
The Activity Life-Cycle
As a user navigates through, out of, and back to your app, the Activity instances in your app transition
through different states in their lifecycle. The Activity class provides a number of callbacks that let the
activity know when a state changes or that the system is creating, stopping, or resuming an activity or
destroying the process the activity resides in.

Within the lifecycle callback methods, you can declare how your activity behaves when the user leaves
and re-enters the activity. For example, if you're building a streaming video player, you might pause
the video and terminate the network connection when the user switches to another app. When the
user returns, you can reconnect to the network and let the user resume the video from the same spot.

Each callback lets you perform specific work that's appropriate to a given change of state. Doing the
right work at the right time and handling transitions properly make your app more robust and
performant. For example, good implementation of the lifecycle callbacks can help your app avoid the
following:

• Crashing if the user receives a phone call or switches to another app while using your app.
• Consuming valuable system resources when the user is not actively using it.
• Losing the user's progress if they leave your app and return to it at a later time.
• Crashing or losing the user's progress when the screen rotates between landscape and portrait

orientation.
This document explains the activity lifecycle in detail. The document begins by describing the lifecycle
paradigm. Next, it explains each of the callbacks: what happens internally while they execute and what
you need to implement during them.

It then briefly introduces the relationship between activity state and a process’s vulnerability to being
killed by the system. Finally, it discusses several topics related to transitions between activity states.

For information about handling lifecycles, including guidance about best practices, see Handling
Lifecycles with Lifecycle-Aware Components and Save UI states. To learn how to architect a robust,
production-quality app using activities in combination with architecture components, see Guide to app
architecture.

Activity-lifecycle concepts
To navigate transitions between stages of the activity lifecycle, the Activity class provides a core set of
six callbacks: onCreate(), onStart(), onResume(), onPause(), onStop(), and onDestroy(). The system
invokes each of these callbacks as the activity enters a new state.

Figure 1 presents a visual representation of this paradigm.

https://developer.android.com/reference/android/app/Activity
https://developer.android.com/topic/libraries/architecture/lifecycle
https://developer.android.com/topic/libraries/architecture/lifecycle
https://developer.android.com/topic/libraries/architecture/saving-states
https://developer.android.com/topic/libraries/architecture/guide
https://developer.android.com/topic/libraries/architecture/guide
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/android/app/Activity#onDestroy()

Figure 1. A simplified illustration of the activity lifecycle.

As the user begins to leave the activity, the system calls methods to dismantle the activity. In some
cases, the activity is only partially dismantled and still resides in memory, such as when the user
switches to another app. In these cases, the activity can still come back to the foreground.

If the user returns to the activity, it resumes from where the user left off. With a few exceptions, apps
are restricted from starting activities when running in the background.

The system’s likelihood of killing a given process, along with the activities in it, depends on the state of
the activity at the time. For more information on the relationship between state and vulnerability to
ejection, see the section about activity state and ejection from memory.

Depending on the complexity of your activity, you probably don't need to implement all the lifecycle
methods. However, it's important that you understand each one and implement those that make your
app behave the way users expect.

Lifecycle callbacks

This section provides conceptual and implementation information about the callback methods used
during the activity lifecycle.

Some actions belong in the activity lifecycle methods. However, place code that implements the
actions of a dependent component in the component, rather than the activity lifecycle method. To
achieve this, you need to make the dependent component lifecycle-aware. To learn how to make your
dependent components lifecycle-aware, see Handling Lifecycles with Lifecycle-Aware Components.

onCreate()

You must implement this callback, which fires when the system first creates the activity. On activity
creation, the activity enters the Created state. In the onCreate() method, perform basic application
startup logic that happens only once for the entire life of the activity.

For example, your implementation of onCreate() might bind data to lists, associate the activity with
a ViewModel, and instantiate some class-scope variables. This method receives the
parameter savedInstanceState, which is a Bundle object containing the activity's previously saved
state. If the activity has never existed before, the value of the Bundle object is null.

