
Debugging and DDMS
Debugging
The Android SDK provides most of the tools that you need to debug your applications. You need a JDWP-
compliant debugger if you want to be able to do things such as step through code, view variable values,
and pause execution of an application. If you are using Eclipse, a JDWP-compliant debugger is already
included and there is no setup required. If you are using another IDE, you can use the debugger that
comes with it and attach the debugger to a special port so it can communicate with the application VMs
on your devices. The main components that comprise a typical Android debugging environment are:

adb

adb acts as a middleman between a device and your development system. It provides various
device management capabilities, including moving and syncing files to the emulator, running a
UNIX shell on the device or emulator, and providing a general means to communicate with
connected emulators and devices.

Dalvik Debug Monitor Server

DDMS is a graphical program that communicates with your devices through adb. DDMS can
capture screenshots, gather thread and stack information, spoof incoming calls and SMS messages,
and has many other features.

Device or Android Virtual Device

Your application must run in a device or in an AVD so that it can be debugged. An adb device
daemon runs on the device or emulator and provides a means for the adb host daemon to
communicate with the device or emulator.

JDWP debugger

The Dalvik VM (Virtual Machine) supports the JDWP protocol to allow debuggers to attach to a VM. Each
application runs in a VM and exposes a unique port that you can attach a debugger to via DDMS. If you
want to debug multiple applications, attaching to each port might become tedious, so DDMS provides a
port forwarding feature that can forward a specific VM's debugging port to port 8700. You can switch
freely from application to application by highlighting it in the Devices tab of DDMS. DDMS forwards the
appropriate port to port 8700. Most modern Java IDEs include a JDWP debugger, or you can use a
command line debugger such as jdb.

Debugging Environment

Figure 1 shows how the various debugging tools work together in a typical debugging environment.

https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/adb.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/ddms.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/device.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/devices/index.html
http://download.oracle.com/javase/6/docs/technotes/tools/

Additional Debugging Tools

In addition to the main debugging tools, the Android SDK provides additional tools to help you debug and
profile your applications:
✓ Heirarchy Viewer and layoutopt

Graphical programs that let you debug and profile user interfaces.
✓ Traceview

A graphical viewer that displays trace file data for method calls and times saved by your application,
which can help you profile the performance of your application.

✓ Dev Tools Android application

The Dev Tools application included in the emulator system image exposes several setÝngs that
provide useful information such as CPU usage and frame rate. You can also transfer the application
to a hardware device.

Debugging Tips
While debugging, keep these helpful tips in mind to help you figure out common problems with your
applications:
✓ Dump the stack trace

To obtain a stack dump from emulator, you can log in with adb shell, use ps to find the process you
want, and then kill -3. The stack trace appears in the log file.

✓ Display useful info on the emulator screen

The device can display useful information such as CPU usage or highlights around redrawn areas.
Turn these features on and off in the developer setÝngs window as described in Debugging with
the Dev Tools App.

✓ Get application and system state information from the emulator

You can access dumpstate information from the adb shell commands. See dumpsys and
dumpstate on the adb topic page.

✓ Get wireless connectivity information

You can get information about wireless connectivity using DDMS. From the Device menu,
select Dump radio state.

✓ Log trace data

You can log method calls and other tracing data in an activity by calling startMethodTracing().
See Profiling with Traceview and dmtracedump for details.

✓ Log radio data

By default, radio information is not logged to the system (it is a lot of data). However, you can
enable radio logging using the following commands:

adb shell
logcat -b radio

✓ Capture screenshots

The Dalvik Debug Monitor Server (DDMS) can capture screenshots from the emulator.
Select Device > Screen capture.

