above, we need to quantify the
interval to “precapture” the variable.) We will useClimate(x, c, i) to mean that person
x experiences climatec in interval i, and we will assume for the sake of variety that a
person’s metabolism is constant.

∀ i Climate(x, c, i) ∧Diet(x, d, i) ∧ Exercise(x, e, i) ∧Metabolism(x,m)
≻ Gain(x,w, i)

While the determinations seems plausible, it leaves out such factors as water intake,
clothing, disease, etc. The qualification problem arises with determinations just as with
implications.

d. LetBaldness(x, b) mean that personx has baldnessb (which might beBald,Partial,
orHairy, say). A first stab at the determination might be

Mother(m,x) ∧ Father(g,m) ∧Baldness(g, b) ≻ Baldness(x, b)
but this would only allow an inference when two people have the same mother and ma-
ternal grandfather because them andg are the unshared variables on the LHS. Also, the
RHS has no unshared variable. Notice that the determinationdoes not say specifically
that baldness is inherited without modification; it allows,for example, for a hypothet-
ical world in which the maternal grandchildren of a bald man are all hairy, or vice
versa. This might not seem particularly natural, but consider other determinations such
as “Whether or not I file a tax return determines whether or notmy spouse must file a
tax return.”

The baldness of the maternal grandfather is the relevant value for prediction, so that
should be the unshared variable on the LHS. The mother and maternal grandfather are
designated by skolem functions:

Mother(M(x), x) ∧ Father(F (M(x)),M(x)) ∧Baldness(F (M(x)), b1)
≻ Baldness(x, b2)

If we useFather andMother as function symbols, then the meaning becomes clearer:

Baldness(Father(Mother(x)), b1) ≻ Baldness(x, b2)
Just to check, this expands into

Baldness(Father(Mother(x)), b1) ∧Baldness(Father(Mother(y)), b1)
∧Baldness(x, b2) ⇒ Baldness(y, b2)
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which has the intended meaning.

19.3 Because of the qualification problem, it is not usually possible in most real-world
applications to list on the LHS of a determinationall the relevant factors that determine
the RHS. Determinations will usually therefore be true to anextent—that is, if two objects
agree on the LHS there is some probability (preferably greater than the prior) that the two
objects will agree on the RHS. An appropriate definition for probabilistic determinations
simply includes this conditional probability of matching on the RHS given a match on the
LHS. For example, we could defineNationality(x, n) ≻ Language(x, l)(0.90) to mean
that if two people have the same nationality, then there is a 90% chance that they have the
same language.

19.4 This exercise test the student’s understanding of resolution and unification, as well as
stressing the nondeterminism of the inverse resolution process. It should help a lot in making
the inverse resolution operation less mysterious and more amenable to mathematical analysis.
It is helpful first to draw out the resolution “V” when doing these problems, and then to do a
careful case analysis.

a. There is no possible value forC2 here. The resolution step would have to resolve away
both theP (x, y) on the LHS ofC1 and theQ(x, y) on the right, which is not possible.
(Resolutioncan remove more than one literal from a clause, but only if those literals
are redundant—i.e., one subsumes the other.)

b. Without loss of generality, letC1 contain the negative (LHS) literal to be resolved away.
The LHS ofC1 therefore contains one literall, while the LHS ofC2 must be empty.
The RHS ofC2 must containl′ such thatl and l′ unify with some unifierθ. Now we
have a choice:P (A,B) on the RHS ofC could come from the RHS ofC1 or of C2.
Thus the two basic solution templates are

C1 = l ⇒ False ; C2 = True ⇒ l′ ∨ P (A,B)θ−1

C1 = l ⇒ P (A,B)θ−1 ; C2 = True ⇒ l′

Within these templates, the choice ofl is entirely unconstrained. Supposel isQ(x, y)
and l′ is Q(A,B). ThenP (A,B)θ−1 could beP (x, y) (or P (A, y) or P (x,B)) and
the solutions are

C1 = Q(x, y) ⇒ False ; C2 = True ⇒ Q(A,B) ∨ P (x, y)

C1 = Q(x, y) ⇒ P (x, y) ; C2 = True ⇒ Q(A,B)

c. As before, letC1 contain the negative (LHS) literal to be resolved away, withl′ on the
RHS ofC2. We now have four possible templates because each of the two literals inC
could have come from eitherC1 orC2:

C1 = l ⇒ False ; C2 = P (x, y)θ−1 ⇒ l′ ∨ P (x, f(y))θ−1

C1 = l ⇒ P (x, f(y))θ−1 ; C2 = P (x, y)θ−1 ⇒ l′

C1 = l ∧ P (x, y)θ−1 ⇒ False ; C2 = True ⇒ l′ ∨ P (x, f(y))θ−1

C1 = l ∧ P (x, y)θ−1 ⇒ P (x, f(y))θ−1 ; C2 = True ⇒ l′
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Again, we have a fairly free choice forl. However, sinceC containsx andy, θ cannot
bind those variables (else they would not appear inC). Thus, if l is Q(x, y), then l′

must beQ(x, y) also andθ will be empty.

19.5 We will assume that Prolog is the logic programming language. It is certainly true that
any solution returned by the call toResolvewill be a correct inverse resolvent. Unfortunately,
it is quite possible that the call will fail to return becauseof Prolog’s depth-first search. If
the clauses inResolve andUnify are infelicitously arranged, the proof tree might go down
the branch corresponding to indefinitely nested function symbols in the solution and never
return. This can be alleviated by redesigning the Prolog inference engine so that it works
using breadth-first search or iterative deepening, although the infinitely deep branches will
still be a problem. Note that any cuts used in the Prolog program will also be a problem for
the inverse resolution.

19.6 This exercise gives some idea of the rather large branching factor facing top-down ILP
systems.

a. It is important to note that position is significant—P (A,B) is very different from
P (B,A)! The first argument position can contain one of the five existing variables
or a new variable. For each of these six choices, the second position can contain one of
the five existing variables or a new variable,exceptthat the literal with two new vari-
ables is disallowed. Hence there are 35 choices. With negated literals too, the total
branching factor is 70.

b. This seems to be quite a tricky combinatorial problem. The easiest way to solve it
seems to be to start by including the multiple possibilitiesthat are equivalent under
renaming of the new variables as well as those that contain only new variables. Then
these redundant or illegal choices can be removed later. Now, we can use up tor − 1
new variables. If we use≤ i new variables, we can write(n + i)r literals, so using
exactlyi > 0 variables we can write(n + i)r − (n + i − 1)r literals. Each of these
is functionally isomorphic under any renaming of the new variables. Withi variables,
there are arei renamings. Hence the total number of distinct literals (including those
illegal ones with no old variables) is

nr +
r−1
∑

i=1

(n+ i)r − (n+ i− 1)r

i!

Now we just subtract off the number of distinct all-new literals. With≤ i new variables,
the number of (not necessarily distinct) all-new literals is ir, so the number with exactly
i > 0 is ir − (i − 1)r. Each of these hasi! equivalent literals in the set. This gives us
the final total for distinct, legal literals:

nr +

r−1
∑

i=1

(n+ i)r − (n+ i− 1)r

i!
−

r−1
∑

i=1

ir − (i− 1)r

i!

which can doubtless be simplified. One can check that forr = 2 andn = 5 this gives
35.
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c. If a literal contains only new variables, then either a subsequent literal in the clause
body connects one or more of those variables to one or more of the “old” variables,
or it doesn’t. If it does, then the same clause will be generated with those two literals
reversed, such that the restriction is not violated. If it doesn’t, then the literal is either
always true (if the predicate is satisfiable) or always false(if it is unsatisfiable), inde-
pendent of the “input” variables in the head. Thus, the literal would either be redundant
or would render the clause body equivalent toFalse.

19.7 FOIL is available on the web at http://www-2.cs.cmu.edu/afs/cs/project/ai-repository-
/ai/areas/learning/systems/foil/0.html (and possibly other places). It is worthwhile to experi-
ment with it.



Solutions for Chapter 20
Learning Probabilistic Models

20.1 The code for this exercise is a straightforward implementation of Equations 20.1 and
20.2. Figure S20.1 shows the results for data sequences generated fromh3 andh4. (Plots
for h1 andh2 are essentially identical to those forh5 andh4.) Results obtained by students
may vary because the data sequences are generated randomly from the specified candy dis-
tribution. In (a), the samples very closely reflect the true probabilities and the hypotheses
other thanh3 are effectively ruled out very quickly. In (c), the early sample proportions are
somewhere between 50/50 and 25/75; furthermore,h3 has a higher prior thanh4. As a result,
h3 andh4 vie for supremacy. Between 50 and 60 samples, a preponderance of limes ensures
the defeat ofh3 and the prediction quickly converges to 0.75.

20.2 This is a nontrivial sequential decision problem, but can besolved using the tools
developed in the book. It leads into general issues of statistical decision theory, stopping
rules, etc. Here, we sketch the “straightforward” solution.

We can think of this problem as a simplified form of POMDP (see Chapter 17). The
“belief states” are defined by the numbers of cherry and lime candies observed so far in the
sampling process. Let these beC andL, and letU(C,L) be the utility of the corresponding
belief state. In any given state, there are two possible decisions:sell andsample. There is a
simple Bellman equation relatingQ andU for the sampling case:

Q(C,L, sample) = P (cherry|C,L)U(C + 1, L) + P (lime|C,L)U(C,L + 1)

Let the posterior probability of eachhi beP (hi|C,L), the size of the bag beN , and the
fraction of cherries in a bag of typei befi. Then the value obtained by selling is given by
the value of the sampled candies (which Ann gets to keep) plusthe price paid by Bob (which
equals the expected utility of the remaining candies for Bob):

Q(C,L, sell) = CcA + LℓA +
∑

i

P (hi|C,L)[(fiN − C)cB + ((1− fi)N − L)ℓB ]

and of course we have

U(C,L) = max{Q(C,L, sell), Q(C,L, sample)} .
Thus we can set up a dynamic program to computeQ given the obvious boundary conditions
for the case whereC+L=N . The solution of this dynamic program gives the optimal policy
for Ann. It will have the property that if she should sell at(C,L), then she should also sell
at (C,L + k) for all positivek. Thus, the problem is to determine, for eachC, the threshold

187



188 Chapter 20. Learning Probabilistic Models

value ofL at or above which she should sell. A minor complication is that the formula for
P (hi|C,L) should take into account the non-replacement of candies andthe finiteness ofN ,
otherwise odd things will happen whenC + L is close toN .

20.3 The Bayesian approach would be to take both drugs. The maximum likelihood ap-
proach would be to take the anti-B drug. In the case where there are two versions ofB,
the Bayesian still recommends taking both drugs, while the maximum likelihood approach is
now to take the anti-A drug, since it has a 40% chance of being correct, versus 30% for each
of theB cases. This is of course a caricature, and you would be hard-pressed to find a doctor,
even a rabid maximum-likelihood advocate who would prescribe like this. But you can find
ones who do research like this.

20.4 Boosted naive Bayes learning is discussed by Elkan (1997). The application of boost-
ing to naive Bayes is straightforward. The naive Bayes learner uses maximum-likelihood
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Figure S20.1 Graphs for Ex. 20.1. (a) Posterior probabilitiesP (hi|d1, . . . , dN ) over a
sample sequence of length 100 generated fromh3 (50% cherry + 50% lime). (b) Bayesian
predictionP (dN+1 = lime|d1, . . . , dN ) given the data in (a). (c) Posterior probabilities
P (hi|d1, . . . , dN ) over a sample sequence of length 100 generated fromh4 (25% cherry
+ 75% lime). (d) Bayesian predictionP (dN+1 = lime|d1, . . . , dN ) given the data in (c).
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parameter estimation based on counts, so using a weighted training set simply means adding
weights rather than counting. Each naive Bayes model is treated as a deterministic classifier
that picks the most likely class for each example.

