

Application Fundamentals
https://developer.android.com/guide/components/fundamentals

Android apps can be written using Kotlin, the Java programming language, and C++
languages. The Android SDK tools compile your code along with any data and resource
files into an APK or an Android App Bundle.

An Android package, which is an archive file with an .apk suffix, contains the contents of
an Android app required at runtime, and it is the file that Android-powered devices use to
install the app.

An Android App Bundle, which is an archive file with an .aab suffix, contains the contents
of an Android app project, including some additional metadata that isn't required at runtime.
An AAB is a publishing format and can't be installed on Android devices. It defers APK
generation and signing to a later stage.

When distributing your app through Google Play, for example, Google Play's servers
generate optimized APKs that contain only the resources and code that are required by the
particular device requesting installation of the app.

Each Android app lives in its own security sandbox, protected by the following Android
security features:

• The Android operating system is a multi-user Linux system in which each app is a
different user.

• By default, the system assigns each app a unique Linux user ID, which is used only
by the system and is unknown to the app. The system sets permissions for all the
files in an app so that only the user ID assigned to that app can access them.

• Each process has its own virtual machine (VM), so an app's code runs in isolation
from other apps.

• By default, every app runs in its own Linux process. The Android system starts the
process when any of the app's components need to be executed, and then shuts
down the process when it's no longer needed or when the system must recover
memory for other apps.

The Android system implements the principle of least privilege. That is, each app, by
default, has access only to the components that it requires to do its work and no more. This
creates a very secure environment in which an app can't access parts of the system it is
not given permission for.

https://developer.android.com/guide/components/fundamentals

However, there are ways for an app to share data with other apps and for an app to access
system services:

• It's possible to arrange for two apps to share the same Linux user ID, in which case
they are able to access each other's files. To conserve system resources, apps with
the same user ID can also arrange to run in the same Linux process and share the
same VM. The apps must also be signed with the same certificate.

• An app can request permission to access device data such as the device's location,
camera, and Bluetooth connection. The user has to explicitly grant these
permissions. For more information about permissions, see Permissions on Android.

The rest of this document introduces the following concepts:

• The core framework components that define your app.

• The manifest file in which you declare the components and the required device
features for your app.

• Resources that are separate from the app code and that let your app gracefully
optimize its behaviour for a variety of device configurations.

App components

App components are the essential building blocks of an Android app. Each component is
an entry point through which the system or a user can enter your app. Some components
depend on others.

There are four types of app components:

• Activities

• Services

• Broadcast receivers

• Content providers

Each type serves a distinct purpose and has a distinct lifecycle that defines how a
component is created and destroyed. The following sections describe the four types of app
components.

Activities

An activity is the entry point for interacting with the user. It represents a single screen
with a user interface. For example, an email app might have one activity that shows
a list of new emails, another activity to compose an email, and another activity for
reading emails. Although the activities work together to form a cohesive user
experience in the email app, each one is independent of the others.

https://developer.android.com/training/permissions
https://developer.android.com/training/permissions

A different app can start any one of these activities if the email app allows it.
For example, a camera app might start the activity in the email app for composing a
new email to let the user share a picture.

An activity facilitates the following key interactions between system and app:

• Keeping track of what the user currently cares about—what is on-screen—so
that the system keeps running the process that is hosting the activity.

• Knowing which previously used processes contain stopped activities the user
might return to and prioritizing those processes more highly to keep them
available.

• Helping the app handle having its process killed so the user can return to
activities with their previous state restored.

• Providing a way for apps to implement user flows between each other, and
for the system to coordinate these flows. The primary example of this is
sharing.

You implement an activity as a subclass of the Activity class. For more information
about the Activity class, see Introduction to activities.

Services

A service is a general-purpose entry point for keeping an app running in the
background for all kinds of reasons. It is a component that runs in the background
to perform long-running operations or to perform work for remote processes. A
service does not provide a user interface.

For example, a service might play music in the background while the user is in a
different app, or it might fetch data over the network without blocking user interaction
with an activity. Another component, such as an activity, can start the service and let
it run or bind to it to interact with it.

There are two types of services that tell the system how to manage an app: started
services and bound services.