If you have a lifecycle-aware component that is hooked up to the lifecycle of your activity, it receives
the ON_CREATE event. The method annotated with @OnLifecycleEvent is called so your lifecycle-
aware component can perform any setup code it needs for the created state.

The following example of the onCreate() method shows fundamental setup for the activity, such as
declaring the user interface (defined in an XML layout file), defining member variables, and configuring
some of the UI. In this example, the XML layout file passes the file’s resource
ID R.layout.main_activity to setContentView().

https://developer.android.com/guide/components/activities/background-starts
https://developer.android.com/guide/components/activities/activity-lifecycle#asem
https://developer.android.com/topic/libraries/architecture/lifecycle
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/androidx/lifecycle/ViewModel
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event#ON_CREATE
https://developer.android.com/reference/android/app/Activity#setContentView(android.view.View)

Java(Code)

TextView textView;

// Some transient state for the activity instance.
String gameState;

@Override
public void onCreate(Bundle savedInstanceState) {
 // Call the superclass onCreate to complete the creation of
 // the activity, like the view hierarchy.
 super.onCreate(savedInstanceState);

 // Recover the instance state.
 if (savedInstanceState != null) {
 gameState = savedInstanceState.getString(GAME_STATE_KEY);
 }

 // Set the user interface layout for this activity.
 // The layout is defined in the project res/layout/main_activity.xml file.
 setContentView(R.layout.main_activity);

 // Initialize member TextView so it is available later.
 textView = (TextView) findViewById(R.id.text_view);
}

// This callback is called only when there is a saved instance previously saved
// using
// onSaveInstanceState(). Some state is restored in onCreate(). Other state can
// optionally
// be restored here, possibly usable after onStart() has completed.
// The savedInstanceState Bundle is same as the one used in onCreate().
@Override
public void onRestoreInstanceState(Bundle savedInstanceState) {
 textView.setText(savedInstanceState.getString(TEXT_VIEW_KEY));
}

// Invoked when the activity might be temporarily destroyed; save the instance
// state here.
@Override
public void onSaveInstanceState(Bundle outState) {
 outState.putString(GAME_STATE_KEY, gameState);
 outState.putString(TEXT_VIEW_KEY, textView.getText());

 // Call superclass to save any view hierarchy.
 super.onSaveInstanceState(outState);
}

As an alternative to defining the XML file and passing it to setContentView(), you can create
new View objects in your activity code and build a view hierarchy by inserting new View objects into
a ViewGroup. You then use that layout by passing the root ViewGroup to setContentView(). For more
information about creating a user interface, see the user interface documentation.

Your activity does not remain in the Created state. After the onCreate() method finishes execution, the
activity enters the Started state and the system calls the onStart() and onResume() methods in quick
succession.

onStart()
When the activity enters the Started state, the system invokes onStart(). This call makes the activity
visible to the user as the app prepares for the activity to enter the foreground and become interactive.
For example, this method is where the code that maintains the UI is initialized.

When the activity moves to the Started state, any lifecycle-aware component tied to the activity's
lifecycle receives the ON_START event.

The onStart() method completes quickly and, as with the Created state, the activity does not remain
in the Started state. Once this callback finishes, the activity enters the Resumed state and the system
invokes the onResume() method.

onResume()

When the activity enters the Resumed state, it comes to the foreground, and the system invokes
the onResume() callback. This is the state in which the app interacts with the user. The app stays in this
state until something happens to take focus away from the app, such as the device receiving a phone
call, the user navigating to another activity, or the device screen turning off.

When the activity moves to the Resumed state, any lifecycle-aware component tied to the activity's
lifecycle receives the ON_RESUME event. This is where the lifecycle components can enable any
functionality that needs to run while the component is visible and in the foreground, such as starting
a camera preview.

When an interruptive event occurs, the activity enters the Paused state and the system invokes
the onPause() callback.