20.5 We have

L = −m(log σ + log
√

2π)−
∑

j

(yj − (θ1xj + θ2))
2

2σ2

hence the equations for the derivatives at the optimum are

∂L

∂θ1
= −

∑

j

xj(yj − (θ1xj + θ2))

σ2
= 0

∂L

∂θ2
= −

∑

j

(yj − (θ1xj + θ2))

σ2
= 0

∂L

∂σ
= −m

σ
+
∑

j

(yj − (θ1xj + θ2))
2

σ3
= 0

and the solutions can be computed as

θ1 =
m
(

∑

j xjyj

)

−
(

∑

j yj

)(

∑

j xj

)

m
(

∑

j x
2
j

)

−
(

∑

j xj

)2

θ2 =
1

m

∑

j

(yj − θ1xj)

σ2 =
1

m

∑

j

(yj − (θ1xj + θ2))
2

20.6 There are a couple of ways to solve this problem. Here, we showthe indicator vari-
able method described on page 743. Assume we have a child variable Y with parents
X1, . . . ,Xk and let the range of each variable be{0, 1}. Let the noisy-OR parameters be
qi =P (Y = 0|Xi = 1,X−i = 0). The noisy-OR model then asserts that

P (Y = 1|x1, . . . , xk) = 1−
k
∏

i = 1

qxi
i .

Assume we havem complete-data samples with valuesyj for Y andxij for eachXi. The
conditional log likelihood forP (Y |X1, . . . ,Xk) is given by

L =
∑

j

log

(

1−
∏

i

qxij
i

)yj
(

∏

i

qxij
i

)1−yj

=
∑

j

yj log

(

1−
∏

i

qxij
i

)

+ (1− yj)
∑

i

xij log qi



190 Chapter 20. Learning Probabilistic Models

The gradient with respect to each noisy-OR parameter is

∂L

∂qi
=
∑

j

− yjxij
∏

i q
xij
i

qi

(

1−∏i q
xij
i

) +
(1− yj)xij

qi

=
∑

j

xij

(

1− yj −
∏

i q
xij
i

)

qi

(

1−∏i q
xij
i

)

20.7

a. By integrating over the range[0, 1], show that the normalization constant for the dis-
tribution beta[a, b] is given byα = Γ(a + b)/Γ(a)Γ(b) whereΓ(x) is theGamma
function, defined byΓ(x+ 1)= x · Γ(x) andΓ(1)= 1. (For integerx, Γ(x+ 1)= x!.)GAMMA FUNCTION

We will solve this for positive integera andb by induction overa. Let α(a, b) be
the normalization constant. For the base cases, we have

α(1, b) = 1/

∫ 1

0
θ0(1− θ)b−1dθ = −1/[

1

b
(1− θ)b]10 = b

and
Γ(1 + b)

Γ(1)Γ(b)
=
b · Γ(b)

1 · Γ(b)
= b .

For the inductive step, we assume for allb that

α(a− 1, b+ 1) =
Γ(a+ b)

Γ(a− 1)Γ(b+ 1)
=
a− 1

b
· Γ(a+ b)

Γ(a)Γ(b)

Now we evaluateα(a, b) using integration by parts. We have

1/α(a, b) =

∫ 1

0
θa−1(1− θ)b−1dθ

= [θa−1 · 1
b
(1− θ)b]01 +

a− 1

b

∫ 1

0
θa−2(1− θ)bdθ

= 0 +
a− 1

b

1

α(a− 1, b+ 1)

Hence

α(a, b) =
b

a− 1
α(a− 1, b+ 1) =

b

a− 1

a− 1

b
· Γ(a+ b)

Γ(a)Γ(b)
=

Γ(a+ b)

Γ(a)Γ(b)

as required.
b. The mean is given by the following integral:

µ(a, b) = α(a, b)

∫ 1

0
θ · θa−1(1− θ)b−1dθ

= α(a, b)

∫ 1

0
θa(1− θ)b−1dθ

= α(a, b)/α(a + 1, b) =
Γ(a+ b)

Γ(a)Γ(b)
· Γ(a+ 1)Γ(b)

Γ(a+ b+ 1)
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=
Γ(a+ b)

Γ(a)Γ(b)
· aΓ(a)Γ(b)

(a+ b)Γ(a+ b+ 1)
=

a

a+ b
.

c. The mode is found by solving fordbeta[a, b](θ)/dθ= 0:

d

dθ
(α(a, b)θa−1(1− θ)b−1)

= α(a, b)[(a − 1)θa−2(1− θ)b−1 − (b− 1)θa−1(1− θ)b−2] = 0

⇒ (a− 1)(1 − θ) = (b− 1)θ

⇒ θ =
a− 1

a+ b− 2

d. beta[ǫ, ǫ] =α(ǫ, ǫ)θǫ−1(1 − θ)ǫ−1 tends to very large values close toθ=0 andθ= 1,
i.e., it expresses the prior belief that the distribution characterized byθ is nearly deter-
ministic (either positively or negatively). After updating with a positive example we
obtain the distributionbeta[1 + ǫ, ǫ], which has nearly all its mass nearθ= 1 (and the
converse for a negative example), i.e., we have learned thatthe distribution character-
ized byθ is deterministic in the positive sense. If we see a “counterexample”, e.g., a
positive and a negative example, we obtainbeta[1+ ǫ, 1+ ǫ], which is close to uniform,
i.e., the hypothesis of near-determinism is abandoned.

20.8 Consider the maximum-likelihood parameter values for the CPT of nodeY in the orig-
inal network, where an extra parentXk+1 will be added toY . If we set the parameters for
P (y|x1, . . . , xk, xk+1) in the new network to be identical toP (y|x1, . . . , xk) in the original
netowrk, regardless of the valuexk+1, then the likelihood of the data is unchanged. Maxi-
mizing the likelihood by altering the parameters can then only increasethe likelihood.

20.9

a. The probability of a positive example isπ and of a negative example is(1−π), and the
data are independent, so the probability of the data isπp(1− π)n

b. We haveL= p log π + n log(1− π); if the derivative is zero, we have

∂L

∂π
=
p

π
− n

1− π = 0

so the ML value isπ= p/(p+ n), i.e., the proportion of positive examples in the data.

c. This is the “naive Bayes” probability model.

X1 Xk

Y

d. The likelihood of a single instance is a product of terms. For a positive example,π
timesαi for each true attribute and(1 − αi) for each negative attribute; for a negative
example,(1−π) timesβi for each true attribute and(1−βi) for each negative attribute.

Over the whole data set, the likelihood isπp(1−π)n
∏

i α
p+

i
i (1−αi)

n+
i β

p−i
i (1−βi)

n−

i .

e. The log likelihood is



192 Chapter 20. Learning Probabilistic Models

L = p log π+n log(1−π)+
∑

i p
+
i logαi+n

+
i log(1−αi)+p

−
i log βi+n

−
i log(1−βi).

Setting the derivatives w.r.t.αi andβi to zero, we have

∂L

∂αi
=
p+

i

αi
− n+

i

1− αi
= 0 and

∂L

∂βi
=
p−i
βi
− n−i

1− βi
= 0

giving αi = p+
i /(p

+
i + n+

i ), i.e., the fraction of cases whereXi is true givenY is true,
andβi = p−i /(p

−
i + n−i ), i.e., the fraction of cases whereXi is true givenY is false.

f. In the data set we havep= 2, n= 2, p+
i = 1, n+

i = 1, p−i = 1, n−i = 1. From our for-
mulæ, we obtainπ=α1 =α2 =β1 =β2 = 0.5.

g. Each example is predicted to be positive with probability 0.5.

20.10

a. Consider the ideal case in which the bags were infinitely large so there is no statistical
fluctuation in the sample. With two attributes (say,Flavor andWrapper ), we have five
unknowns:θ gives the the relative sizes of the bags,θF1 andθF2 give the proportion
of cherry candies in each bag, andθW1 andθW2 give the proportion of red wrappers in
each bag. In the data, we observe just the flavor and wrapper for each candy; there are
four combinations, so three independent numbers can be obtained. This is not enough
to recover five unknowns. With three attributes, there are eight combinations and seven
numbers can be obtained, enough to recover the seven parameters.

b. The computation forθ(1) has eight nearly identical expressions and calculations, one of
which is shown. The symbolic expression forθ(1)

F1 is shown, but not its evaluation; it
would be reasonable to ask students to write out the expression in terms of the param-
eters, as was done forθ(1), and calculate the value. The final answers are given in the
chapter.

c. Consider the contribution to the update forθ from the 273 red-wrapped cherry candies
with holes:

273

1000
· θ

(0)
F1θ

(0)
W1θ

(0)
H1θ

(0)

θ
(0)
F1θ

(0)
W1θ

(0)
H1θ

(0) + θ
(0)
F2θ

(0)
W2θ

(0)
H2(1− θ(0))

If all of the seven named parameters have valuep, this reduces to

273

1000
· p4

p4 + p3(1− p) =
273p

1000

with similar results for the other candy categories. Thus, the new value fortheta(1) just
ends up being1000p/1000= p.

We can check the expression forθF1 too; for example, the 273 red-wrapped cherry
candies with holes contribute an expected count of

273P (Bag = 1 |Flavor j = cherry ,Wrapper = red ,Holes = 1)

= 273
θF1θW1θH1θ

θF1θW1θH1θ + θF2θW2θH2(1− θ)
= 273p
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and the 90 green-wrapped cherry candies with no holes contribute an expected count of

90P (Bag =1 |Flavor j = cherry ,Wrapper = green ,Holes = 0)

= 90
θF1(1− θW1)(1 − θH1)θ

θF1(1− θW1)(1− θH1)θ + θF2(1− θW2)(1 − θH2)(1− θ)
= 90p2(1− p)2/p(1− p)2 = 90p .

Continuing, we find that the new value forθF1 is 560p/1000p= 0.56, the proportion of
cherry candies in the entire sample.

For θF2, the 273 red-wrapped cherry candies with holes contribute an expected
count of

273P (Bag = 2 |Flavor j = cherry ,Wrapper = red ,Holes = 1)

= 273
θF2θW2θH2(1− θ)

θF1θW1θH1θ + θF2θW2θH2(1− θ)
= 273(1 − p)

with similar contributions from the other cherry categories, so the new value is560(1−
p)/1000(1−p)= 0.56, as forθF1. Similarly,θ(1)

W1 = θ
(1)
W2 = 0.545, the proportion of red

wrappers in the sample, andθ(1)
H1 = θ

(1)
H2 = 0.550, the proportion of candies with holes

in the sample.
Intuitively, this makes sense: because the bag label is invisible, labels 1 and 2 area

priori indistinguishable; initializing all the conditional parameters to the same value (re-
gardless of the bag) provides no means of breaking the symmetry. Thus, the symmetry
remains.

On the next iteration, we no longer have all the parameters set to p, but we do know
that, for example,

θF1θW1θH1 = θF2θW2θH2

so those terms cancel top and bottom in the expression for thecontribution of the 273
candies toθF1, and once again the contribution is273p.

To cut a long story short, all the parameters remain fixed after the first iteration,
with θ at its initial valuep and the other parameters at the corresponding empirical
frequencies as indicated above.

d. This part takes some time but makes the abstract mathematical expressions in the chap-
ter very concrete! The one concession to abstraction will bethe use of symbols for the
empirical counts, e.g.,

Ncr1 = N(Flavor = cherry ,Wrapper = red ,Holes = 1) = 273 .

with marginal countsNc,Nr1, etc. Thus we haveθ(1)
F1 =Nc/N = 560/1000.

