
Sorting Algorithms 
 

A Sorting Algorithm is used to rearrange a given array or list of elements 
according to a comparison operator on the elements. The comparison 
operator is used to decide the new order of elements in the respective data 
structure. 
For Example: The below list of characters is sorted in increasing order of 
their ASCII values. That is, the character with a lesser ASCII value will be 
placed first than the character with a higher ASCII value. 
 

 
 
Types of Sorting Algorithm 

1. Insertion Sort 
2. Bubble Sort  
3. Selection Sort  
4. Quick Sort  
5. Merge Sort  
6. Heap Sort  
7. Counting sort 
8. Radix Sort  
9. Shell Sort  
10. Bucket Sort    Etc.. 

 

Searching Algorithms 
Searching algorithms are essential tools in computer science used 

to locate specific items within a collection of data. These algorithms are 



designed to efficiently navigate through data structures to find the 
desired information, making them fundamental in various applications 
such as databases, web search engines, and more. 

 
Types of Searching algorithms  

1. Linear or Sequential Search 

2. Binary Search 
 
Linear Search Algorithm 
The linear search algorithm is defined as a sequential search algorithm 
that starts at one end and goes through each element of a list until the 
desired element is found; otherwise, the search continues till the end of 
the dataset. In this article, we will learn about the basics of the linear 
search algorithm, its applications, advantages, disadvantages, and more 
to provide a deep understanding of linear search. 
 

 
 

Tree Data Structure 
 
A tree data structure is a hierarchical structure that is used to represent 
and organize data in a way that is easy to navigate and search. It is a 
collection of nodes that are connected by edges and has a hierarchical 
relationship between the nodes. The topmost node of the tree is called the 
root, and the nodes below it are called the child nodes. Each node can have 



multiple child nodes, and these child nodes can also have their own child 
nodes, forming a recursive structure. 
 

Types of Tree Data Structure 

• Binary tree: In a binary tree, each node can have a maximum of two 
children linked to it. Some common types of binary trees include full 
binary trees, complete binary trees, balanced binary trees, and 
degenerate or pathological binary trees. 

• Ternary Tree: A Ternary Tree is a tree data structure in which each 
node has at most three child nodes, usually distinguished as “left”, 
“mid” and “right”. 

• N-ary Tree or Generic Tree: Generic trees are a collection of nodes 
where each node is a data structure that consists of records and a 
list of references to its children(duplicate references are not 
allowed). Unlike the linked list, each node stores the address of 
multiple nodes. 

Tree Traversal Techniques 
 

Tree Traversal techniques include various ways to visit all the nodes of 
the tree. Unlike linear data structures (Array, Linked List, Queues, Stacks, 
etc) which have only one logical way to traverse them, trees can be 
traversed in different ways. In this article, we will discuss about all the tree 
traversal techniques along with their uses. 
 

 

https://www.geeksforgeeks.org/types-of-trees-in-data-structures/
https://www.geeksforgeeks.org/ternary-tree/
https://www.geeksforgeeks.org/generic-treesn-array-trees/


There are different types of tree traversals, such as pre-order, in-order, 
post-order, and level-order. 

In-Order Traversal 

In-order traversal visits the node in the order: Left -> Root -> Right 

 
 

 
 

Preorder traversal 
Preorder traversal visits the node in the order: Root -> Left -> Right 

 

 
Post-Order Traversal 

Postorder traversal visits the node in the order: Left -> Right -> Root 

 



Level Order Traversal 

Level Order Traversal visits all nodes present in the same level 
completely before visiting the next level. 

 
 

Recursion 

Recursion is the process in which a function calls itself again and again. It entails decomposing a 

challenging issue into more manageable issues and then solving each one again. There must be a 

terminating condition to stop such recursive calls. Recursion may also be called the alternative to 

iteration. Recursion provides us with an elegant way to solve complex problems, by breaking them 

down into smaller problems and with fewer lines of code than iteration. 

 

Recursive Function 

A recursive function is a function that calls itself one or more times within its body. A recursive 

function solves a particular problem by calling a copy of itself and solving smaller subproblems of the 

original problems. Many more recursive calls can be generated as and when required. It is necessary 

to have a terminating condition or a base case in recursion, otherwise, these calls may go endlessly 

leading to an infinite loop of recursive calls and call stack overflow. 



The recursive function uses the LIFO (LAST IN FIRST OUT) structure just like the stack data structure. 

A recursion tree is a diagram of the function calls connected by pointed (up or down) arrows to 

depict the order in which the calls were made. 

Syntax to Declare a Recursive Function 

recursionfunction() 

{  

recursionfunction(); //calling self function  

} 

 

 

https://www.scholarhat.com/tutorial/datastructures/stack-data-structure-operations-implementation