If the activity returns to the Resumed state from the Paused state, the system once again calls
the onResume() method. For this reason, implement onResume() to initialize components that you
release during onPause() and to perform any other initializations that must occur each time the activity
enters the Resumed state.

Here is an example of a lifecycle-aware component that accesses the camera when the component
receives the ON_RESUME event:

https://developer.android.com/reference/android/app/Activity#setContentView(android.view.View)
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/guide/topics/ui
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event#ON_START
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event#ON_RESUME
https://developer.android.com/reference/android/app/Activity#onPause()

Java(Code)

public class CameraComponent implements LifecycleObserver {

 ...

 @OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
 public void initializeCamera() {
 if (camera == null) {
 getCamera();
 }
 }
 ...
}

The preceding code initializes the camera once the LifecycleObserver receives the ON_RESUME event.
In multi-window mode, however, your activity might be fully visible even when it is in the Paused state.
For example, when the app is in multi-window mode and the user taps the window that does not
contain your activity, your activity moves to the Paused state.

If you want the camera active only when the app is Resumed (visible and active in the foreground),
then initialize the camera after the ON_RESUME event demonstrated previously. If you want to keep
the camera active while the activity is Paused but visible, such as in multi-window mode, then initialize
the camera after the ON_START event.

However, having the camera active while your activity is Paused might deny access to the camera to
another Resumed app in multi-window mode. Sometimes it is necessary to keep the camera active
while your activity is Paused, but it might actually degrade the overall user experience if you do.

For this reason, think carefully about where in the lifecycle it is most appropriate to take control of
shared system resources in the context of multi-window mode. To learn more about supporting multi-
window mode, see Multi-window support.

Regardless of which build-up event you choose to perform an initialization operation in, make sure to
use the corresponding lifecycle event to release the resource. If you initialize something after
the ON_START event, release or terminate it after the ON_STOP event. If you initialize after
the ON_RESUME event, release after the ON_PAUSE event.

The preceding code snippet places camera initialization code in a lifecycle-aware component. You can
instead put this code directly into the activity lifecycle callbacks, such as onStart() and onStop(), but
we don't recommend this. Adding this logic to an independent, lifecycle-aware component lets you
reuse the component across multiple activities without having to duplicate code. To learn how to
create a lifecycle-aware component, see Handling Lifecycles with Lifecycle-Aware Components.

https://developer.android.com/reference/androidx/lifecycle/LifecycleObserver
https://developer.android.com/guide/topics/ui/multi-window
https://developer.android.com/topic/libraries/architecture/lifecycle

onPause()
The system calls this method as the first indication that the user is leaving your activity, though it does
not always mean the activity is being destroyed. It indicates that the activity is no longer in the
foreground, but it is still visible if the user is in multi-window mode. There are several reasons why an
activity might enter this state:

• An event that interrupts app execution, as described in the section about
the onResume() callback, pauses the current activity. This is the most common case.

• In multi-window mode, only one app has focus at any time, and the system pauses all the other
apps.

• The opening of a new, semi-transparent activity, such as a dialog, pauses the activity it covers.
As long as the activity is partially visible but not in focus, it remains paused.

When an activity moves to the Paused state, any lifecycle-aware component tied to the activity's
lifecycle receives the ON_PAUSE event. This is where the lifecycle components can stop any
functionality that does not need to run while the component is not in the foreground, such as stopping
a camera preview.

Use the onPause() method to pause or adjust operations that can't continue, or might continue in
moderation, while the Activity is in the Paused state, and that you expect to resume shortly.

You can also use the onPause() method to release system resources, handles to sensors (like GPS), or
any resources that affect battery life while your activity is Paused and the user does not need them.

However, as mentioned in the section about onResume(), a Paused activity might still be fully visible if
the app is in multi-window mode. Consider using onStop() instead of onPause() to fully release or
adjust UI-related resources and operations to better support multi-window mode.