The log likelihood is given by

L(d) = logP (d) = log
∏

j

P (dj) =
∑

j

log P (dj)

= Ncr1 log P (F = cherry ,W = red ,H = 1) +

Nlr1 logP (F = lime,W = red ,H = 1) +
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Ncr0 log P (F = cherry ,W = red ,H = 0) +

Nlr0 logP (F = lime,W = red ,H = 0) +

Ncg1 log P (F = cherry ,W = green ,H = 1) +

Nlg1 logP (F = lime,W = green,H = 1) +

Ncg0 log P (F = cherry ,W = green ,H = 0) +

Nlg0 logP (F = lime,W = green,H = 0)

Each of these probabilities can be expressed in terms of the network parameters, giving
the following expression forL(d):

Ncr1 log(θF1θW1θH1θ + θF2θW2θH2(1− θ)) +

Nlr1 log((1 − θF1)θW1θH1θ + (1− θF2)θW2θH2(1− θ)) +

Ncr0 log(θF1θW1(1− θH1)θ + θF2θW2(1− θH2)(1 − θ)) +

Nlr0 log((1 − θF1)θW1(1− θH1)θ + (1− θF2)θW2(1− θH2)(1− θ)) +

Ncg1 log(θF1(1− θW1)θH1θ + θF2(1− θW2)θH2(1− θ)) +

Nlg1 log((1 − θF1)(1 − θW1)θH1θ + (1− θF2)(1 − θW2)θH2(1− θ)) +

Ncg0 log(θF1(1− θW1)(1 − θH1)θ + θF2(1− θW2)(1− θH2)(1− θ)) +

Nlg0 log((1 − θF1)(1 − θW1)(1− θH1)θ + (1− θF2)(1− θW2)(1 − θH2)(1− θ))
Hence∂L/∂θ is given by

Ncr1
θF1θW1θH1 − θF2θW2θH2

θF1θW1θH1θ + θF2θW2θH2(1− θ)

−Nlr1
(1− θF1)θW1θH1 − (1− θF2)θW2θH2

(1− θF1)θW1θH1θ + (1− θF2)θW2θH2(1− θ)

+Ncr0
θF1θW1(1− θH1)− θF2θW2(1− θH2)

θF1θW1(1− θH1)θ + θF2θW2(1− θH2)(1− θ)

−Nlr0
(1− θF1)θW1(1− θH1)− (1− θF2)θW2(1− θH2)

(1− θF1)θW1(1− θH1)θ + (1− θF2)θW2(1− θH2)(1− θ)

+Ncg1
θF1(1− θW1)θH1 − θF2(1− θW2)θH2

θF1(1− θW1)θH1θ + θF2(1− θW2)θH2(1− θ)

−Nlg1
(1− θF1)(1 − θW1)θH1 − (1− θF2)(1 − θW2)θH2

(1− θF1)(1− θW1)θH1θ + (1− θF2)(1− θW2)θH2(1− θ)

+Ncg0
θF1(1− θW1)(1− θH1)− θF2(1− θW2)(1− θH2)

θF1(1− θW1)(1− θH1)θ + θF2(1− θW2)(1− θH2)(1 − θ)

−Nlg0
(1− θF1)(1 − θW1)(1 − θH1)− (1− θF2)(1− θW2)(1 − θH2)

(1− θF1)(1− θW1)(1 − θH1)θ + (1− θF2)(1− θW2)(1− θH2)(1 − θ)
By inspection, we can see that wheneverθF1 = θF2, θW1 = θW2, andθH1 = θH2, the
derivative is identically zero. Moreover, each term in the above expression has the
form k/f(θ) wherek does not containθ andf ′(θ) evaluates to zero under these con-
ditions. Thus the second derivative∂2L/∂θ2 is a collection of terms of the form
−kf ′(θ)/(f(θ))2, all of which evaluate to zero. In fact, all derivatives evaluate to
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zero under these conditions, so the likelihood is completely flat with respect toθ in the
subspace defined byθF1 = θF2, θW1 = θW2, andθH1 = θH2. Another way to see this
is to note that, in this subspace, the terms within the logs inthe expression forL(d)
simplify to terms of the formφFφWφHθ + φFφWφH(1 − θ)=φFφWφH , so that the
likelihood is in fact independent ofθ!

A representative partial derivative∂L/∂θF1 is given by

Ncr1
θW1θH1θ

θF1θW1θH1θ + θF2θW2θH2(1− θ)

−Nlr1
θW1θH1θ

(1− θF1)θW1θH1θ + (1− θF2)θW2θH2(1− θ)

+Ncr0
θW1(1− θH1)θ

θF1θW1(1− θH1)θ + θF2θW2(1− θH2)(1− θ)

−Nlr0
θW1(1− θH1)θ

(1− θF1)θW1(1− θH1)θ + (1− θF2)θW2(1− θH2)(1− θ)

+Ncg1
(1− θW1)θH1θ

θF1(1− θW1)θH1θ + θF2(1− θW2)θH2(1− θ)

−Nlg1
(1− θW1)θH1θ

(1− θF1)(1− θW1)θH1θ + (1− θF2)(1− θW2)θH2(1− θ)

+Ncg0
(1− θW1)(1− θH1)θ

θF1(1− θW1)(1− θH1)θ + θF2(1− θW2)(1− θH2)(1 − θ)

−Nlg0
(1− θW1)(1 − θH1)θ

(1− θF1)(1− θW1)(1 − θH1)θ + (1− θF2)(1− θW2)(1− θH2)(1 − θ)
Unlike the previous case, here the individual terms do not evaluate to zero. Writing
θF1 = θF2 =Nc/N , etc., the expression for∂L/∂θF1 becomes

Ncr1
N NrN1θ

NcNrN1θ +NcNrN1(1− θ)

−Nlr1
N NrN1θ

(N −Nc)NrN1θ + (N −Nc)NrN1(1− θ)

+Ncr0
N Nr(N −N1)θ

NcNr(N −N1)θ +NcNr(N −N1)(1− θ)

−Nlr0
N Nr(N −N1)θ

(N −Nc)Nr(N −N1)θ + (N −Nc)Nr(N −N1)(1− θ)

+Ncg1
N (N −Nr)N1θ

Nc(N −Nr)N1θ +Nc(N −Nr)N1(1− θ)

−Nlg1
N (N −Nr)N1θ

(N −Nc)(N −Nr)N1θ + (N −Nc)(N −Nr)N1(1− θ)

+Ncg0
N (N −Nr)(N −N1)θ

Nc(N −Nr)(N −N1)θ +Nc(N −Nr)(N −N1)(1 − θ)

−Nlg0
N (N −Nr)(N −N1)θ

(N −Nc)(N −Nr)(N −N1)θ + (N −Nc)(N −Nr)(N −N1)(1 − θ)
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This in turn simplifies to

∂L

∂θF1
=

(Ncr1 +Ncr0 +Ncg1 +Ncg0)Nθ

Nc
− (Nlr1 +Nlr0 +Nlg1 +Nlg0)Nθ

N −Nc

=
NcNθ

Nc
− (N −Nc)Nθ

N −Nc
= 0 .

Thus, we have a stationary point as expected.
To identify the nature of the stationary point, we need to examine the second deriva-

tives. We will not do this exhaustively, but will note that

∂2L/∂θ2
F1 = −Ncr1

(θW1θH1θ)
2

(θF1θW1θH1θ + θF2θW2θH2(1− θ))2

−Nlr1
(θW1θH1θ)

2

((1− θF1)θW1θH1θ + (1− θF2)θW2θH2(1− θ))2
. . .

with all terms negative, suggesting (possibly) a local maximum in the likelihood sur-
face. A full analysis requires evaluating the Hessian matrix of second derivatives and
calculating its eigenvalues.



Solutions for Chapter 21
Reinforcement Learning

21.1 The code repository shows an example of this, implemented inthe passive4× 3 envi-
ronment. The agents are found underlisp/learning/agents/passive * .lisp and
the environment is inlisp/learning/domains/4x3-passive-mdp.lisp . (The
MDP is converted to a full-blown environment using the function mdp->environment
which can be found inlisp/uncertainty/environments/mdp.lisp .)

21.2 Consider a world with two states,S0 andS1, with two actions in each state: stay still
or move to the other state. Assume the move action is non-deterministic—it sometimes fails,
leaving the agent in the same state. Furthermore, assume theagent starts inS0 and thatS1 is a
terminal state. If the agent tries several move actions and they all fail, the agent may conclude
thatT (S0,Move, S1) is 0, and thus may choose a policy withπ(S0) = Stay , which is an
improper policy. If we wait until the agent reachesS1 before updating, we won’t fall victim
to this problem.

21.3 This question essentially asks for a reimplementation of a general scheme for asyn-
chronous dynamic programming of which the prioritized sweeping algorithm is an exam-
ple (Moore and Atkeson, 1993). Fora., there is code for a priority queue in both the Lisp and
Python code repositories. So most of the work is the experimentation called for inb.

21.4 This utility estimation function is similar to equation (21.9), but adds a term to repre-
sent Euclidean distance on a grid. Using equation (21.10), the update equations are the same
for θ0 throughθ2, and the new parameterθ3 can be calculated by taking the derivative with
respect toθ3:

θ0 ← θ0 + α (uj(s)− Ûθ(s)) ,

θ1 ← θ1 + α (uj(s)− Ûθ(s))x ,

θ2 ← θ2 + α (uj(s)− Ûθ(s))y ,

θ3 ← θ3 + α (uj(s)− Ûθ(s))
√

(x− xg)2 + (y − yg)2 .

21.5 Code not shown. Several reinforcement learning agents are given in the directory
lisp/learning/agents .

21.6 Possible features include:

• Distance to the nearest+1 terminal state.
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• Distance to the nearest−1 terminal state.

• Number of adjacent+1 terminal states.

• Number of adjacent−1 terminal states.

• Number of adjacent obstacles.

• Number of obstacles that intersect with a path to the nearest +1 terminal state.

21.7 The modification involves combining elements of the environment converter for games
(game->environment in lisp/search/games.lisp ) with elements of the function
mdp->environment . The reward signal is just the utility of winning/drawing/losing and
occurs only at the end of the game. The evaluation function used by each agent is the utility
function it learns through the TD process. It is important tokeep the TD learning process
(which is entirely independent of the fact that a game is being played) distinct from the
game-playing algorithm. Using the evaluation function with a deep search is probably better
because it will help the agents to focus on relevant portionsof the search space by improving
the quality of play. There is, however, a tradeoff: the deeper the search, the more computer
time is used in playing each training game.

21.8 This is a relatively time-consuming exercise. Code not shown to compute three-
dimensional plots. The utility functions are:

a. U(x, y) = 1− γ((10 − x) + (10 − y)) is the true utility, and is linear.

b. Same as in a, except thatU(10, 1) = −1.

c. The exact utility depends on the exact placement of the obstacles. The best approxima-
tion is the same as in a. The features in exercise 21.9 might improve the approximation.

d. The optimal policy is to head straight for the goal from any point on the right side of
the wall, and to head for (5, 10) first (and then for the goal) from any point on the left
of the wall. Thus, the exact utility function is:

U(x, y) = 1− γ((10 − x) + (10− y)) (if x ≥ 5)

= 1− γ((5− x) + (10 − y))− 5γ (if x < 5)

Unfortunately, this is not linear inx andy, as stated. Fortunately, we can restate the
optimal policy as “head straight up to row 10 first, then head right until column 10.”
This gives us the same exact utility as in a, and the same linear approximation.

e. U(x, y) = 1− γ(|5− x|+ |5− y|) is the true utility. This is also not linear inx andy,
because of the absolute value signs. All can be fixed by introducing the features|5− x|
and|5− y|.

21.9 Code not shown.

21.10 To map evolutionary processes onto the formal model of reinforcement learning, one
must find evolutionary analogs for the reward signal, learning process, and the learned policy.
Let us start with a simple animal that does not learn during its own lifetime. This animal’s
genotype, to the extent that it determines animal’s behavior over its lifetime, can be thought
of as the parametersθ of a policy piθ. Mutations, crossover, and related processes are the
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part of the learning algorithm—like an empirical gradient neighborhood generator in policy
search—that creates new values ofθ. One can also imagine a reinforcement learning process
that works on many different copies ofπ simultaneously, as evolution does; evolution adds
the complication that each copy ofπ modifies the environment for other copies ofπ, whereas
in RL the environment dynamics are assumed fixed, independent of the policy chosen by
the agent. The most difficult issue, as the question indicates, is the reward function and
the underlying objective function of the learning process.In RL, the objective function is
to find policies that maximize the expected sum of rewards over time. Biologists usually
talk about evolution as maximizing “reproductive fitness,”i.e., the ability of individuals of
a given genotype to reproduce and thereby propagate the genotype to the next generation.
In this simple view, evolution’s “objective function” is tofind theπ that generates the most
copies of itself over infinite time. Thus, the “reward signal” is positive for creation of new
individuals; death,per se, seems to be irrelevant.

