
Game Trees

Note: Some slides and/or pictures are adapted from Lecture slides / Books of
• Dr Zafar Alvi.
• Text Book - Aritificial Intelligence Illuminated by Ben Coppin, Narosa Publishers.
• Ref Books

•Artificial Intelligence- Structures & Strategies for Complex Problem Solving by George F. Luger, 4th edition,
Pearson Education.
• Artificial Intelligence A Modern Approach by Stuart Russell & Peter Norvig.
•Artificial Intelligence, Third Edition by Patrick Henry Winston

Game Trees

• Many two-player games can be efficiently
represented using trees, called game trees.

• A game tree is an instance of a tree in which
the root node represents the state before any
moves have been made, the nodes in the tree
represent possible states of the game (or
positions), and arcs in the tree represent
moves.

Game Trees

• It is usual to represent the two players’ moves on
alternate levels of the game tree, so that all edges
leading from the root node to the first level
represent possible moves for the first player, and
edges from the first level to the second represent
moves for the second player, and so on.

• Leaf nodes in the tree represent final states,
where the game has been won, lost, or drawn.

Game Trees

• One approach to playing a game might be for the
computer to use a tree search algorithm such as
depth-first or breadth-first search, looking for a
goal state (i.e., a final state of the game where
the computer has won).

• Unfortunately, this approach does not work
because there is another intelligence involved in
the game.

• Consider the partial game tree shown in next
slide of tic-tac-toe

Game Trees

• The branching factor of the root node is 9
because there are nine squares in which the
computer can place its first naught. The
branching factor of the next level of the tree is 8,
then 7 for the next level, and so on.

• For a computer to use this tree to make decisions
about moves in a game of tic-tac-toe, it needs to
use an evaluation function, which enables it to
decide whether a given position in the game is
good or bad.

Evaluation Functions
• Evaluation functions (also known as static evaluators because

they are used to evaluate a game from just one static
position) are vital to most game-playing computer programs.

• This is because it is almost never possible to search the game
tree fully due to its size.

• Hence, a search will rarely reach a leaf node in the tree at
which the game is either won, lost, or drawn, which means
that the software needs to be able to cut off search and
evaluate the position of the board at that node.

• Hence, an evaluation function is used to examine a particular
position of the board and estimate how well the computer is
doing, or how likely it is to win from this position.

Game Trees

• One question is how the evaluation function
will compare two positions.

Minimax

• When evaluating game trees, it is usual to
assume that the computer is attempting to
maximize some score that the opponent is trying
to minimize.

• Normally we would consider this score to be the
result of the evaluation function for a given
position, so we would usually have a high positive
score mean a good position for the computer, a
score of 0 mean a neutral position, and a high
negative score mean a good position for the
opponent.

Minimax

• The Minimax algorithm is used to choose good
moves. It is assumed that a suitable static
evaluation function is available, which is able
to give an overall score to a given position.

• In applying Minimax, the static evaluator will
only be used on leaf nodes, and the values of
the leaf nodes will be filtered up through the
tree, to pick out the best path that the
computer can achieve.

Bounded Lookahead
• Minimax, as we have defined it, is a very simple

algorithm and is unsuitable for use in many games,
such as chess where the game tree is extremely large.

• The problem is that in order to run Minimax, the entire
game tree must be examined, and for games such as
chess, this is not possible due to the potential depth of
the tree and the large branching factor.

• In such cases, bounded lookahead is very commonly
used and can be combined with Minimax.

• The idea of bounded lookahead is that the search tree
is only examined to a particular depth.

• All nodes at this depth are considered to be leaf nodes
and are evaluated using a static evaluation function.

Alpha–Beta Pruning

• Bounded lookahead can help to make smaller the part
of the game tree that needs to be examined.

• In some cases, it is extremely useful to be able to prune
sections of the game tree.

• Using alpha–beta pruning, it is possible to remove
sections of the game tree that are not worth
examining, to make searching for a good move more
efficient.

• The principle behind alpha–beta pruning is that if a
move is determined to be worse than another move
that has already been examined, then further
examining the possible consequences of that worse
move is pointless.

Consider the partial game tree

Alpha–Beta Pruning

• This very simple game tree has five leaf nodes.
• The top arc represents a choice by the computer, and

so is a maximizing level (in other words, the top node
is a max node).

• After calculating the static evaluation function for the
first four leaf nodes, it becomes unnecessary to
evaluate the score for the fifth.

• The reason for this can be understood as follows: In
choosing the left-hand path from the root node, it is
possible to achieve a score of 3 or 5.

• Because this level is a minimizing level, the opponent
can be expected to choose the move that leads to a
score of 3.

Alpha–Beta Pruning

• So, by choosing the left-hand arc from the root node, the
computer can achieve a score of 3.

• By choosing the right-hand arc, the computer can achieve a
score of 7 or 1, or a mystery value. Because the opponent is
aiming to minimize the score, he or she could choose the
position with a score of 1, which is worse than the value
the computer could achieve by choosing the left-hand path.

• So, the value of the rightmost leaf node doesn’t matter—
the computer must not choose the right-hand arc because
it definitely leads to a score of at best 1 (assuming the
opponent does not irrationally choose the 7 option).

Example

Find

• Some Studies in Machine Learning Using the
Game of Checkers, Arthur Samuel