The following example of a LifecycleObserver reacting to the ON_PAUSE event is the counterpart to
the preceding ON_RESUME event example, releasing the camera that initializes after
the ON_RESUME event is received:

Java(Code)

public class JavaCameraComponent implements LifecycleObserver {
 ...
 @OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
 public void releaseCamera() {
 if (camera == null) {
 camera.release();
 camera = null;}
 }
 }
 ...
}

https://developer.android.com/guide/components/activities/activity-lifecycle#onresume
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event#ON_PAUSE
https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/androidx/lifecycle/LifecycleObserver

This example places the camera release code after the ON_PAUSE event is received by
the LifecycleObserver.

onPause() execution is very brief and does not necessarily offer enough time to perform save
operations. For this reason, don't use onPause() to save application or user data, make network calls,
or execute database transactions. Such work might not complete before the method completes.

Instead, perform heavy-load shutdown operations during onStop(). For more information about
suitable operations to perform during onStop(), see the next section. For more information about
saving data, see the section about saving and restoring state.

Completion of the onPause() method does not mean that the activity leaves the Paused state. Rather,
the activity remains in this state until either the activity resumes or it becomes completely invisible to
the user. If the activity resumes, the system once again invokes the onResume() callback.

If the activity returns from the Paused state to the Resumed state, the system keeps
the Activity instance resident in memory, recalling that instance when the system invokes onResume().
In this scenario, you don’t need to re-initialize components created during any of the callback methods
leading up to the Resumed state. If the activity becomes completely invisible, the system calls onStop().

onStop()
When your activity is no longer visible to the user, it enters the Stopped state, and the system invokes
the onStop() callback. This can occur when a newly launched activity covers the entire screen. The
system also calls onStop() when the activity finishes running and is about to be terminated.

When the activity moves to the Stopped state, any lifecycle-aware component tied to the activity's
lifecycle receives the ON_STOP event. This is where the lifecycle components can stop any
functionality that does not need to run while the component is not visible on the screen.

In the onStop() method, release or adjust resources that are not needed while the app is not visible to
the user. For example, your app might pause animations or switch from fine-grained to coarse-grained
location updates. Using onStop() instead of onPause() means that UI-related work continues, even
when the user is viewing your activity in multi-window mode.

Also, use onStop() to perform relatively CPU-intensive shutdown operations. For example, if you can't
find a better time to save information to a database, you might do so during onStop(). The following
example shows an implementation of onStop() that saves the contents of a draft note to persistent
storage:

https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/guide/components/activities/activity-lifecycle#saras
https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event#ON_STOP
https://developer.android.com/reference/android/app/Activity#onPause()

Java(Code)

@Override
protected void onStop() {
 // Call the superclass method first.
 super.onStop();

 // Save the note's current draft, because the activity is stopping
 // and we want to be sure the current note progress isn't lost.
 ContentValues values = new ContentValues();
 values.put(NotePad.Notes.COLUMN_NAME_NOTE, getCurrentNoteText());
 values.put(NotePad.Notes.COLUMN_NAME_TITLE, getCurrentNoteTitle());

 // Do this update in background on an AsyncQueryHandler or equivalent.
 asyncQueryHandler.startUpdate (
 mToken, // int token to correlate calls
 null, // cookie, not used here
 uri, // The URI for the note to update.
 values, // The map of column names and new values to apply to them.
 null, // No SELECT criteria are used.
 null // No WHERE columns are used.
);
}

The preceding code sample uses SQLite directly. However, we recommend using Room, a persistence
library that provides an abstraction layer over SQLite. To learn more about the benefits of using Room
and how to implement Room in your app, see the Room Persistence Library guide.

When your activity enters the Stopped state, the Activity object is kept resident in memory: it
maintains all state and member information, but is not attached to the window manager. When the
activity resumes, it recalls this information.

You don’t need to re-initialize components created during any of the callback methods leading up to
the Resumed state. The system also keeps track of the current state for each View object in the layout,
so if the user enters text into an EditText widget, that content is retained so you don't need to save
and restore it.