Of course, the real story is much more complex. Natural selection operates not just at
the genotype level but also at the level of individual genes and groups of genes; the environ-
ment is certainly multiagent rather than single-agent; and, as noted in the case of Baldwinian
evolution in Chapter 4, evolution may result in organisms that have hardwired reward signals
that are related to the fitness reward and may use those signals to learn during their lifetimes.

As far as we know there has been no careful and philosophically valid attempt to map
evolution onto the formal model of reinforcement learning;any such attempt must be careful
not toassumethat such a mapping is possible or toascribea goal to evolution; at best, one
may be able to interpret what evolution tends to doas if it were the result of some maximizing
process, and ask what it is that is being maximized.



Solutions for Chapter 22
Natural Language Processing

22.1 Code not shown. The distribution of words should fall along aZipfian distribution: a
straight line on a log-log scale. The generated language should be similar to the examples in
the chapter.

22.2 Using a unigram language model, the probability of a segmentation of a strings1:N
into k nonempty wordss = w1 . . . wk is

∏k
i=1 Plm(wi) wherePlm is the unigram language

model. This is not normalized without a distribution over the number of wordsk, but let’s
ignore this for now.

To see that we can find the most probable segmentation of a string by dynamic pro-
gramming, letp(i) be the maximum probability of any segmentation ofsi:N into words.
Thenp(N + 1) = 1 and

p(i) = max
j=i,...,N

Plm(si:j) p(j + 1)

because any segmentation ofsi:N starts with a single word spanningsi:j and a segmenta-
tion of the rest of the stringsj+1:N . Because we are using a unigram model, the optimal
segmentation ofsj+1:N does not depend on the earlier parts of the string.

Using the techniques of this chapter to form a unigram model accessed by the function
prob_word(word) , the following Python code solves the above dynamic programto output
an optimal segmentation:

def segment(text):
length = len(text)
max_prob = [0] * (length+1)
max_prob[length] = 1
split_idx = [-1] * (length+1)
for start in range(length,-1,-1):

for split in range(start+1,length+1):
p = max_prob[split] * prob_word(text[start:split])
if p > max_prob[start]:

max_prob[start] = p
split_idx[start] = split

i = 0
words = []
while i < length:

words.append(text[i:split_idx[i]])
i = split_idx[i]
if i == -1:
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return None # for text with zero probability
return words

One caveat is the language model must assign probabilities to unknown words based on their
length, otherwise sufficiently long strings will be segmented as single unknown words. One
natural option is to fit an exponential distribution to the words lengths of a corpus. Alter-
natively, one could learn a distribution over the number of words in a string based on its
length, add aP (k) term to the probability of a segmentation, and modify the dynamic pro-
gram to handle this (i.e., to computep(i, k) the maximum probability of segmentingsi:N into
k words).

22.3 Code not shown. The approach suggested here will work in somecases, for authors
with distinct vocabularies. For more similar authors, other features such as bigrams, average
word and sentence length, parts of speech, and punctuation might help. Accuracy will also
depend on how many authors are being distinguished. One interesting way to make the task
easier is to group authors into male and female, and try to distinguish the sex of an author not
previously seen. This was suggested by the work of Shlomo Argamon.

22.4 Code not shown. There are now several open-source projects to do Bayesian spam
filtering, so beware if you assign this exercise.

22.5 Doing the evaluation is easy, if a bit tedious (requiring 150page evaluations for the
complete 10 documents× 3 engines× 5 queries). Explaining the differences is more diffi-
cult. Some things to check are whether the good results in oneengine are even in the other
engines at all (by searching for unique phrases on the page);check whether the results are
commercially sponsored, are produced by human editors, or are algorithmically determined
by a search ranking algorithm; check whether each engine does the features mentioned in the
next exercise.

22.6 One good way to do this is to first find a search that yields a single page (or a few pages)
by searching for rare words or phrases on the page. Then make the search more difficult by
adding a variant of one of the words on the page—a word with different case, different suffix,
different spelling, or a synonym for one of the words on the page, and see if the page is still
returned. (Make sure that the search engine requires all terms to match for this technique to
work.)

22.7 Code not shown. The simplest approach is to look for a string of capitalized words,
followed by “Inc” or “Co.” or “Ltd.” or similar markers. A more complex approach is to
get a list of company names (e.g. from an online stock service), look for those names as
exact matches, and also extract patterns from them. Reporting recall and precision requires a
clearly-defined corpus.

22.8

A. Use the precision on the first 20 documents returned.

B. Use the reciprocal rank of the first relevant document. Or just the rank, considered as a
cost function (large is bad).

C. Use the recall.
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D. Score this as 1 if the first 100 documents retrieved containat least one relevant to the
query and 0 otherwise.

E. Score this as $(A(R + I) +BR−NC) whereR is the number of relevant documents
retrieved,I is the number of irrelevant documents retrieved, andC is the number of
relevant documents not retrieved.

F. One model would be a probabilistic one, in which, if the user has seenR relevant
documents andI irrelevant ones, she will continue searching with probability p(R, I)
for some functionp, to be specified. The measure of quality is then the expected number
of relevant documents examined.



Solutions for Chapter 23
Natural Language for Communication

23.1 No answer required; just read the passage.

23.2 The prior is represented by rules such as

P (N0 =A) : S → A SA

whereSA means “rest of sentence after anA.” Transitions are represented as, for example,

P (Nt+1 =B | Nt =A) : SA → B SB

and the sensor model is just the lexical rules such as

P (Wt = is | Nt =A) : A→ is .

23.3

a. (i).

b. This has two parses. The first usesV P → V P Adverb, V P → Copula Adjective,
Copula→ is, Adjective→ well, Adverb→ well. Its probability is

0.2× 0.2× 0.8× 0.5× 0.5 = 0.008 .

The second usesV P → V P Adverb twice,V P → V erb, V erb→ is, andAdverb→
well twice. Its probability is

0.2× 0.2× 0.1× 0.5× 0.5× 0.5 = 0.0005 .

The total probability is 0.0085.

c. It exhibits both lexical and syntactic ambiguity.

d. True. There can only be finitely many ways to generate the finitely many strings of 10
words.

23.4 The purpose of this exercise is to get the student thinking about the properties of natural
language. There is a wide variety of acceptable answers. Here are ours:

• Grammar and Syntax Java: formally defined in a reference book. Grammaticality is
crucial; ungrammatical programs are not accepted. English: unknown, never formally
defined, constantly changing. Most communication is made with “ungrammatical” ut-
terances. There is a notion of graded acceptability: some utterances are judged slightly
ungrammatical or a little odd, while others are clearly right or wrong.
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• SemanticsJava: the semantics of a program is formally defined by the language spec-
ification. More pragmatically, one can say that the meaning of a particular program
is the JVM code emitted by the compiler. English: no formal semantics, meaning is
context dependent.

• Pragmatics and Context-DependenceJava: some small parts of a program are left
undefined in the language specification, and are dependent onthe computer on which
the program is run. English: almost everything about an utterance is dependent on the
situation of use.

• Compositionality Java: almost all compositional. The meaning of “A + B” is clearly
derived from the meaning of “A” and the meaning of “B” in isolation. English: some
compositional parts, but many non-compositional dependencies.

• Lexical Ambiguity Java: a symbol such as “Avg” can be locally ambiguous as it might
refer to a variable, a class, or a function. The ambiguity canbe resolved simply by
checking the declaration; declarations therefore fulfill in a very exact way the role
played by background knowledge and grammatical context in English. English: much
lexical ambiguity.

• Syntactic Ambiguity Java: the syntax of the language resolves ambiguity. For exam-
ple, in “if (X) if (Y) A; else B;” one might think it is ambiguous whether the “else”
belongs to the first or second “if,” but the language is specified so that it always belongs
to the second. English: much syntactic ambiguity.

• ReferenceJava: there is a pronoun “this” to refer to the object on whicha method was
invoked. Other than that, there are no pronouns or other means of indexical reference;
no “it,” no “that.” (Compare this to stack-based languages such as Forth, where the
stack pointer operates as a sort of implicit “it.”) There is reference by name, however.
Note that ambiguities are determined by scope—if there are two or more declarations
of the variable “X”, then a use of X refers to the one in the innermost scope surrounding
the use. English: many techniques for reference.

• Background KnowledgeJava: none needed to interpret a program, although a local
“context” is built up as declarations are processed. English: much needed to do disam-
biguation.

• UnderstandingJava: understanding a program means translating it to JVM byte code.
English: understanding an utterance means (among other things) responding to it appro-
priately; participating in a dialog (or choosing not to participate, but having the potential
ability to do so).

As a follow-up question, you might want to compare differentlanguages, for example: En-
glish, Java, Morse code, the SQL database query language, the Postscript document descrip-
tion language, mathematics, etc.

23.5 The purpose of this exercise is to get some experience with simple grammars, and to
see how context-sensitive grammars are more complicated than context-free. One approach to
writing grammars is to write down the strings of the languagein an orderly fashion, and then
see how a progression from one string to the next could be created by recursive application
of rules. For example:
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a. The languageanbn: The strings areǫ, ab, aabb, . . . (whereǫ indicates the null string).
Each member of this sequence can be derived from the previousby wrapping ana at
the start and ab at the end. Therefore a grammar is:

S → ǫ

S → a S b

b. The palindrome language: Let’s assume the alphabet is justa, b andc. (In general, the
size of the grammar will be proportional to the size of the alphabet. There is no way to
write a context-free grammar without specifying the alphabet/lexicon.) The strings of
the language includeǫ, a, b, c, aa, bb, cc, aaa, aba, aca, bab, bbb, bcb, . . . .In general,
a string can be formed by bracketing any previous string withtwo copies of any member
of the alphabet. So a grammar is:

S → ǫ | a | b | c | a S a | b S b | c S c
c. The duplicate language: For the moment, assume that the alphabet is justab. (It is

straightforward to extend to a larger alphabet.) The duplicate language consists of the
strings:ǫ, aa, bb, aaaa, abab, bbbb, baba, . . . Note that all strings are of even length.

One strategy for creating strings in this language is this:

• Start with markers for the front and middle of the string: wecan use the non-
terminalF for the front andM for the middle. So at this point we have the string
FM .

• Generate items at the front of the string: generate ana followed by anA, or a b
followed by aB. Eventually we get, say,FaAaAbBM . Then we no longer need
theF marker and can delete it, leavingaAaAbBM .

• Move the non-terminalsA andB down the line until just before theM . We end
up withaabAABM .

• Hop theAs andBs over theM , converting each to a terminal (a or b) as we go.
Then we delete theM , and are left with the end result:aabaab.