Started services tell the system to keep them running until their work is completed.
This might be to sync some data in the background or play music even after the user
leaves the app. Syncing data in the background or playing music represent different
types of started services, which the system handles differently:

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/components/activities/intro-activities

• Music playback is something the user is directly aware of, and the app
communicates this to the system by indicating that it wants to be in the
foreground, with a notification to tell the user that it is running. In this case,
the system prioritizes keeping that service's process running, because the
user has a bad experience if it goes away.

• A regular background service is not something the user is directly aware of,
so the system has more freedom in managing its process. It might let it be
killed, restarting the service sometime later, if it needs RAM for things that are
of more immediate concern to the user.

Bound services run because some other app (or the system) has said that it wants
to make use of the service. A bound service provides an API to another process, and
the system knows there is a dependency between these processes. So, if process
A is bound to a service in process B, the system knows that it needs to keep process
B and its service running for A. Further, if process A is something the user cares
about, then it knows to treat process B as something the user also cares about.

Because of their flexibility, services are useful building blocks for all kinds of higher-
level system concepts. Live wallpapers, notification listeners, screen savers, input
methods, accessibility services, and many other core system features are all built as
services that applications implement and the system binds to when they run.

A service is implemented as a subclass of Service. For more information about the
Service class, see the Services overview.

Broadcast receivers

A broadcast receiver is a component that lets the system deliver events to the app
outside of a regular user flow so the app can respond to system-wide broadcast
announcements. Because broadcast receivers are another well-defined entry into
the app, the system can deliver broadcasts even to apps that aren't currently
running.

➢ Note: If your app targets Android 5.0 (API level 21) or higher, use the
JobScheduler class to schedule actions. JobScheduler has the advantage
of conserving battery by optimally scheduling jobs to reduce power
consumption and by working with the Doze API. For more information about
using this class, see the JobScheduler reference documentation.

https://developer.android.com/reference/android/app/Service
https://developer.android.com/reference/android/app/Service
https://developer.android.com/guide/components/services
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/training/monitoring-device-state/doze-standby
https://developer.android.com/reference/android/app/job/JobScheduler

So, for example, an app can schedule an alarm to post a notification to tell the user
about an upcoming event. Because the alarm is delivered to a BroadcastReceiver
in the app, there is no need for the app to remain running until the alarm goes off.

Many broadcasts originate from the system, like a broadcast announcing that the
screen is turned off, the battery is low, or a picture is captured. Apps can also initiate
broadcasts, such as to let other apps know that some data is downloaded to the
device and is available for them to use.

Although broadcast receivers don't display a user interface, they can create a status
bar notification to alert the user when a broadcast event occurs. More commonly,
though, a broadcast receiver is just a gateway to other components and is intended
to do a very minimal amount of work.

For instance, a broadcast receiver might schedule a JobService to perform some
work based on an event using JobScheduler. Broadcast receivers often involve
apps interacting with each other, so it's important to be aware of the security
implications when setting them up.

A broadcast receiver is implemented as a subclass of BroadcastReceiver, and each
broadcast is delivered as an Intent object. For more information, see the
BroadcastReceiver class.

Content providers

A content provider manages a shared set of app data that you can store in the file
system, in a SQLite database, on the web, or on any other persistent storage
location that your app can access. Through the content provider, other apps can
query or modify the data, if the content provider permits it.

For example, the Android system provides a content provider that manages the
user's contact information. Any app with the proper permissions can query the
content provider, such as using ContactsContract.Data, to read and write
information about a particular person.

It is tempting to think of a content provider as an abstraction on a database, because
there is a lot of API and support built in to them for that common case. However,
they have a different core purpose from a system-design perspective.

To the system, a content provider is an entry point into an app for publishing named
data items, identified by a URI scheme. Thus, an app can decide how it wants to
map the data it contains to a URI namespace, handing out those URIs to other
entities which can in turn use them to access the data. There are a few particular
things this lets the system do in managing an app:

https://developer.android.com/develop/ui/views/notifications
https://developer.android.com/develop/ui/views/notifications
https://developer.android.com/reference/android/app/job/JobService
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/provider/ContactsContract.Data

• Assigning a URI doesn't require that the app remain running, so URIs can
persist after their owning apps exit. The system only needs to make sure that
an owning app is still running when it retrieves the app's data from the
corresponding URI.

• These URIs also provide an important fine-grained security model. For
example, an app can place the URI for an image it has on the clipboard, but
leave its content provider locked up so that other apps cannot freely access
it. When a second app attempts to access that URI on the clipboard, the
system can let that app access the data using a temporary URI permission
grant so that it accesses the data only behind that URI, and nothing else in
the second app.