✓ Use debugging helper classes

Android provides debug helper classes such as util.Log and Debug for your convenience.
✓ Garbage collection

The debugger and garbage collector are currently loosely integrated. The VM guarantees that any
object the debugger is aware of is not garbage collected until after the debugger disconnects. This
can result in a buildup of objects over time while the debugger is connected. For example, if the
debugger sees a running thread, the associated Thread object is not garbage collected even after
the thread terminates.

https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-ui.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-tracing.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-devtools.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-devtools.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-devtools.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/adb.html#dumpsys
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/adb.html#dumpsys
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/os/Debug.html#startMethodTracing(java.lang.String)
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-tracing.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/util/Log.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/os/Debug.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/java/lang/Thread.html

DDMS

Android ships with a debugging tool called the Dalvik Debug Monitor Server (DDMS), which provides port-

forwarding services, screen capture on the device, thread and heap information on the device, logcat,

process, and radio state information, incoming call and SMS spoofing, location data spoofing, and more.

This page provides a modest discussion of DDMS features; it is not an exhaustive exploration of all the

features and capabilities.

Running DDMS

DDMS is integrated into Eclipse and is also shipped in the tools/ directory of the SDK. DDMS works with
both the emulator and a connected device. If both are connected and running simultaneously, DDMS
defaults to the emulator.

• From Eclipse: Click Window > Open Perspective > Other... > DDMS.
• From the command line: Type ddms (or ./ddms on Mac/Linux) from the tools/ directory.

How DDMS Interacts with a Debugger

On Android, every application runs in its own process, each of which runs in its own virtual machine (VM).

Each VM exposes a unique port that a debugger can attach to.

When DDMS starts, it connects to adb. When a device is connected, a VM monitoring service is created

between adb and DDMS, which notifies DDMS when a VM on the device is started or terminated. Once

a VM is running, DDMS retrieves the the VM's process ID (pid), via adb, and opens a connection to the

VM's debugger, through the adb daemon (adbd) on the device. DDMS can now talk to the VM using a

custom wire protocol.

DDMS assigns a debugging port to each VM on the device. Typically, DDMS assigns port 8600 for the first

debuggable VM, the next on 8601, and so on. When a debugger connects to one of these ports, all traffic

is forwarded to the debugger from the associated VM. You can only attach a single debugger to a single

port, but DDMS can handle multiple, attached debuggers.

By default, DDMS also listens on another debugging port, the DDMS "base port" (8700, by default). The

base port is a port forwarder, which can accept VM traffic from any debugging port and forward it to the

debugger on port 8700. This allows you to attach one debugger to port 8700, and debug all the VMs on

a device. The traffic that is forwarded is determined by the currently selected process in the DDMS

Devices view.

The following screenshot shows a typical DDMS screen in Eclipse. If you are starting DDMS from the

command line, the screen is slightly different, but much of the functionality is identical. Notice that the

highlighted process, com.android.email, that is running in the emulator has the debugging port 8700

assigned to it as well as 8606. This signifies that DDMS is currently forwarding port 8606 to the static

debugging port of 8700.

Figure 1. Screenshot of DDMS

https://stuff.mit.edu/afs/sipb/project/android/docs/tools/help/adb.html

If you are not using Eclipse and ADT, read Configuring your IDE to attach to the debugging port, for more

information on attaching your debugger.

Tip: You can set a number of DDMS preferences in File > Preferences. Preferences are saved to
$HOME/.android/ddms.cfg.

Known debugging issues with Dalvik
Debugging an application in the Dalvik VM should work the same as it does in other VMs. However, when single-
stepping out of synchronized code, the "current line" cursor may jump to the last line in the method for one step.

Using DDMS

The following sections describe how to use DDMS and the various tabs and panes that are part of the

DDMS GUI. The Eclipse version and the command line version have minor UI differences, but the same

functionality. For information on running DDMS, see the previous section in this document, Running

DDMS.

Viewing heap usage for a process

DDMS allows you to view how much heap memory a process is using. This information is useful in tracking

heap usage at a certain point of time during the execution of your application.