Note: Once your activity is stopped, the system might destroy the process that contains the activity
if the system needs to recover memory. Even if the system destroys the process while the activity is
stopped, the system still retains the state of the View objects, such as text in an EditText widget, in
a Bundle—a blob of key-value pairs—and restores them if the user navigates back to the activity. For
more information about restoring an activity to which a user returns, see the section about saving
and restoring state.

https://developer.android.com/topic/libraries/architecture/room
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/guide/components/activities/activity-lifecycle#saras
https://developer.android.com/guide/components/activities/activity-lifecycle#saras

From the Stopped state, the activity either comes back to interact with the user, or the activity is
finished running and goes away. If the activity comes back, the system invokes onRestart(). If
the Activity is finished running, the system calls onDestroy().

onDestroy()
onDestroy() is called before the activity is destroyed. The system invokes this callback for one of two
reasons:

1. The activity is finishing, due to the user completely dismissing the activity or due
to finish() being called on the activity.

2. The system is temporarily destroying the activity due to a configuration change, such as device
rotation or entering multi-window mode.

When the activity moves to the destroyed state, any lifecycle-aware component tied to the activity's
lifecycle receives the ON_DESTROY event. This is where the lifecycle components can clean up
anything they need to before the Activity is destroyed.

Instead of putÝng logic in your Activity to determine why it is being destroyed, use a ViewModel object
to contain the relevant view data for your Activity. If the Activity is recreated due to a configuration
change, the ViewModel does not have to do anything, since it is preserved and given to the
next Activity instance.

If the Activity isn't recreated, then the ViewModel has the onCleared() method called, where it can
clean up any data it needs to before being destroyed. You can distinguish between these two scenarios
with the isFinishing() method.

If the activity is finishing, onDestroy() is the final lifecycle callback the activity receives. If onDestroy() is
called as the result of a configuration change, the system immediately creates a new activity instance
and then calls onCreate() on that new instance in the new configuration.

The onDestroy() callback releases all resources not released by earlier callbacks, such as onStop().

Activity state and ejection from memory
The system kills processes when it needs to free up RAM. The likelihood of the system killing a given
process depends on the state of the process at the time. Process state, in turn, depends on the state
of the activity running in the process. Table 1 shows the correlations among process state, activity
state, and the likelihood of the system killing the process. This table only applies if a process is not
running other types of application components.

Likelihood of being killed Process state Final activity state

Lowest Foreground (having or about to get focus) Resumed

Low Visible (no focus) Started/Paused

Higher Background (invisible) Stopped

Highest Empty Destroyed

Table 1. Relationship between process lifecycle and activity state.

https://developer.android.com/reference/android/app/Activity#onRestart()
https://developer.android.com/reference/android/app/Activity#onDestroy()
https://developer.android.com/reference/android/app/Activity#onDestroy()
https://developer.android.com/reference/android/app/Activity#finish()
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event#ON_DESTROY
https://developer.android.com/reference/androidx/lifecycle/ViewModel
https://developer.android.com/reference/androidx/lifecycle/ViewModel#onCleared()
https://developer.android.com/reference/android/app/Activity#isFinishing()
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStop()

The system never kills an activity directly to free up memory. Instead, it kills the process the activity
runs in, destroying not only the activity but everything else running in the process as well. To learn
how to preserve and restore your activity's UI state when system-initiated process death occurs, see
the section about saving and restoring state.

The user can also kill a process by using the Application Manager, under SetÝngs, to kill the
corresponding app.

For more information about processes, see Processes and threads overview.

Saving and restoring transient UI state

A user expects an activity’s UI state to remain the same throughout a configuration change, such as
rotation or switching into multi-window mode. However, the system destroys the activity by default
when such a configuration change occurs, wiping away any UI state stored in the activity instance.

Similarly, a user expects UI state to remain the same if they temporarily switch away from your app to
a different app and then come back to your app later. However, the system can destroy your
application’s process while the user is away and your activity is stopped.