Content providers are also useful for reading and writing data that is private to your
app and not shared.

A content provider is implemented as a subclass of ContentProvider and must
implement a standard set of APIs that enable other apps to perform transactions.
For more information, see the Content providers developer guide.

A unique aspect of the Android system design is that any app can start another app’s
component. For example, if you want the user to capture a photo with the device camera,
there's probably another app that does that—and your app can use it instead of developing
an activity to capture a photo yourself. You don't need to incorporate or even link to the
code from the camera app. Instead, you can start the activity in the camera app that
captures a photo. When complete, the photo is even returned to your app so you can use
it. To the user, it seems as if the camera is actually a part of your app.

When the system starts a component, it starts the process for that app, if it's not already
running, and instantiates the classes needed for the component. For example, if your app
starts the activity in the camera app that captures a photo, that activity runs in the process
that belongs to the camera app, not in your app's process. Therefore, unlike apps on most
other systems, Android apps don't have a single entry point: there's no main() function.

Because the system runs each app in a separate process with file permissions that restrict
access to other apps, your app can't directly activate a component from another app.
However, the Android system can. To activate a component in another app, you deliver a
message to the system that specifies your intent to start a particular component. The
system then activates the component for you.

https://developer.android.com/reference/android/content/ContentProvider
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers

Activate components

An asynchronous message called an intent activates three of the four component types:
activities, services, and broadcast receivers. Intents bind individual components to each
other at runtime. You can think of them as the messengers that request an action from other
components, whether the component belongs to your app or another.

An intent is created with an Intent object, which defines a message to activate either a
specific component (an explicit intent) or a specific type of component (an implicit intent).

For activities and services, an intent defines the action to perform, such as to view or send
something, and might specify the URI of the data to act on, among other things that the
component being started might need to know.

For example, an intent might convey a request for an activity to show an image or to open
a web page. In some cases, you can start an activity to receive a result, in which case the
activity also returns the result in an Intent. You can also issue an intent to let the user pick
a personal contact and have it returned to you. The return intent includes a URI pointing to
the chosen contact.

For broadcast receivers, the intent defines the broadcast announcement. For example, a
broadcast to indicate that the device battery is low includes only a known action string that
indicates battery is low.

Unlike activities, services, and broadcast receivers, content providers are activated when
targeted by a request from a ContentResolver. The content resolver handles all direct
transactions with the content provider, and the component performing transactions with the
provider calls methods on the ContentResolver object. This leaves a layer of abstraction
for security reasons between the content provider and the component requesting
information.

There are separate methods for activating each type of component:

• You can start an activity or give it something new to do by passing an Intent to
startActivity() or, when you want the activity to return a result,
startActivityForResult().

• On Android 5.0 (API level 21) and higher, you can use the JobScheduler class to
schedule actions. For earlier Android versions, you can start a service or give new
instructions to an ongoing service by passing an Intent to startService(). You
can bind to the service by passing an Intent to bindService().

• You can initiate a broadcast by passing an Intent to methods such as
sendBroadcast() or sendOrderedBroadcast().

• You can perform a query to a content provider by calling query() on a
ContentResolver.

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/ContentResolver
https://developer.android.com/reference/android/content/Context#startActivity(android.content.Intent)
https://developer.android.com/reference/android/app/Activity#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/android/app/Activity#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/android/app/Activity#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/android/app/job/JobScheduler
https://developer.android.com/reference/android/content/Context#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Context#startService(android.content.Intent)
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)
https://developer.android.com/reference/android/content/Context#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context#sendOrderedBroadcast(android.content.Intent,%20java.lang.String)
https://developer.android.com/reference/android/content/ContentProvider#query(android.net.Uri,%20java.lang.String%5B%5D,%20android.os.Bundle,%20android.os.CancellationSignal)

For more information about using intents, see the Intents and Intent Filters document.
The following documents provide more information about activating specific components:
Introduction to activities, Services overview, BroadcastReceiver, and Content providers.

The manifest file

Before the Android system can start an app component, the system must know that the
component exists by reading the app's manifest file, AndroidManifest.xml. Your app
declares all its components in this file, which is at the root of the app project directory.

The manifest does a number of things in addition to declaring the app's components, such
as the following:

• Identifies any user permissions the app requires, such as internet access or read-
access to the user's contacts.