Here is a grammar to implement this strategy:

S → F M (starting markers)
F → F a A (introduce symbols)
F → F b B
F → ǫ (delete theF marker)
A a → a A (move non-terminals down to theM )
A b → b A
B a → a B
B b → b B
A M → M a (hop overM and convert to terminal)
B M → M b
M → ǫ (delete theM marker)

Here is a trace of the grammar derivingaabaab:

S
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FM

FbBM

FaAbBM

FaAaAbBM

aAaAbBM

aaAAbBM

aaAbABM

aabAABM

aabAAMb

aabAMab

aabMaab

aabaab

23.6 Grammar (A) does not work, because there is no way for the verb“walked” followed
by the adverb “slowly” and the prepositional phrase “to the supermarket” to be parsed as a
verb phrase. A verb phrase in (A) must have either two adverbsor be just a verb. Here is the
parse under grammar (B):

S---NP-+-Pro---Someone
|
|-VP-+-V---walked

|
|-Vmod-+-Adv---slowly

|
|-Vmod---Adv---PP---Prep-+-to

|
|-NP-+-Det---the

|
|-NP---Noun---supermarket

Here is the parse under grammar (C):

S---NP-+-Pro---Someone
|
|-VP-+-V---walked

|
|-Adv-+-Adv---slowly

|
|-Adv---PP---Prep-+-to

|
|-NP-+-Det---the

|
|-NP---Noun---supermarket

23.7 Here is a start of a grammar:

Time => DigitHour ":" DigitMinute
| "midnight" | "noon" | "12 midnight" | "12 noon’’
| ClockHour "o’clock"
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S → NP VP

| S ′ Conj S ′

S ′ → NP VP

| SConj S ′

SConj → S ′ Conj

NP → me | you | I | it | . . .
| John | Mary | Boston | . . .
| stench| breeze| wumpus | pits | . . .
| Article Noun

| ArticleAdjs Noun

| Digit Digit

| NP PP

| NP RelClause

ArticleAdjs → Article Adjs

VP → is | feel | smells| stinks | . . .
| VP NP

| VP Adjective

| VP PP

| VP Adverb

Adjs → right | dead | smelly | breezy. . .
| Adjective Adjs

PP → Prep NP

RelClause → RelPro VP

Figure S23.1 The final result after turningE0 into CNF (omitting probabilities).

| Difference BeforeAfter ExtendedHour

DigitHour => 0 | 1 | ... | 23
DigitMinute => 1 | 2 | ... | 60
HalfDigitMinute => 1 | 2 | ... | 29
ClockHour => ClockDigitHour | ClockWordHour
ClockDigitHour => 1 | 2 | ... | 12
ClockWordHour => "one" | ... | "twelve"
BeforeAfter => "to" | "past" | "before" | "after"
Difference => HalfDigitMinute "minutes" | ShortDifferenc e
ShortDifference => "five" | "ten" | "twenty" | "twenty-five " | "quarter" | "half"
ExtendedHour => ClockHour | "midnight" | "noon"

The grammar is not perfect; for example, it allows “ten before six” and “quarter past noon,” which are a little

odd-sounding, and “half before six,” which is not really OK.
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23.8 The final grammar is shown in Figure S23.1. (Note that in earlyprintings, the question
asked for the ruleS ′ → S to be added.) In stepd, students may be tempted to drop the rules
(Y → . . . ), which fails immediately.

S → NP(Subjective,number , person) VP(number , person) | . . .
NP(case ,number , person) → Pronoun(case ,number , person)
NP(case ,number ,Third) → Name(number) | Noun(number) | . . .
VP(number , person) → VP(number , person) NP(Objective, , ) | . . .
PP → Preposition NP(Objective, , )
Pronoun(Subjective,Singular ,First) → I
Pronoun(Subjective,Singular ,Second ) → you
Pronoun(Subjective,Singular ,Third ) → he | she| it
Pronoun(Subjective,Plural ,First) → we
Pronoun(Subjective,Plural ,Second ) → you
Pronoun(Subjective,Plural ,Third ) → they
Pronoun(Objective,Singular ,First) → me
Pronoun(Objective,Singular ,Second) → you
Pronoun(Objective,Singular ,Third) → him | her | it
Pronoun(Objective,Plural ,First) → us
Pronoun(Objective,Plural ,Second) → you
Pronoun(Objective,Plural ,Third) → them
Verb(Singular ,First) → smell
Verb(Singular ,Second) → smell
Verb(Singular ,Third) → smells
Verb(Plural , ) → smell

Figure S23.2 A partial DCG for E1, modified to handle subject–verb number/person
agreement as in Ex. 22.2.

23.9 See Figure S23.2 for a partial DCG. We include both person andnumber annotation al-
though English really only differentiates the third personsingular for verb agreement (except
for the verbbe).

23.10 One parse captures the meaning “I am able to fish” and the other“I put fish in cans.”
Both have the left branchNP → Pronoun → I , which has probability 0.16.

• The first has the right branchVP → ModalVerb (0.2) withModal → can (0.3) and
Verb → fish (0.1), so its prior probability is

0.16× 0.2× 0.3× 0.1= 0.00096 .

• The second has the right branchVP → VerbNP (0.8) withVerb → can (0.1) and
NP → Noun → fish (0.6× 0.3), so its prior probability is

0.16× 0.8× 0.1× 0.6× 0.3= 0.002304 .
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As these are the only two parses, and the conditional probability of the string given the parse
is 1, their conditional probabilities given the string are proportional to their priors and sum to
1: 0.294 and 0.706.

23.11 The rule forA is

A(n′) → aA(n) {n′ = SUCCESSOR(n)}
A(1) → a

The rules forB andC are similar.

NP(case ,number ,Third) → Name(number)
NP(case ,Plural ,Third) → Noun(Plural )
NP(case ,number ,Third) → Article(number)Noun(number)
Article(Singular) → a | an | the
Article(Plural ) → the | some| many

Figure S23.3 A partial DCG for E1, modified to handle article–noun agreement as in
Ex. 22.3.

23.12 See Figure S23.3

23.13

a. Webster’s New Collegiate Dictionary (9th edn.) lists multiple meaning for all these
words except “multibillion” and “curtailing”.

b. The attachment of all the propositional phrases is ambiguous, e.g. does “from . . . loans”
attach to “struggling” or “recover”? Does “of money” attachto “depriving” or “com-
panies”? The coordination of “and hiring” is also ambiguous; is it coordinated with
“expansion” or with “curtailing” and “depriving” (using British punctuation).

c. The most clear-cut case is “healthy companies” as an example of HEALTH for IN A
GOOD FINANCIAL STATE. Other possible metaphors include “Banks . . . recover”
(same metaphor as “healthy”), “banks struggling” (PHYSICAL EFFORT for WORK),
and “expansion” (SPATIAL VOLUME for AMOUNT OF ACTIVITY); inthese cases,
the line between metaphor and polysemy is vague.

23.14 This is a very difficult exercise—most readers have no idea how to answer the ques-
tions (except perhaps to remember that “too few” is better than “too many”). This is the
whole point of the exercise, as we will see in exercise 23.14.

23.15 The main point of this exercise is to show that current translation software is far from
perfect. The mistakes made are often amusing for students.

23.16 It’s not true in general. With two phrases of length 1 which are invertedf2, f1, we
haved1 = 0 andd2 = 1− 2− 1 = −2 which don’t sum to zero.

23.17
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a. “I have never seen a better programming language” is easy for most people to see.

b. “John loves mary” seems to be prefered to “Mary loves John” (on Google, by a margin
of 2240 to 499, and by a similar margin on a small sample of respondents), but both are
of course acceptable.

c. This one is quite difficult. The first sentence of the second paragraph of Chapter 22
is “Communication is the intentional exchange of information brought about by the
production and perception of signs drawn from a shared system of conventional signs.”
However, this cannot be reliably recovered from the string of words given here. Code
not shown for testing the probabilities of permutations.

d. This one is easy for students of US history, being the beginning of the second sentence
of the Declaration of Independence: “We hold these truths tobe self-evident, that all
men are created equal. . .”

23.18
To solve questions like this more generally one can use the Viterbi algorithm. However,

observe that the first two states must be onset, as onset is theonly state which can output
C1 andC2. Similarly the last two state must be end. The third state is either onset or mid,
and the fourth and fifth are either mid or end. Having reduced to eight possibilities, we can
exhaustively enumerate to find the most likely sequence and its probability.

First we compute the joint probabilities of the hidden states and output sequence:

P (1234466, OOOMMEE) = 0.5× 0.2× 0.3 × 0.7 × 0.7× 0.5× 0.5

×0.3 × 0.3.7 × 0.9 × 0.1× 0.4

= 8.335 × 10−6

P (1234466, OOOMEEE) = 5.292 × 10−7

P (1234466, OOOEMEE) = 0

P (1234466, OOOEEEE) = 0

P (1234466, OOMMMEE) = 1.667 × 10−5

P (1234466, OOMMEEE) = 1.058 × 10−6

P (1234466, OOMEMEE) = 0

P (1234466, OOMEEEE) = 6.720 × 10−8

We find the most likely sequence wasO,O,M,M,M,E,E. Normalizing, we find this
has probability 0.6253.

23.19 Now we can answer the difficult questions of 22.7:

• The steps are sorting the clothes into piles (e.g., white vs. colored); going to the washing
machine (optional); taking the clothes out and sorting intopiles (e.g., socks versus
shirts); putting the piles away in the closet or bureau.

• The actual running of the washing machine is never explicitly mentioned, so that is one
possible answer. One could also say that drying the clothes is a missing step.

• The material is clothes and perhaps other washables.
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• Putting too many clothes together can cause some colors to run onto other clothes.

• It is better to do too few.

• So they won’t run; so they get thoroughly cleaned; so they don’t cause the machine to
become unbalanced.



Solutions for Chapter 24
Perception

24.1 The small spaces between leaves act as pinhole cameras. Thatmeans that the circular
light spots you see are actually images of the circular sun. You can test this theory next time
there is a solar eclipse: the circular light spots will have acrescent bite taken out of them as
the eclipse progresses. (Eclipse or not, the light spots areeasier to see on a sheet of paper
than on the rough forest floor.)

24.2 Consider the set of light rays passing through the center of projection (the pinhole or
the lens center), and tangent to the surface of the sphere. These define a double cone whose
apex is the center of projection. Note that the outline of thesphere on the image plane is just
the cross section corresponding to the intersection of thiscone with the image plane of the
camera. We know from geometry that such a conic section will typically be an ellipse. It is
a circle in the special case that the sphere is directly in front of the camera (its center lies on
the optical axis).

While on a planar retina, the image of an off-axis sphere would indeed be an ellipse, the
human visual system tries to infer what is in the three-dimensional scene, and here the most
likely solution is that one is looking at a sphere.

Some students might note that the eye’s retina is not planar but closer to spherical. On
a perfectly spherical retina the image of a sphere will be circular. The point of the question
remains valid, however.

24.3 Recall that the image brightness of a Lambertian surface (page 743) is given byI(x, y) =
kn(x, y).s. Here the light source directions is along thex-axis. It is sufficient to consider a
horizontal cross-section (in thex–z plane) of the cylinder as shown in Figure S24.1(a). Then,
the brightnessI(x) = k cos θ(x) for all the points on the right half of the cylinder. The left
half is in shadow. Asx = r cos θ, we can rewrite the brightness function asI(x) = kx

r which
reveals that the isobrightness contours in the lit part of the cylinder must be equally spaced.
The view from thez-axis is shown in Figure S24.1(b).

24.4 We list the four classes and give two or three examples of each:

a. depth: Between the top of the computer monitor and the wall behind it. Between the
side of the clock tower and the sky behind it. Between the white sheets of paper in the
foreground and the book and keyboard behind them.

b. surface normal: At the near corner of the pages of the book on the desk. At the sides of
the keys on the keyboard.

212
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x

yx

r

z

illumination
θ

viewer (a) (b)

Figure S24.1 (a) Geometry of the scene as viewed from along they-axis. (b) The scene
from thez-axis, showing the evenly spaced isobrightness contours.

c. reflectance: Between the white paper and the black lines on it. Between the “golden”
bridge in the picture and the blue sky behind it.

d. illumination: On the windowsill, the shadow from the center glass pane divider. On the
paper with Greek text, the shadow along the left from the paper on top of it. On the
computer monitor, the edge between the white window and the blue window is caused
by different illumination by the CRT.

24.5 Before answering this exercise, we draw a diagram of the apparatus (top view), shown
in Figure S24.2. Notice that we make the approximation that the focal length is the distance
from the lens to the image plane; this is valid for objects that are far away. Notice that this
question asks nothing about they coordinates of points; we might as well have a single line
of 512 pixels in each camera.

a. Solve this by constructing similar triangles: whose hypotenuse is the dotted line from
object to lens, and whose height is 0.5 meters and width 16 meters. This is similar
to a triangle of width 16cm whose hypotenuse projects onto the image plane; we can
compute that its height must be 0.5cm; this is the offset fromthe center of the image
plane. The other camera will have an offset of 0.5cm in the opposite direction. Thus the
total disparity is 1.0cm, or, at 512 pixels/10cm, a disparity of 51.2 pixels, or 51, since
there are no fractional pixels. Objects that are farther away will have smaller disparity.
Writing this as an equation, whered is the disparity in pixels andZ is the distance to
the object, we have:

d = 2× 512 pixels
10 cm

× 16 cm× 0.5 m
Z

b. In other words, this question is asking how much further than 16m could an object be,
and still occupy the same pixels in the image plane? Rearranging the formula above by
swappingd andZ, and plugging in values of 51 and 52 pixels ford, we get values of
Z of 16.06 and 15.75 meters, for a difference of 31cm (a little over a foot). This is the
range resolution at 16 meters.

c. In other words, this question is asking how far away would anobject be to generate a
disparity of one pixel? Objects farther than this are in effect out of range; we can’t say
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where they are located. Rearranging the formula above by swapping d andZ we get
51.2 meters.