When system constraints destroy the activity, preserve the user’s transient UI state using a
combination of ViewModel, onSaveInstanceState(), and/or local storage. To learn more about user
expectations compared to system behavior and how to best preserve complex UI state data across
system-initiated activity and process death, see Save UI states.

This section outlines what instance state is and how to implement the onSaveInstance() method,
which is a callback on the activity itself. If your UI data is lightweight, you can
use onSaveInstance() alone to persist the UI state across both configuration changes and system-
initiated process death. But because onSaveInstance() incurs serialization/deserialization costs, in
most cases you use both ViewModel and onSaveInstance(), as outlined in Save UI states.

Note: To learn more about configuration changes, how to restrict Activity recreation if needed, and
how to react to those configuration changes from the View system and Jetpack Compose, check out
the Handle configuration changes page.

Instance state
There are a few scenarios in which your activity is destroyed due to normal app behavior, such as when
the user presses the Back button or your activity signals its own destruction by calling
the finish() method.

When your activity is destroyed because the user presses Back or the activity finishes itself, both the
system's and the user's concept of that Activity instance is gone forever. In these scenarios, the user's
expectation matches the system's behavior, and you do not have any extra work to do.

However, if the system destroys the activity due to system constraints (such as a configuration change
or memory pressure), then although the actual Activity instance is gone, the system remembers that

https://developer.android.com/guide/components/activities/activity-lifecycle#saras
https://developer.android.com/guide/components/processes-and-threads
https://developer.android.com/reference/androidx/lifecycle/ViewModel
https://developer.android.com/reference/android/app/Activity#onSaveInstanceState(android.os.Bundle)
https://developer.android.com/topic/libraries/architecture/saving-states
https://developer.android.com/topic/libraries/architecture/saving-states
https://developer.android.com/guide/topics/resources/runtime-changes
https://developer.android.com/reference/android/app/Activity#finish()
https://developer.android.com/reference/android/app/Activity

it existed. If the user attempts to navigate back to the activity, the system creates a new instance of
that activity using a set of saved data that describes the state of the activity when it was destroyed.

The saved data that the system uses to restore the previous state is called the instance state. It's a
collection of key-value pairs stored in a Bundle object. By default, the system uses the Bundle instance
state to save information about each View object in your activity layout, such as the text value entered
into an EditText widget.

So, if your activity instance is destroyed and recreated, the state of the layout is restored to its previous
state with no code required by you. However, your activity might have more state information that
you'd like to restore, such as member variables that track the user's progress in the activity.

Note: In order for the Android system to restore the state of the views in your activity, each view
must have a unique ID, supplied by the android:id attribute.

A Bundle object isn't appropriate for preserving more than a trivial amount of data, because it requires
serialization on the main thread and consumes system-process memory. To preserve more than a very
small amount of data, take a combined approach to preserving data, using persistent local storage,
the onSaveInstanceState() method, and the ViewModel class, as outlined in Save UI states.

Save simple, lightweight UI state using onSaveInstanceState()
As your activity begins to stop, the system calls the onSaveInstanceState() method so your activity can
save state information to an instance state bundle. The default implementation of this method saves
transient information about the state of the activity's view hierarchy, such as the text in
an EditText widget or the scroll position of a ListView widget.

To save additional instance state information for your activity, override onSaveInstanceState() and add
key-value pairs to the Bundle object that is saved in the event that your activity is destroyed
unexpectedly. When you override onSaveInstanceState(), you need to call the superclass
implementation if you want the default implementation to save the state of the view hierarchy. This is
shown in the following example:

Java(Code)

static final String STATE_SCORE = "playerScore";
static final String STATE_LEVEL = "playerLevel";
// ...

