
Lecture 3

Note: Some slides and/or pictures are adapted from Lecture slides / Books of
• Dr Zafar Alvi.
• Text Book - Aritificial Intelligence Illuminated by Ben Coppin, Narosa Publishers.
• Ref Books  

•Artificial Intelligence- Structures & Strategies for Complex Problem Solving by George F. Luger, 4th edition, 
Pearson Education.
• Artificial Intelligence A Modern Approach by Stuart Russell & Peter Norvig.
•Artificial Intelligence, Third Edition by Patrick Henry Winston



Outline

• Problems and their representation

• Goal Driven VS Data Driven

• Properties of search Methods

• Tree search algorithm

– Depth First algorithm

– Breadth First algorithm

– Iterative Deepening algorithm



Problems and their Representations

• Three men and three lions are on one side of a 
river, with a boat. They all want to get to the 
other side of the river. The boat can only hold 
one or two at a time. At no time should there 
be more lions than men on either side of the 
river, as this would probably result in the men 
being eaten.

• Representation could be 3, 3, 1      0, 0, 0



Problems and their Representations

• Traveling Salesman problem (NP complete)



Problems and their Representations

• Traversing a Maze



Data Driven or Goal Driven Search

• Data-driven search starts from an initial state 
and uses actions that are allowed to move 
forward until a goal is reached. This approach 
is also known as forward chaining.

• Search can start at the goal and work back 
toward a start state, by seeing what moves 
could have led to the goal state. This is goal-
driven search, also known as backward 
chaining.



Properties of Search Methods

• Complexity

• Completeness

• Optimality

• Admissibility

• Irrevocability



Complexity

• it is useful to describe how efficient that 
method is, over time and space. 

• The time complexity of a method is related to 
the length of time that the method would take 
to find a goal state. 

• The space complexity is related to the amount 
of memory that the method needs to use.



Completeness

• A search method is described as being 
complete if it is guaranteed to find a goal state 
if one exists.

• A method that is not complete has the 
disadvantage that it cannot necessarily be 
believed if it reports that no solution exists.



Optimality

• A search method is optimal if it is guaranteed to 
find the best solution that exists. 

• In other words, it will find the path to a goal state 
that involves taking the least number of steps.

• This does not mean that the search method itself 
is efficient—it might take a great deal of time for 
an optimal search method to identify the optimal 
solution—but once it has found the solution, it is 
guaranteed to be the best one.



Admissibility

• In some cases, the word optimal is used to 
describe an algorithm that finds a solution in 
the quickest possible time, in which case the 
concept of admissibility is used in place of 
optimality.

• An algorithm is then defined as admissible if it 
is guaranteed to find the best solution.



Irrevocability

• Methods that do not use backtracking, and 
which therefore examine just one path, are 
described as irrevocable.

• Irrevocable search methods will often find 
suboptimal solutions to problems because 
they tend to be fooled by local optima—
solutions that look good locally but are less 
favorable when compared with other 
solutions elsewhere in the search space.



Tree search algorithms

• Basic idea:
– offline, simulated exploration of state space by generating 

successors of already-explored 



Tree search example



Tree search example



Tree search example



Uninformed search strategies

• Uninformed search strategies use only the 
information available in the problem 
definition

– Depth-first search

– Breadth-first search

– Iterative deepening search

– etc
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Depth-first search
Function depth ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)

{
if is_goal (state)

then return SUCCESS
else add_to_front_of_queue (successors (state));

if queue == []
then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}
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Breadth-first search

• Expand shallowest unexpanded node

• Implementation:

– fringe is a FIFO queue, i.e., new successors go at 
end

–



Breadth-first search
Function breadth ()
{

queue = []; // initialize an empty queue
state = root_node; // initialize the start state
while (true)
{

if is_goal (state)
then return SUCCESS
else add_to_back_of_queue (successors (state));
if queue == []
then report FAILURE;
state = queue [0]; // state = first item in queue
remove_first_item_from (queue);

}
}





Iterative deepening search l =0



Iterative deepening search l =1



Iterative deepening search l =2



Iterative deepening search l =3



Iterative deepening search
• Number of nodes generated in a depth-limited search to depth d with 

branching factor b: 
NDLS = b0 + b1 + b2 + … + bd-2 + bd-1 + bd

• GP

• Number of nodes generated in an iterative deepening search to depth d
with branching factor b: 

NIDS = (d+1)b0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

• For b = 10, d = 5,
– NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
–
– NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456
–

• Overhead = (123,456 - 111,111)/111,111 = 11%