512x512
  pixels

10cm

10
cm

16cm

16m
Object

0.
5m

0.
5m

Figure S24.2 Top view of the setup for stereo viewing (Exercise 24.6).

24.6

a. False. This can be quite difficult, particularly when some point are occluded from one
eye but not the other.

b. True. The grid creates an apparent texture whose distortion gives good information as
to surface orientation.

c. False.

d. False. A disk viewed edge-on appears as a straight line.

24.7 A, B, C can be viewed in stereo and hence their depths can be measured, allowing
the viewer to determine that B is nearest, A and C are equidistant and slightly further away.
Neither D nor E can be seen by both cameras, so stereo cannot beused. Looking at the
figure, it appears that the bottleoccludesD from Y and E from X, so D and E must be further
away than A, B, C, but their relative depths cannot be determined. There is, however, another
possibility (noticed by Alex Fabrikant). Remember that each camera sees the camera’s-eye
view not the bird’s-eye view. X sees DABC and Y sees ABCE. It ispossible that D is very
close to camera X, so close that it falls outside the field of view of camera Y; similarly, E
might be very close to Y and be outside the field of view of X. Hence, unless the cameras
have a 180-degree field of view—probably impossible—there is no way to determine whether
D and E are in front of or behind the bottle.



Solutions for Chapter 25
Robotics

25.1 To answer this question, consider all possibilities for theinitial samples before and
after resampling. This can be done because there are only finitely many states. The following
C++ program calculates the results for finiteN . The result forN =∞ is simply the posterior,
calculated using Bayes rule.

int
main(int argc, char *argv[])
{

// parse command line argument
if (argc != 3){

cerr << "Usage: " << argv[0] << " <number of samples>"
<< " <number of states>" << endl;

exit(0);
}

int numSamples = atoi(argv[1]);
int numStates = atoi(argv[2]);
cerr << "number of samples: " << numSamples << endl

<< "number of states: " << numStates << endl;
assert(numSamples >= 1);
assert(numStates >= 1);

// generate counter
int samples[numSamples];
for (int i = 0; i < numSamples; i++)

samples[i] = 0;

// set up probability tables
assert(numStates == 4); // presently defined for 4 states
double condProbOfZ[4] = {0.8, 0.4, 0.1, 0.1};
double posteriorProb[numStates];
for (int i = 0; i < numStates; i++)

posteriorProb[i] = 0.0;
double eventProb = 1.0 / pow(numStates, numSamples);

//loop through all possibilities
for (int done = 0; !done; ){

// compute importance weights (is probability distribution)
double weight[numSamples], totalWeight = 0.0;
for (int i = 0; i < numSamples; i++)

totalWeight += weight[i] = condProbOfZ[samples[i]];
// normalize them
for (int i = 0; i < numSamples; i++)

weight[i] /= totalWeight;

// calculate contribution to posterior probability
for (int i = 0; i < numSamples; i++)

posteriorProb[samples[i]] += eventProb * weight[i];

// increment counter
for (int i = 0; i < numSamples && i != -1;){

samples[i]++;
if (samples[i] >= numStates)

samples[i++] = 0;
else

i = -1;
if (i == numSamples)

done = 1;
}

}

// print result
cout << "Result: ";
for (int i = 0; i < numStates; i++)

cout << " " << posteriorProb[i];
cout << endl;

// calculate asymptotic expectation
double totalWeight = 0.0;
for (int i = 0; i < numStates; i++)

totalWeight += condProbOfZ[i];

cout << "Unbiased:";
for (int i = 0; i < numStates; i++)

cout << " " << condProbOfZ[i] / totalWeight;
cout << endl;

// calculate KL divergence
double kl = 0.0;
for (int i = 0; i < numStates; i++)

kl += posteriorProb[i] * (log(posteriorProb[i]) -
log(condProbOfZ[i] / totalWeight));

cout << "KL divergence: " << kl << endl;
}

(a) (b)

Figure S25.1 Code to calculate answer to exercise 25.1.

a. The program (correctly) calculates the following posterior distributions for the four
states, as a function of the number of samplesN . Note that forN = 1, the measurement
is ignored entirely! The correct posterior forN =∞ is calculated using Bayes rule.

215
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N p(sample ats1) p(sample ats2) p(sample ats3) p(sample ats4)
N = 1 0.25 0.25 0.25 0.25
N = 2 0.368056 0.304167 0.163889 0.163889
N = 3 0.430182 0.314463 0.127677 0.127677
N = 4 0.466106 0.314147 0.109874 0.109874
N = 5 0.488602 0.311471 0.0999636 0.0999636
N = 6 0.503652 0.308591 0.0938788 0.0938788
N = 7 0.514279 0.306032 0.0898447 0.0898447
N = 8 0.522118 0.303872 0.0870047 0.0870047
N = 9 0.528112 0.30207 0.0849091 0.0849091
N = 10 0.532829 0.300562 0.0833042 0.0833042
N =∞ 0.571429 0.285714 0.0714286 0.0714286

b. Plugging the posterior forN = ∞ into the definition of the Kullback Liebler Diver-
gence gives us:

N KL(p̂, p) N KL(p̂, p)
N = 1 0.386329 N = 7 0.00804982
N = 2 0.129343 N = 8 0.00593024
N = 3 0.056319 N = 9 0.00454205
N = 4 0.029475 N = 10 0.00358663
N = 5 0.0175705 N =∞ 0

c. The proof forN = 1 is trivial, since the re-weighting ignores the measurementproba-
bility entirely. Therefore, the probability for generating a sample in any of the locations
in S is given by the initial distribution, which is uniform.

ForN = 2, a proof is easily obtained by considering all24 = 16 ways in which
initial samples are generated:

number samples probability p(z|s) weights probability of resampling
of sample setfor each samplefor each sample for each location inS

1 0 0 1
16

4
5

4
5

1
2

1
2

1
16

0 0 0

2 0 1 1
16

2
5

4
5

3
9

6
9

1
24

1
48

0 0

3 0 2 1
16

1
10

4
5

1
9

8
9

1
18

0 1
144

0

4 0 3 1
16

1
10

4
5

1
9

8
9

1
18

0 0 1
144

5 1 0 1
16

4
5

2
5

6
9

3
9

1
24

1
48

0 0

6 1 1 1
16

2
5

2
5

1
2

1
2

0 1
16

0 0

7 1 2 1
16

1
10

2
5

1
5

4
5

0 1
20

1
80

0

8 1 3 1
16

1
10

2
5

1
5

4
5

0 1
20

0 1
80

9 2 0 1
16

4
5

1
10

8
9

1
9

1
18

0 1
144

0

10 2 1 1
16

2
5

1
10

4
5

1
5

0 1
20

1
80

0

11 2 2 1
16

1
10

1
10

1
2

1
2

0 0 1
16

0

12 2 3 1
16

1
10

1
10

1
2

1
2

0 0 1
32

1
32

13 3 0 1
16

4
5

1
10

8
9

1
9

1
18

0 0 1
144

14 3 1 1
16

2
5

1
10

4
5

1
5

0 1
20

0 1
80

15 3 2 1
16

1
10

1
10

1
2

1
2

0 0 1
32

1
32

16 3 3 1
16

1
10

1
10

1
2

1
2

0 0 0 1
16

sum of all probabilities 53
144

73
240

59
360

59
360
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A quick check should convince you that these numbers are the same as above. Placing
this into the definition of the Kullback Liebler divergence with the correct posterior
distribution, gives us0.129343.

ForN = ∞ we know that the sampler is unbiased. Hence, the probabilityof gen-
erating a sample is the same as the posterior distribution calculated by Bayes filters.
Those are given above as well.

d. Here are two possible modifications. First, if the initial robot location is known with
absolute certainty, the sampler above will always be unbiased. Second, if the sensor
measurementz is equally likely for all states, that isp(z|s1) = p(z|s2) = p(z|s3) =
p(z|s4), it will also be unbiased. Aninvalid answer, which we frequently encountered
in class, pertains to the algorithm (instead of the problem formulation). For example,
replacing particle filters by the exact discrete Bayes filer remedies the problem but is
not a legitimate answer to this question. Neither is the use of infinitely many particles.

25.2 Implementing Monte Carlo localization requires a lot of work but is a premiere way to
gain insights into the basic workings of probabilistic algorithms in robotics, and the intricacies
inherent in real data. We have used this exercise in many courses, and students consistently
expressed having learned a lot. We strongly recommend this exercise!

The implementation is not as straightforward as it may appear at first glance. Common
problems include:

• The sensor model models too little noise, or the wrong type of noise. For example, a
simple Gaussian will not work here.

• The motion model assumes too little or too much noise, or thewrong type of noise.
Here a Gaussian will work fine though.

• The implementation may introduce unnecessarily high variance in the resulting sam-
pling set, by sampling too often, or by sampling in the wrong way. This problem man-
ifests itself by diversity disappearing prematurely, often with the wrong samples sur-
viving. While the basic MCL algorithm, as stated in the book,suggests that sampling
should occur after each motion update, implementations that sample less frequently
tend to yield superior results. Further, drawing samples independently of each other
is inferior to so-called low variance samplers. Here is a version of low variance sam-
pling, in whichX denotes the particles andW their importance weights. The resulting
resampled particles reside in the setS′.

function LOW-VARIANCE-WEIGHTED-SAMPLE-WITH-REPLACEMENT(S,W ):
S′ = { }
b =

∑N
i=1W [i]

r = rand(0; b)
for n = 1 to N do

i = argminj

∑j
m=1W [m] ≥ r

addS[i] to S′

r = (r + rand(0; c)) modulob
return S′
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x=y=−9

x=y=9

x=y=−1

Feasible region

Excluded region
x=y=1

Figure S25.2 Robot configuration.

The parameterc determines the speed at which we cycle through the sample set. While
each sample’s probability remains the same as if it were sampled independently, the re-
sulting samples are dependent, and the variance of the sample setS′ is lower (assuming
c < b). As a pleasant side effect, the low-variance samples is also easily implemented
in O(N) time, which is more difficult for the independent sampler.

• Samples are started in the occupied or unknown parts of the map, or are allowed into
those parts during the forward sampling (motion prediction) step of the MCL algorithm.

• Too few samples are used. A few thousand should do the job, a few hundred will
probably not.

The algorithm can be sped up by pre-caching all noise-free measurements, for allx-y-θ poses
that the robot might assume. For that, it is convenient to define a grid over the space of all
poses, with 10 centimeters spatial and 2 degrees angular resolution. One might then compute
the noise-free measurements for the centers of those grid cells. The sensor model is clearly
just a function of those correct measurements; and computing those takes the bulk of time in
MCL.

25.3 See Figure S25.2.

25.4

A. Hill climbing down the potential moves manipulator B downthe rod to the point where
the derivative of the term “square of distance from current position of B to goal position”
is exactly the negative of the derivative of the term “1/square of distance from A to B”.
This is a local minimum of the potential function, because itis a minimum of the sum
of those two terms, with A held fixed, and small movements of A do not change the
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value of the term “1/square of distance from A to B”, and only increase the value of the
term “square of distance from current position of A to goal position”

B. Add a term of the form “1/square of distance between the center of A and the center
of B.” Now the stopping configuration of part A is no longer a local minimum because
moving A to the left decreases this term. (Moving A to the leftdoes also increase the
value of the term “square of distance from current position of A to goal position”, but
that term is at a local minimum, so its derivative is zero, so the gain outweighs the loss,
at least for a while.) For the right combination of linear coefficient, hill climbing will
find its way to a correct solution.