@Override
public void onSaveInstanceState(Bundle savedInstanceState) {
 // Save the user's current game state.
 savedInstanceState.putInt(STATE_SCORE, currentScore);
 savedInstanceState.putInt(STATE_LEVEL, currentLevel);

 // Always call the superclass so it can save the view hierarchy state.
 super.onSaveInstanceState(savedInstanceState);
}
.

https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/topic/libraries/architecture/saving-states
https://developer.android.com/reference/android/app/Activity#onSaveInstanceState(android.os.Bundle)
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/ListView

Note: onSaveInstanceState() is not called when the user explicitly closes the activity or in other
cases when finish() is called.

To save persistent data, such as user preferences or data for a database, take appropriate opportunities
when your activity is in the foreground. If no such opportunity arises, save persistent data during
the onStop() method.

Restore activity UI state using saved instance state
When your activity is recreated after it was previously destroyed, you can recover your saved instance
state from the Bundle that the system passes to your activity. Both the onCreate() and
onRestoreInstanceState() callback methods receive the same Bundle that contains the instance state
information.

Because the onCreate() method is called whether the system is creating a new instance of your activity
or recreating a previous one, you need to check whether the state Bundle is null before you attempt
to read it. If it is null, then the system is creating a new instance of the activity, instead of restoring a
previous one that was destroyed.

The following code snippet shows how you can restore some state data in onCreate():

Java(Code)

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState); // Always call the superclass first

 // Check whether we're recreating a previously destroyed instance.
 if (savedInstanceState != null) {
 // Restore value of members from saved state.
 currentScore = savedInstanceState.getInt(STATE_SCORE);
 currentLevel = savedInstanceState.getInt(STATE_LEVEL);
 } else {
 // Probably initialize members with default values for a new
instance.
 }
 // ...
}
.

Instead of restoring the state during the onCreate() callback, you can choose to implement the
onRestoreInstanceState() callback, which the system calls after the onStart() method. The system calls
onRestoreInstanceState() only if there is a saved state to restore, so you do not need to check whether
the Bundle is null.

https://developer.android.com/reference/android/app/Activity#onStop()
https://developer.android.com/reference/android/os/Bundle
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onRestoreInstanceState(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStart()

Java(Code)

public void onRestoreInstanceState(Bundle savedInstanceState) {
 // Always call the superclass so it can restore the view hierarchy.
 super.onRestoreInstanceState(savedInstanceState);

 // Restore state members from saved instance.
 currentScore = savedInstanceState.getInt(STATE_SCORE);
 currentLevel = savedInstanceState.getInt(STATE_LEVEL);
}

Caution: Always call the superclass implementation of onRestoreInstanceState() so the default
implementation can restore the state of the view hierarchy.

Navigating between activities
An app is likely to enter and exit an activity, perhaps many times, during the app’s lifetime, such as
when the user taps the device’s Back button or the activity launches a different activity.

This section covers topics you need to know to implement successful activity transitions. These topics
include starting an activity from another activity, saving activity state, and restoring activity state.

Starting one activity from another
An activity often needs to start another activity at some point. This need arises, for instance, when an
app needs to move from the current screen to a new one.

Depending on whether or not your activity wants a result back from the new activity it’s about to start,
you start the new activity using either the startActivity() method or the startActivityForResult()
method. In either case, you pass in an Intent object.

The Intent object specifies either the exact activity you want to start or describes the type of action
you want to perform. The system selects the appropriate activity for you, which can even be from a
different application. An Intent object can also carry small amounts of data to be used by the activity
that is started. For more information about the Intent class, see Intents and Intent Filters.

startActivity()
If the newly started activity does not need to return a result, the current activity can start it by calling
the startActivity() method.

When working within your own application, you often need to simply launch a known activity. For
example, the following code snippet shows how to launch an activity called SignInActivity.

https://developer.android.com/reference/android/app/Activity#startActivity(android.content.Intent,%20android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/reference/android/app/Activity#startActivity(android.content.Intent,%20android.os.Bundle)

Java(Code)

Intent intent = new Intent(this, SignInActivity.class);
startActivity(intent);

Your application might also want to perform some action, such as send an email, text message, or
status update, using data from your activity. In this case, your application might not have its own
activities to perform such actions, so you can instead leverage the activities provided by other
applications on the device, which can perform the actions for you.