• Declares the minimum API level required by the app, based on which APIs the app
uses.

• Declares hardware and software features used or required by the app, such as a
camera, Bluetooth services, or a multitouch screen.

• Declares API libraries the app needs to be linked against (other than the Android
framework APIs), such as the Google Maps library.

Declare components

The primary task of the manifest is to inform the system about the app's components. For
example, a manifest file can declare an activity as follows:

<?xml version="1.0" encoding="utf-8"?>

<manifest ... >

 <application android:icon="@drawable/app_icon.png" ... >

 <activity android:name="com.example.project.ExampleActivity"

 android:label="@string/example_label" ... >

 </activity>

 ...

 </application>

</manifest>

https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/manifest/uses-sdk-element#ApiLevels
http://code.google.com/android/add-ons/google-apis/maps-overview.html
http://code.google.com/android/add-ons/google-apis/maps-overview.html
http://code.google.com/android/add-ons/google-apis/maps-overview.html
http://code.google.com/android/add-ons/google-apis/maps-overview.html

In the <application> element, the android:icon attribute points to resources for an icon
that identifies the app.

In the <activity> element, the android:name attribute specifies the fully qualified class
name of the Activity subclass, and the android:label attribute specifies a string to use
as the user-visible label for the activity.

You must declare all app components using the following elements:

• <activity> elements for activities

• <service> elements for services

• <receiver> elements for broadcast receivers

• <provider> elements for content providers

Activities, services, and content providers that you include in your source but don't declare
in the manifest aren't visible to the system and, consequently, can never run. However,
broadcast receivers can either be declared in the manifest or created dynamically in code
as BroadcastReceiver objects and registered with the system by calling
registerReceiver() .

For more about how to structure the manifest file for your app, see the App manifest
overview.

Declare component capabilities

As discussed in the Activate components section, you can use an Intent to start
activities, services, and broadcast receivers. You do this by explicitly naming the target
component, using the component class name, in the intent. You can also use an implicit
intent, which describes the type of action to perform and, optionally, the data you want to
perform the action on. An implicit intent lets the system find a component on the device
that can perform the action and start it. If there are multiple components that can perform
the action described by the intent, the user selects which one to use.

 Caution: If you use an intent to start a Service, make sure that your app is
secure by using an explicit intent. Using an implicit intent to start a service is
a security hazard, because you can't be certain what service responds to the
intent and the user can't see which service starts. Beginning with Android 5.0
(API level 21), the system throws an exception if you call bindService() with
an implicit intent. Don't declare intent filters for your services.

https://developer.android.com/guide/topics/manifest/application-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/activity-element
https://developer.android.com/guide/topics/manifest/service-element
https://developer.android.com/guide/topics/manifest/receiver-element
https://developer.android.com/guide/topics/manifest/receiver-element
https://developer.android.com/guide/topics/manifest/provider-element
https://developer.android.com/guide/topics/manifest/provider-element
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/Context#registerReceiver(android.content.BroadcastReceiver,%20android.content.IntentFilter)
https://developer.android.com/reference/android/content/Context#registerReceiver(android.content.BroadcastReceiver,%20android.content.IntentFilter)
https://developer.android.com/reference/android/content/Context#registerReceiver(android.content.BroadcastReceiver,%20android.content.IntentFilter)
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/components/fundamentals#ActivatingComponents
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/app/Service
https://developer.android.com/guide/components/intents-filters#Types
https://developer.android.com/reference/android/content/Context#bindService(android.content.Intent,%20android.content.ServiceConnection,%20int)

The system identifies the components that can respond to an intent by comparing the intent
received to the intent filters provided in the manifest file of other apps on the device.

When you declare an activity in your app's manifest, you can optionally include intent filters
that declare the capabilities of the activity so it can respond to intents from other apps. You
do this by adding an <intent-filter> element as a child of the component's declaration
element.

For example, if you build an email app with an activity for composing a new email, you can
declare an intent filter to respond to "send" intents to send a new email, as shown in the
following example:

 If another app creates an intent with the ACTION_SEND action and passes it to
startActivity(), the system might start your activity so the user can draft and send an
email.

For more about creating intent filters, see the Intents and Intent Filters document.

Declare app requirements

There are a variety of devices powered by Android, and not all of them provide the same
features and capabilities. To prevent your app from being installed on devices that lack
features needed by your app, it's important that you clearly define a profile for the types of
devices your app supports by declaring device and software requirements in your manifest
file.