To view heap usage for a process:

1. In the Devices tab, select the process that you want to see the heap information for.

2. Click the Update Heap button to enable heap information for the process.

3. In the Heap tab, click Cause GC to invoke garbage collection, which enables the collection of heap

data. When the operation completes, you will see a group of object types and the memory that

has been allocated for each type. You can click Cause GC again to refresh the data.

4. Click on an object type in the list to see a bar graph that shows the number of objects allocated

for a particular memory size in bytes.

Tracking memory allocation of objects

DDMS provides a feature to track objects that are being allocated to memory and to see which classes

and threads are allocating the objects. This allows you to track, in real time, where objects are being

allocated when you perform certain actions in your application. This information is valuable for assessing

memory usage that can affect application performance.

To track memory allocation of objects:

1. In the Devices tab, select the process that you want to enable allocation tracking for.

2. In the Allocation Tracker tab, click the Start Tracking button to begin allocation tracking. At this

point, anything you do in your application will be tracked.

3. Click Get Allocations to see a list of objects that have been allocated since you clicked on the Start

Tracking button. You can click on Get Allocations again to append to the list new objects that that

have been allocated.

4. To stop tracking or to clear the data and start over, click the Stop Tracking button.

5. Click on a specific row in the list to see more detailed information such as the method and line

number of the code that allocated the object.

Working with an emulator or device's file system

DDMS provides a File Explorer tab that allows you to view, copy, and delete files on the device. This

feature is useful in examining files that are created by your application or if you want to transfer files to

and from the device.

To work with an emulator or device's file system:

1. In the Devices tab, select the emulator that you want to view the file system for.

2. To copy a file from the device, locate the file in the File Explorer and click the Pull file button.

3. To copy a file to the device, click the Push file button on the File Explorer tab.

https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-projects-cmdline.html#debuggingPort
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/ddms.html#running
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/ddms.html#running

Examining thread information

The Threads tab in DDMS shows you the currently running threads for a selected process.

1. In the Devices tab, select the process that you want to examine the threads for.

2. Click the Update Threads button.

3. In the Threads tab, you can view the thread information for the selected process.

Starting method profiling

Method profiling is a means to track certain metrics about a method, such as number of calls, execution

time, and time spent executing the method. If you want more granular control over where profiling data

is collected, use the startMethodTracing() and stopMethodTracing() methods. For more information

about generating trace logs, see Profiling and Debugging UIs.

Before you start method profiling in DDMS, be aware of the following restrictions:

• Android 1.5 devices are not supported.

• Android 2.1 and earlier devices must have an SD card present and your application must have

permission to write to the SD card.

• Android 2.2 and later devices do not need an SD card. The trace log files are streamed directly to

your development machine.

To start method profiling:

1. On the Devices tab, select the process that you want to enable method profiling for.

2. Click the Start Method Profiling button.

3. Interact with your application to start the methods that you want to profile.

4. Click the Stop Method Profiling button. DDMS stops profiling your application and

opens Traceview with the method profiling information that was collected between the time you

clicked on Start Method Profiling and Stop Method Profiling.

Using the Network Traffic tool
In Android 4.0, the DDMS (Dalvik Debug Monitor Server) includes a Detailed Network Usage tab that

makes it possible to track when your application is making network requests. Using this tool, you can

monitor how and when your app transfers data and optimize the underlying code appropriately. You can

also distinguish between different traffic types by applying a “tag” to network sockets before use.
These tags are shown in a stack area chart in DDMS, as shown in figure 2:

Figure 2. Network Usage tab.

https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/os/Debug.html#startMethodTracing()
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/os/Debug.html#stopMethodTracing()
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-tracing.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-ui.html

By monitoring the frequency of your data transfers, and the amount of data transferred during each

connection, you can identify areas of your application that can be made more battery-efficient. Generally,

you should look for short spikes that can be delayed, or that should cause a later transfer to be pre-

empted.