25.5 Letα be the shoulder andβ be the elbow angle. The coordinates of the end effector are
then given by the following expression. Herez is the height andx the horizontal displacement
between the end effector and the robot’s base (origin of the coordinate system):

(

x
z

)

=

(

0cm
60cm

)

+

(

sinα
cosα

)

· 40cm+

(

sin(α+ β)
cos(α+ β)

)

· 40cm

Notice that this is only one way to define the kinematics. The zero-positions of the angles
α andβ can be anywhere, and the motors may turn clockwise or counterclockwise. Here we
chose define these angles in a way that the arm points straightup atα = β = 0; furthermore,
increasingα andβ makes the corresponding joint rotate counterclockwise.

Inverse kinematicsis the problem of computingα andβ from the end effector coordi-
natesx andz. For that, we observe that the elbow angleβ is uniquely determined by the
Euclidean distance between the shoulder joint and the end effector. Let us call this distance
d. The shoulder joint is located60cm above the origin of the coordinate system; hence, the
distanced is given byd =

√

x2 + (z − 60cm)2. An alternative way to calculated is by
recovering it from the elbow angleβ and the two connected joints (each of which is40cm

long): d = 2 · 40cm · cos β
2 . The reader can easily derive this from basic trigonometry,ex-

ploiting the fact that both the elbow and the shoulder are of equal length. Equating these two
different derivations ofd with each other gives us

√

x2 + (z − 60cm)2 = 80cm · cos
β

2
(25.1)

or

β = ±2 · arccos

√

x2 + (z − 60cm)2

80cm
(25.2)

In most cases,β can assume two symmetric configurations, one pointing down and one
pointing up. We will discuss exceptions below.

To recover the angleα, we note that the angle between the shoulder (the base) and the
end effector is given byarctan 2(x, z − 60cm). Herearctan 2 is the common generalization
of the arcus tangens to all four quadrants (check it out—it isa function in C). The angleα
is now obtained by addingβ2 , again exploiting that the shoulder and the elbow are of equal
length:

α = arctan 2(x, z − 60cm)− β

2
(25.3)

Of course, the actual value ofα depends on the actual choice of the value ofβ. With the
exception of singularities,β can take on exactly two values.
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The inverse kinematics isuniqueif β assumes a single value; as a consequence, so does
alpha. For this to be the case, we need that

arccos

√

x2 + (z − 60cm)2

80cm
= 0 (25.4)

This is the case exactly when the argument of thearccos is 1, that is, when the distance
d = 80cm and the arm is fully stretched. The end pointsx, z then lie on a circle defined by
√

x2 + (z − 60cm)2 = 80cm. If the distanced > 80cm, there is no solution to the inverse
kinematic problem: the point is simply too far away to be reachable by the robot arm.

Unfortunately, configurations like these are numerically unstable, as the quotient may
be slightly larger than one (due to truncation errors). Suchpoints are commonly calledsingu-
larities, and they can cause major problems for robot motion planningalgorithms. A second
singularity occurs when the robot is “folded up,” that is,β = 180◦. Here the end effector’s
position is identical with that of the robot elbow, regardless of the angleα: x = 0cm and
z = 60cm. This is an important singularity, as there areinfinitely many solutions to the
inverse kinematics. As long asβ = 180◦, the value ofα can be arbitrary. Thus, this sim-
ple robot arm gives us an example where the inverse kinematics can yield zero, one, two, or
infinitely many solutions.

25.6 Code not shown.

25.7

a. The configurations of the robots are shown by the black dots in Figure S25.3.

Figure S25.3 Configuration of the robots.

b. Figure S25.3 also answers the second part of this exercise:it shows the configuration
space of the robot arm constrained by the self-collision constraint and the constraint
imposed by the obstacle.

c. The three workspace obstacles are shown in Figure S25.4.

d. This question is a great mind teaser that illustrates the difficulty of robot motion plan-
ning! Unfortunately, for an arbitrary robot, a planar obstacle can decompose the workspace
into anynumber of disconnected subspaces. To see, imagine a 1-DOF rigid robot that
moves on a horizontal rod, and possessesN upward-pointing fingers, like a giant fork.
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A single planar obstacle protruding vertically into one of the free-spaces between the
fingers could effectively separate the configuration space intoN +1 disjoint subspaces.
A second DOF will not change this.

More interesting is the robot arm used as an example throughout this book. By
slightly extending the vertical obstacles protruding intothe robot’s workspace we can
decompose the configuration space into five disjoint regions. The following figures
show the configuration space along with representative configurations for each of the
five regions.

Is five the maximum for any planar object that protrudes into the workspace of this

Figure S25.4 Workspace obstacles.

Figure S25.5 Configuration space for each of the five regions.
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particular robot arm? We honestly do not know; but we offer a $1 reward for the first
person who presents to us a solution that decomposes the configuration space into six,
seven, eight, nine, or ten disjoint regions. For the reward to be claimed, all these regions
must be clearly disjoint, and they must be a two-dimensionalmanifold in the robot’s
configuration space.

For non-planar objects, the configuration space is easily decomposed into any num-
ber of regions. A circular object may force the elbow to be just about maximally
bent; the resulting workspace would then be a very narrow pipe that leave the shoulder
largely unconstrained, but confines the elbow to a narrow range. This pipe is then easily
chopped into pieces by small dents in the circular object; the number of such dents can
be increased without bounds.

25.8

A. x = 1 · cos(60◦) + 2 · cos(85◦) =.
y = 1 · sin(60◦) + 2 · sin(85◦) =.
φ = 90◦

B. The minimal value ofx is 1 · cos(70◦) + 2 · cos(105◦) = −0.176
achieved when the first rotation is actually70◦ and the second is actually35◦.
The maximal value ofx is 1 · cos(50◦) + 2 · cos(65◦) = 1.488
achieved when the first rotation is actually50◦ and the second is actually15◦.
The minimal value ofy is 1 · sin(50◦) + 2 · sin(65◦) = 2.579
achieved when the first rotation is actually50◦ and the second is actually15◦.
The maximal value ofy is 1 · sin(70◦) + 2 · sin(90◦) = 2.94
achieved when the first rotation is actually70◦ and the second is actually20◦.
The minimal value ofφ is 65◦ achieved when the first rotation is actually50◦ and the
second is actually15◦.
The maximal value ofφ is 105◦ achieved when the first rotation is actually70◦ and the
second is actually35◦.

C. The maximal possibley-coordinate (1.0) is achieved when the rotation is executedat
exactly90◦. Since it is the maximal possible value, it cannot be the meanvalue. Since
there is a maximal possible value, the distribution cannot be a Gaussian, which has
non-zero (though small) probabilities for all values.

25.9 A simple deliberate controller might work as follows: Initialize the robot’s map with
an empty map, in which all states are assumed to be navigable,or free. Then iterate the
following loop: Find the shortest path from the current position to the goal position in the
map using A*; execute the first step of this path; sense; and modify the map in accordance
with the sensed obstacles. If the robot reaches the goal, declare success. The robot declares
failure when A* fails to find a path to the goal. It is easy to seethat this approach is both
complete and correct. The robot always find a path to a goal if one exists. If no such path
exists, the approach detects this through failure of the path planner. When it declares failure,
it is indeed correct in that no path exists.
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A common reactive algorithm, which has the same correctnessand completeness prop-
erty as the deliberate approach, is known as the BUG algorithm. The BUG algorithm dis-
tinguishes two modes, the boundary-following and the go-to-goal mode. The robot starts in
go-to-goal mode. In this mode, the robot always advances to the adjacent grid cell closest to
the goal. If this is impossible because the cell is blocked byan obstacle, the robot switches to
the boundary-following mode. In this mode, the robot follows the boundary of the obstacle
until it reaches a point on the boundary that is a local minimum to the straight-line distance
to the goal. If such a point is reached, the robot returns to the go-to-goal mode. If the robot
reaches the goal, it declares success. It declares failure when the same point is reached twice,
which can only occur in the boundary-following mode. It is easy to see that the BUG algo-
rithm is correct and complete. If a path to the goal exists, the robot will find it. When the
robot declares failure, no path to the goal may exist. If no such path exists, the robot will
ultimately reach the same location twice and detect its failure.

Both algorithms can cope with continuous state spaces provides that they can accurately
perceive obstacles, plan paths around them (deliberative algorithm) or follow their boundary
(reactive algorithm). Noise in motion can cause failures for both algorithms, especially if the
robot has to move through a narrow opening to reach the goal. Similarly, noise in perception
destroys both completeness and correctness: In both cases the robot may erroneously con-
clude a goal cannot be reached, just because its perception was noise. However, a deliberate
algorithm might build a probabilistic map, accommodating the uncertainty that arises from
the noisy sensors. Neither algorithm as stated can cope withunknown goal locations; how-
ever, the deliberate algorithm is easily converted into anexplorationalgorithm by which the
robot always moves to the nearest unexplored location. Suchan algorithm would be complete
and correct (in the noise-free case). In particular, it would be guaranteed to find and reach
the goal when reachable. The BUG algorithm, however, would not be applicable. A common
reactive technique for finding a goal whose location is unknown is random motion; this algo-
rithm will with probability one find a goal if it is reachable;however, it is unable to determine
when to give up, and it may be highly inefficient. Moving obstacles will cause problems for
both the deliberate and the reactive approach; in fact, it iseasy to design an adversarial case
where the obstacle always moves into the robot’s way. For slow-moving obstacles, a common
deliberate technique is to attach a timer to obstacles in thegrid, and erase them after a certain
number of time steps. Such an approach often has a good chanceof succeeding.

25.10 There are a number of ways to extend the single-leg AFSM in Figure 25.22(b) into
a set of AFSMs for controlling a hexapod. A straightforward extension—though not nec-
essarily the most efficient one—is shown in the following diagram. Here the set of legs is
divided into two, named A and B, and legs are assigned to thesesets in alternating sequence.
The top level controller, shown on the left, goes through sixstages. Each stage lifts a set
of legs, pushes the ones still on the ground backwards, and then lowers the legs that have
previously been lifted. The same sequence is then repeated for the other set of legs. The
corresponding single-leg controller is essentially the same as in Figure 25.22(b), but with
added wait-steps for synchronization with the coordinating AFSM. The low-level AFSM is
replicated six times, once for each leg.
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(a) (b)

Figure S25.6 Controller for a hexapod robot.

For showing that this controller is stable, we show that at least one leg group is on the
ground at all times. If this condition is fulfilled, the robot’s center of gravity will always be
above the imaginary triangle defined by the three legs on the ground. The condition is easily
proven by analyzing the top level AFSM. When one group of legsin s4 (or on the way tos4
from s3), the other is either ins2 or s1, both of which are on the ground. However, this proof
only establishes that the robot does not fall over when on flatground; it makes no assertions
about the robot’s performance on non-flat terrain. Our result is also restricted tostatic stabil-
ity, that is, it ignores all dynamic effects such as inertia. Fora fast-moving hexapod, asking
that its center of gravity be enclosed in the triangle of support may be insufficient.

25.11 We have used this exercise in class to great effect. The students get a clearer picture
of why it is hard to do robotics. The only drawback is that it isa lot of fun to play, and thus
the students want to spend a lot of time on it, and the ones who are just observing feel like
they are missing out. If you have laboratory or TA sections, you can do the exercise there.

Bear in mind that being the Brain is a very stressful job. It can take an hour just to stack
three boxes. Choose someone who is not likely to panic or be crushed by student derision.
Help the Brain out by suggesting useful strategies such as defining a mutually agreed Hand-
centric coordinate system so that commands are unambiguous. Almost certainly, the Brain
will start by issuing absolute commands such as “Move the Left Hand 12 inches positive y
direction” or “Move the Left Hand to (24,36).” Such actions will never work. The most useful
“invention” that students will suggest is the guarded motion discussed in Section 25.5—that
is, macro-operators such as “Move the Left Hand in the positive y direction until the eyes say
the red and green boxes are level.” This gets the Brain out of the loop, so to speak, and speeds
things up enormously.

