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Game Trees

• Many two-player games can be efficiently 
represented using trees, called game trees. 

• A game tree is an instance of a tree in which 
the root node represents the state before any 
moves have been made, the nodes in the tree 
represent possible states of the game (or 
positions), and arcs in the tree represent 
moves.



Game Trees

• It is usual to represent the two players’ moves on 
alternate levels of the game tree, so that all edges 
leading from the root node to the first level 
represent possible moves for the first player, and 
edges from the first level to the second represent 
moves for the second player, and so on.

• Leaf nodes in the tree represent final states, 
where the game has been won, lost, or drawn.



Game Trees

• One approach to playing a game might be for the 
computer to use a tree search algorithm such as 
depth-first or breadth-first search, looking for a 
goal state (i.e., a final state of the game where 
the computer has won).

• Unfortunately, this approach does not work 
because there is another intelligence involved in 
the game.

• Consider the partial game tree shown in next 
slide of   tic-tac-toe





Game Trees

• The branching factor of the root node is 9 
because there are nine squares in which the 
computer can place its first naught. The 
branching factor of the next level of the tree is 8, 
then 7 for the next level, and so on.

• For a computer to use this tree to make decisions 
about moves in a game of tic-tac-toe, it needs to 
use an evaluation function, which enables it to 
decide whether a given position in the game is 
good or bad.



Evaluation Functions
• Evaluation functions (also known as static evaluators because 

they are used to evaluate a game from just one static 
position) are vital to most game-playing computer programs.

• This is because it is almost never possible to search the game 
tree fully due to its size. 

• Hence, a search will rarely reach a leaf node in the tree at 
which the game is either won, lost, or drawn, which means 
that the software needs to be able to cut off search and 
evaluate the position of the board at that node.

• Hence, an evaluation function is used to examine a particular 
position of the board and estimate how well the computer is 
doing, or how likely it is to win from this position.



Game Trees

• One question is how the evaluation function 
will compare two positions.



Minimax

• When evaluating game trees, it is usual to 
assume that the computer is attempting to 
maximize some score that the opponent is trying 
to minimize.

• Normally we would consider this score to be the 
result of the evaluation function for a given 
position, so we would usually have a high positive 
score mean a good position for the computer, a 
score of 0 mean a neutral position, and a high 
negative score mean a good position for the 
opponent.



Minimax

• The Minimax algorithm is used to choose good 
moves. It is assumed that a suitable static 
evaluation function is available, which is able 
to give an overall score to a given position.

• In applying Minimax, the static evaluator will 
only be used on leaf nodes, and the values of 
the leaf nodes will be filtered up through the 
tree, to pick out the best path that the 
computer can achieve.





Bounded Lookahead
• Minimax, as we have defined it, is a very simple 

algorithm and is unsuitable for use in many games, 
such as chess where the game tree is extremely large. 

• The problem is that in order to run Minimax, the entire 
game tree must be examined, and for games such as 
chess, this is not possible due to the potential depth of 
the tree and the large branching factor. 

• In such cases, bounded lookahead is very commonly 
used and can be combined with Minimax. 

• The idea of bounded lookahead is that the search tree 
is only examined to a particular depth. 

• All nodes at this depth are considered to be leaf nodes 
and are evaluated using a static evaluation function.



Alpha–Beta Pruning

• Bounded lookahead can help to make smaller the part 
of the game tree that needs to be examined. 

• In some cases, it is extremely useful to be able to prune 
sections of the game tree. 

• Using alpha–beta pruning, it is possible to remove 
sections of the game tree that are not worth 
examining, to make searching for a good move more 
efficient. 

• The principle behind alpha–beta pruning is that if a 
move is determined to be worse than another move 
that has already been examined, then further 
examining the possible consequences of that worse 
move is pointless.



Consider the partial game tree



Alpha–Beta Pruning

• This very simple game tree has five leaf nodes. 
• The top arc represents a choice by the computer, and 

so is a maximizing level (in other words, the top node 
is a max node).

• After calculating the static evaluation function for the 
first four leaf nodes, it becomes unnecessary to 
evaluate the score for the fifth. 

• The reason for this can be understood as follows: In 
choosing the left-hand path from the root node, it is 
possible to achieve a score of 3 or 5. 

• Because this level is a minimizing level, the opponent 
can be expected to choose the move that leads to a 
score of 3. 



Alpha–Beta Pruning

• So, by choosing the left-hand arc from the root node, the 
computer can achieve a score of 3.

• By choosing the right-hand arc, the computer can achieve a 
score of 7 or 1, or a mystery value. Because the opponent is 
aiming to minimize the score, he or she could choose the 
position with a score of 1, which is worse than the value 
the computer could achieve by choosing the left-hand path. 

• So, the value of the rightmost leaf node doesn’t matter—
the computer must not choose the right-hand arc because 
it definitely leads to a score of at best 1 (assuming the 
opponent does not irrationally choose the 7 option).



Example
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