This is where intents are really valuable. You can create an intent that describes an action you want to
perform, and the system launches the appropriate activity from another application. If there are
multiple activities that can handle the intent, then the user can select which one to use. For example,
if you want to let the user send an email message, you can create the following intent:

Java(Code)

Intent intent = new Intent(Intent.ACTION_SEND);
intent.putExtra(Intent.EXTRA_EMAIL, recipientArray);
startActivity(intent);

The EXTRA_EMAIL extra added to the intent is a string array of email addresses the email is to be sent
to. When an email application responds to this intent, it reads the string array provided in the extra
and places the addresses in the "to" field of the email composition form. In this situation, the email
application's activity starts, and when the user is done, your activity resumes.

startActivityForResult()
Sometimes you want to get a result back from an activity when it ends. For example, you might start
an activity that lets the user pick a person in a list of contacts. When it ends, it returns the person that
was selected. To do this, you call the startActivityForResult(Intent, int) method, where the integer
parameter identifies the call.

This identifier is meant to distinguish between multiple calls to startActivityForResult(Intent, int) from
the same activity. It's not a global identifier and is not at risk of conflicting with other apps or activities.
The result comes back through your onActivityResult(int, int, Intent) method.

When a child activity exits, it can call setResult(int) to return data to its parent. The child activity must
supply a result code, which can be the standard results RESULT_CANCELED, RESULT_OK, or any custom
values starting at RESULT_FIRST_USER.

In addition, the child activity can optionally return an Intent object containing any additional data it
wants. The parent activity uses the onActivityResult(int, int, Intent) method, along with the integer
identifier the parent activity originally supplied, to receive the information.

If a child activity fails for any reason, such as crashing, the parent activity receives a result with the
code RESULT_CANCELED.

https://developer.android.com/reference/android/app/Activity#startActivityForResult(android.content.Intent,%20int)
https://developer.android.com/reference/android/app/Activity#onActivityResult(int,%20int,%20android.content.Intent)

Java(Code)

public class MyActivity extends Activity {
 // ...

 static final int PICK_CONTACT_REQUEST = 0;

 public boolean onKeyDown(int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_DPAD_CENTER) {
 // When the user center presses, let them pick a contact.
 startActivityForResult(
 new Intent(Intent.ACTION_PICK,
 new Uri("content://contacts")),
 PICK_CONTACT_REQUEST);
 return true;
 }
 return false;
 }

 protected void onActivityResult(int requestCode, int resultCode,
 Intent data) {
 if (requestCode == PICK_CONTACT_REQUEST) {
 if (resultCode == RESULT_OK) {
 // A contact was picked. Display it to the user.
 startActivity(new Intent(Intent.ACTION_VIEW, data));
 }
 }
 }
 }

Coordinating activities
When one activity starts another, they both experience lifecycle transitions. The first activity stops
operating and enters the Paused or Stopped state, while the other activity is created. In case these
activities share data saved to disc or elsewhere, it's important to understand that the first activity is
not completely stopped before the second one is created. Rather, the process of starting the second
one overlaps with the process of stopping the first one.

The order of lifecycle callbacks is well defined, particularly when the two activities are in the same
process—in other words, the same app—and one is starting the other. Here's the order of operations
that occur when Activity A starts Activity B:

1. Activity A's onPause() method executes.
2. Activity B's onCreate(), onStart(), and onResume() methods execute in sequence. Activity B

now has user focus.
3. If Activity A is no longer visible on screen, its onStop() method executes.

This sequence of lifecycle callbacks lets you manage the transition of information from one activity to
another.

https://developer.android.com/reference/android/app/Activity#onPause()
https://developer.android.com/reference/android/app/Activity#onCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity#onStart()
https://developer.android.com/reference/android/app/Activity#onResume()
https://developer.android.com/reference/android/app/Activity#onStop()