We have also used a related exercise to show why robotics in particular and algorithm
design in general is difficult. The instructor uses as props adoll, a table, a diaper and some
safety pins, and asks the class to come up with an algorithm for putting the diaper on the
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baby. The instructor then follows the algorithm, but interpreting it in the least cooperative
way possible: putting the diaper on the doll’s head unless told otherwise, dropping the doll
on the floor if possible, and so on.



Solutions for Chapter 26
Philosophical Foundations

26.1 We will take the disabilities (see page 949) one at a time. Note that this exercise might
be better as a class discussion rather than written work.

a. be kind: Certainly there are programs that are polite and helpful, but to be kind requires
an intentional state, so this one is problematic.

b. resourceful: Resourceful means “clever at finding ways of doing things.”Many pro-
grams meet this criteria to some degree: a compiler can be clever making an optimiza-
tion that the programmer might not ever have thought of; a database program might
cleverly create an index to make retrievals faster; a checkers or backgammon program
learns to play as well as any human. One could argue whether the machines are “re-
ally” clever or just seem to be, but most people would agree this requirement has been
achieved.

c. beautiful: Its not clear if Turing meant to be beautiful or to create beauty, nor is it clear
whether he meant physical or inner beauty. Certainly the many industrial artifacts in
the New York Museum of Modern Art, for example, are evidence that a machine can
be beautiful. There are also programs that have created art.The best known of these
is chronicled inAaron’s code: Meta-art, artificial intelligence, and the work of Harold
Cohen(McCorduck, 1991).

d. friendly This appears to fall under the same category askind.

e. have initiativeInterestingly, there is now a serious debate whether software should take
initiative. The whole field of software agents says that it should; critics such as Ben
Schneiderman say that to achieve predictability, softwareshould only be an assistant,
not an autonomous agent. Notice that the debate over whethersoftwareshouldhave
initiative presupposes that ithasinitiative.

f. have a sense of humorWe know of no major effort to produce humorous works. How-
ever, this seems to be achievable in principle. All it would take is someone like Harold
Cohen who is willing to spend a long time tuning a humor-producing machine. We note
that humorous text is probably easier to produce than other media.

g. tell right from wrongThere is considerable research in applying AI to legal reasoning,
and there are now tools that assist the lawyer in deciding a case and doing research. One
could argue whether following legal precedents is the same as telling right from wrong,
and in any case this has a problematic conscious aspect to it.

226
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h. make mistakesAt this stage, every computer user is familiar with softwarethat makes
mistakes! It is interesting to think back to what the world was like in Turing’s day,
when some people thought it would be difficult or impossible for a machine to make
mistakes.

i. fall in love This is one of the cases that clearly requires consciousness. Note that while
some people claim that their pets love them, and some claim that pets are not conscious,
I don’t know of anybody who makes both claims.

j . enjoy strawberries and creamThere are two parts to this. First, there has been little to
no work on taste perception in AI (although there has been related work in the food and
perfume industries; see http://198.80.36.88/popmech/tech/U045O.html for one such ar-
tificial nose), so we’re nowhere near a breakthrough on this.Second, the “enjoy” part
clearly requires consciousness.

k. make someone fall in love with itThis criteria is actually not too hard to achieve; ma-
chines such as dolls and teddy bears have been doing it to children for centuries. Ma-
chines that talk and have more sophisticated behaviors justhave a larger advantage in
achieving this.

l. learn from experiencePart VI shows that this has been achieved many times in AI.

m. use words properlyNo program uses words perfectly, but there have been many natural
language programs that use words properly and effectively within a limited domain (see
Chapters 22-23).

n. be the subject of its own thoughtThe problematic word here is “thought.” Many pro-
grams can process themselves, as when a compiler compiles itself. Perhaps closer to
human self-examination is the case where a program has an imperfect representation
of itself. One anecdote of this involves Doug Lenat’s Eurisko program. It used to run
for long periods of time, and periodically needed to gather information from outside
sources. It “knew” that if a person were available, it could type out a question at the
console, and wait for a reply. Late one night it saw that no person was logged on, so it
couldn’t ask the question it needed to know. But it knew that Eurisko itself was up and
running, and decided it would modify the representation of Eurisko so that it inherits
from “Person,” and then proceeded to ask itself the question!

o. have as much diversity of behavior as manClearly, no machine has achieved this, al-
though there is no principled reason why one could not.

p. do something really newThis seems to be just an extension of the idea of learning
from experience: if you learn enough, you can do something really new. “Really” is
subjective, and some would say that no machine has achieved this yet. On the other
hand, professional backgammon players seem unanimous in their belief that TDGam-
mon (Tesauro, 1992), an entirely self-taught backgammon program, has revolutionized
the opening theory of the game with its discoveries.

26.2 This exercise depends on what happens to have been publishedlately. The NEWS
and MAGS databases, available on many online library catalog systems, can be searched
for keywords such as Penrose, Searle, Chinese Room, Dreyfus, etc. We found about 90
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reviews of Penrose’s books. Here are some excerpts from a fairly typical one, by Adam
Schulman (1995).

Roger Penrose, the distinguished mathematical physicist,has again entered the lists to rid
the world of a terrible dragon. The name of this dragon is ”strong artificial intelligence.”

Strong Al, as its defenders call it, is both a widely held scientific thesis and an ongoing
technological program. The thesis holds that the human mindis nothing but a fancy calcu-
lating machine-”-a computer made of meat”–and that all thinking is merely computation;
the program is to build faster and more powerful computers that will eventually be able to
do everything the human mind can do and more. Penrose believes that the thesis is false
and the program unrealizable, and he is confident that he can prove these assertions.. . .

In Part I of Shadows of the Mind Penrose makes his rigorous case that human conscious-
ness cannot be fully understood in computational terms.. . . How does Penrose prove that
there is more to consciousness than mere computation? Most people will already find it
inherently implausible that the diverse faculties of humanconsciousness–self-awareness,
understanding, willing, imagining, feeling–differ only in complexity from the workings
of, say, an IBM PC.

Students should have no problem finding things in this and other articles with which to dis-
agree. Thecomp.ai Newsnet group is also a good source of rash opinions.

Dubious claims also emerge from the interaction between journalists’ desire to write
entertaining and controversial articles and academics’ desire to achieve prominence and to be
viewed as ahead of the curve. Here’s one typical result—Is Nature’s Way The Best Way?,
Omni, February 1995, p. 62:

Artificial intelligence has been one of the least successfulresearch areas in computer
science. That’s because in the past, researchers tried to apply conventional computer
programming to abstract human problems, such as recognizing shapes or speaking in
sentences. But researchers at MIT’s Media Lab and Boston University’s Center for Adap-
tive Systems focus on applying paradigms of intelligence closer to what nature designed
for humans, which include evolution, feedback, and adaptation, are used to produce com-
puter programs that communicate among themselves and in turn learn from their mistakes.
Profiles In Artificial Intelligence, David Freedman.

This is not an argument that AI is impossible, just that it hasbeen unsuccessful. The full
text of the article is not given, but it is implied that the argument is that evolution worked
for humans, therefore it is a better approach for programs than is “conventional computer
programming.” This is a common argument, but one that ignores the fact that (a) there are
many possible solutions to a problem; one that has worked in the past may not be the best in
the present (b) we don’t have a good theory of evolution, so wemay not be able to duplicate
human evolution, (c) natural evolution takes millions of years and for almost all animals
does not result in intelligence; there is no guarantee that artificial evolution will do better (d)
artificial evolution (or genetic algorithms, ALife, neuralnets, etc.) is not the only approach
that involves feedback, adaptation and learning. “Conventional” AI does this as well.

26.3 Yes, this is a legitimate objection. Remember, the point of restoring the brain to normal
(page 957) is to be able to ask “What was it like during the operation?” and be sure of
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getting a “human” answer, not a mechanical one. But the skeptic can point out that it will not
do to replace each electronic device with the correspondingneuron that has been carefully
kept aside, because this neuron will not have been modified toreflect the experiences that
occurred while the electronic device was in the loop. One could fix the argument by saying,
for example, that each neuron has a single activation energythat represents its “memory,” and
that we set this level in the electronic device when we insertit, and then when we remove it,
we read off the new activation energy, and somehow set the energy in the neuron that we put
back in. The details, of course, depend on your theory of whatis important in the functional
and conscious functioning of neurons and the brain; a theorythat is not well-developed so
far.

26.4 To some extent this question illustrates the slipperiness of many of the concepts used
in philosophical discussions of AI. Here is our best guess asto how a philosopher would
answer this question. Remember that “wide content” refers to meaning ascribed by an outside
observer with access to both brain and world, while narrow content refers to the brain state
only. So the obvious answer seems to be that under wide content the states of the running
program correspond to “having the goal of proving citizenship of the user,” “having the goal
of establishing the country of birth of the user,” “knowing the user was born in the Isle of
Man,” and so on; and under narrow content, the program statesare just arbitrary collections of
bits with no obvious semantics in commonsense terms. (Afterall, the same compiled program
might arise from an isomorphic set of rules about whether mushrooms are poisonous.) Many
philosophers might object, however, that even under wide content the program has no such
semantics because it never had the right kinds of causal connections to experience of the
world that underpins concepts such as birth and citizenship.

26.5 The progress that has been made so far — a limited class of restricted cognitive activi-
ties can be carried out on a computer, some much better than humans, most much worse than
humans — is very little evidence. If all cognitive activities can be explained in computational
terms, then that would at least establish that cognition does not require the involvement of
anything beyond physical processes. Of course, it would still be possible that something of
the kind isactually involved in human cognition, but this would certainly increase the burden
of proof on those who claim that it is.

26.6 The impact of AI has thus far been extremely small, by comparison. In fact, the social
impact ofall technological advances between 1958 and 2008 has been considerably smaller
than the technological advances between 1890 and 1940. The common idea that we live in a
world where technological change advances ever more rapidly is out-dated.

26.7 This question asks whether our obsession with intelligencemerely reflects our view of
ourselves as distinct due to our intelligence. One may respond in two ways. First, note that
we already have ultrafast and ultrastrong machines (for example, aircraft and cranes) but they
have not changed everything—only those aspects of life for which raw speed and strength are
important. Good’s argument is based on the view that intelligence is important in all aspects
of life, since all aspects involve choosing how to act. Second, note that ultraintelligent ma-
chines have the special property that they can easily createultrafast and ultrastrong machines
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as needed, whereas the converse is not true.

26.8 It is hard to give a definitive answer to this question, but it can provoke some interesting
essays. Many of the threats are actually problems of computer technology or industrial society
in general, with some components that can be magnified by AI—examples include loss of
privacy to surveillance, and the concentration of power andwealth in the hands of the most
powerful. As discussed in the text, the prospect of robots taking over the world does not
appear to be a serious threat in the foreseeable future.

26.9 Biological and nuclear technologies provide mush more immediate threats of weapons,
yielded either by states or by small groups. Nanotechnlogy threatens to produce rapidly re-
producing threats, either as weapons or accidently, but thefeasibility of this technology is still
quite hypothetical. As discussed in the text and in the previous exercise, computer technology
such as centralized databases, network-attached cameras,and GPS-guided weapons seem to
pose a more serious portfolio of threats than AI technology,at least as of today.

26.10 To decide if AI is impossible, we must first define it. In this book, we’ve chosen a
definition that makes it easy to show it is possible in theory—for a given architecture, we
just enumerate all programs and choose the best. In practice, this might still be infeasible,
but recent history shows steady progress at a wide variety oftasks. Now if we define AI as
the production of agents that act indistinguishably form (or at least as intellgiently as) human
beings on any task, then one would have to say that little progress has been made, and some,
such as Marvin Minsky, bemoan the fact that few attempts are even being made. Others think
it is quite appropriate to address component tasks rather than the “whole agent” problem.
Our feeling is that AI is neither impossible nor a ooming threat. But it would be perfectly
consistent for someone to ffel that AI is most likely doomed to failure, but still that the risks
of possible success are so great that it should not be persuedfor fear of success.
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