To better identify the cause of transfer spikes, the TrafficStats API allows you to tag the data transfers

occurring within a thread using setThreadStatsTag(), followed by manually tagging (and untagging)

individual sockets using tagSocket() and untagSocket(). For example:

TrafficStats.setThreadStatsTag(0xF00D);

TrafficStats.tagSocket(outputSocket);

// Transfer data using socket

TrafficStats.untagSocket(outputSocket);

Alternatively, the Apache HttpClient and URLConnection APIs included in the platform automatically tag

sockets internally based on the active tag (as identified by getThreadStatsTag()). These APIs correctly

tag/untag sockets when recycled through keep-alive pools. In the following example,

setThreadStatsTag() sets the active tag to be 0xF00D. There can only be one active tag per thread. That

is the value that will be returned by getThreadStatsTag() and thus used by HttpClient to tag sockets.

The finally statement invokes clearThreadStatsTag() to clear the tag.

TrafficStats.setThreadStatsTag(0xF00D);

 try {

 // Make network request using HttpClient.execute()

 } finally {

 TrafficStats.clearThreadStatsTag();

}

Socket tagging is supported in Android 4.0, but real-time stats will only be displayed on devices running

Android 4.0.3 or higher.

Using LogCat

LogCat is integrated into DDMS, and outputs the messages that you print out using the Log class along

with other system messages such as stack traces when exceptions are thrown. View the Reading and

Writing Log Messages. topic for more information on how to log messages to the LogCat.

When you have set up your logging, you can use the LogCat feature of DDMS to filter certain messages

with the following buttons:

• Verbose

• Debug

• Info

• Warn

• Error

You can also setup your own custom filter to specify more details such as filtering messages with the log

tags or with the process id that generated the log message. The add filter, edit filter, and delete filter

buttons let you manage your custom filters.

Emulating phone operations and location

The Emulator control tab lets you simulate a phone's voice and data network status. This is useful when

you want to test your application's robustness in differing network environments.

Changing network state, speed, and latency

The Telephony Status section of the Emulator controls tab lets you change different aspects of the

phone's networks status, speed and latency. The following options are available to you and are effective

immediately after you set them:

https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#setThreadStatsTag(int)
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#tagSocket(java.net.Socket)
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#untagSocket(java.net.Socket)
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/org/apache/http/client/HttpClient.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/java/net/URLConnection.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#getThreadStatsTag()
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#setThreadStatsTag(int)
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#getThreadStatsTag()
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/org/apache/http/client/HttpClient.html
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/net/TrafficStats.html#clearThreadStatsTag()
https://stuff.mit.edu/afs/sipb/project/android/docs/reference/android/util/Log.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-log.html
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/debugging/debugging-log.html

• Voice - unregistered, home, roaming, searching, denied

• Data - unregistered, home, roaming, searching, denied

• Speed - Full, GSM, HSCSD, GPRS, EDGE, UMTS, HSDPA

• Latency - GPRS, EDGE, UMTS

Spoofing calls or SMS text messages

The Telephony Actions section of the Emulator controls tab lets you spoof calls and messages. This is

useful when you want to to test your application's robustness in responding to incoming calls and

messages that are sent to the phone. The following actions are available to you:

• Voice - Enter a number in the Incoming number field and click Call to send a simulated call to the

emulator or phone. Click the Hang up button to terminate the call.

• SMS - Enter a number in the Incoming number field and a message in the Message: field and click

the Send button to send the message.

Setting the location of the phone

If your application depends on the location of the phone, you can have DDMS send your device or AVD a

mock location. This is useful if you want to test different aspects of your application's location specific

features without physically moving. The following geolocation data types are available to you:

• Manual - set the location by manually specifying decimal or sexagesimal longitude and latitude

values.

• GPX - GPS eXchange file

• KML - Keyhole Markup Language file

For more information about providing mock location data, see Location Strategies.

https://stuff.mit.edu/afs/sipb/project/android/docs/guide/topics/location/strategies.html#MockData