Most of these declarations are informational only. The system doesn't read them, but
external services such as Google Play do read them to provide filtering for users when they
search for apps from their device.

For example, suppose your app requires a camera and uses APIs introduced in Android
8.0 (API level 26). You must declare these requirements. The values for minSdkVersion
and targetSdkVersion are set in your app module's build.gradle file:

<manifest ... >

 ...

 <application ... >

 <activity android:name="com.example.project.ComposeEmailActivity">

 <intent-filter>

 <action android:name="android.intent.action.SEND" />

 <data android:type="*/*" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

 </application>

</manifest>

https://developer.android.com/guide/topics/manifest/intent-filter-element
https://developer.android.com/reference/android/content/Intent#ACTION_SEND
https://developer.android.com/reference/android/app/Activity#startActivity(android.content.Intent)
https://developer.android.com/guide/components/intents-filters

You declare the camera feature in your app's manifest file:

With the declarations shown in these examples, devices that do not have a camera or have
an Android version lower than 8.0 can't install your app from Google Play. However, you
can also declare that your app uses the camera, but does not require it. To do so, you set
the required attribute to false, check at runtime whether the device has a camera, and
disable any camera features as needed.

More information about how you can manage your app's compatibility with different
devices is provided in the Device compatibility overview.

App resources

An Android app is composed of more than just code. It requires resources that are separate
from the source code, such as images, audio files, and anything relating to the visual
presentation of the app. For example, you can define animations, menus, styles, colors,
and the layout of activity user interfaces with XML files.

android {

 ...

 defaultConfig {

 ...

 minSdkVersion 26

 targetSdkVersion 29

 }

}

➢ Note: Don't set minSdkVersion and targetSdkVersion directly in the manifest file,
since they are overwritten by Gradle during the build process. For more information,
see Specify API level requirements.

<manifest ... >

 <uses-feature android:name="android.hardware.camera.any"

 android:required="true" />

 ...

</manifest>

https://developer.android.com/guide/topics/manifest/uses-feature-element#required
https://developer.android.com/guide/practices/compatibility
https://developer.android.com/guide/practices/compatibility
https://developer.android.com/guide/practices/compatibility
https://developer.android.com/guide/practices/compatibility
https://developer.android.com/studio/publish/versioning#minsdk
https://developer.android.com/studio/publish/versioning#minsdk
https://developer.android.com/studio/publish/versioning#minsdk
https://developer.android.com/studio/publish/versioning#minsdk

Using app resources makes it easy to update various characteristics of your app without
modifying code. Providing sets of alternative resources lets you optimize your app for a
variety of device configurations, such as different languages and screen sizes.

For every resource that you include in your Android project, the SDK build tools define a
unique integer ID, which you can use to reference the resource from your app code or from
other resources defined in XML. For example, if your app contains an image file named
logo.png (saved in the res/drawable/ directory), the SDK tools generate a resource ID
named R.drawable.logo. This ID maps to an app-specific integer, which you can use to
reference the image and insert it in your user interface.

One of the most important aspects of providing resources separate from your source code
is the ability to provide alternative resources for different device configurations.

For example, by defining UI strings in XML, you can translate the strings into other
languages and save those strings in separate files. Then Android applies the appropriate
language strings to your UI based on a language qualifier that you append to the resource
directory's name, such as res/values-fr/ for French string values, and the user's
language setting.

Android supports many qualifiers for your alternative resources. The qualifier is a short
string that you include in the name of your resource directories to define the device
configuration those resources are used for.

For example, you can create different layouts for your activities depending on the device's
screen orientation and size. When the device screen is in portrait (tall) orientation, you
might want a layout with buttons arranged vertically, but when the screen is in landscape
(wide) orientation, you might want the buttons aligned horizontally. To change the layout
depending on the orientation, you can define two layouts and apply the appropriate qualifier
to each layout's directory name. Then, the system automatically applies the appropriate
layout depending on the current device orientation.

For more information about the different kinds of resources you can include in your
application and how to create alternative resources for different device configurations, read
the App resources overview. To learn more about best practices and designing robust,
production-quality apps, see the Guide to app architecture.

https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/guide/topics/resources/providing-resources
https://developer.android.com/topic/libraries/architecture/guide
https://developer.android.com/topic/libraries/architecture/guide

