Artificial Intelligence & Machine Learning

(Sir.Rameez Raja)

Intelligence

Moravec's paradox: The most difficult things to teach a computer are the ones that a two-year old has already learned – talking, listening, seeing, smelling, walking, grasping, memory and recall, thinking.

Intelligence What is it?

Adult humans have uniquely human attributes – metaphor, poetry, satire, sarcasm.

Intelligence What is it?

Birds can fly through very small holes at full-speed while fighting each other.

Intelligence What is it?

In complete darkness, bats can locate, identify and catch their *flying* prey by sending, receiving and analysing sound waves.

The Brain

The ability of biological brains to sense, perceive, analyse and recognise patterns can only be described as stunning.

- They also have the ability to learn from new examples with or without being taught.
- Mankind's understanding of biological brains and how they operate exactly is embarrassingly limited.

The Brain

- ▶ We are clueless regarding the most fundamental questions.
 - What is intelligence?
 - Are you intelligent if you can't make a mistake?
 - Where in our brains does intelligence lie?
 - What is our brain?
 - Are our brains just computational devices or do they do something more?
 - What is consciousness?

The Brain

The average human brain has about 86 billion neurons (or nerve cells) and many more neuroglia (or glial cells) which serve to support and protect the neurons [and perhaps even assist in their functionality]. Each neuron may be connected to up to 10,000 other neurons, passing signals to each other via as many as 1,000 trillion synaptic connections, equivalent by some estimates to a computer with a 1 trillion bit per second processor. Estimates of the human brain's memory capacity vary wildly from 1 to 1,000 terabytes (for comparison, the 19 million volumes in the US Library of Congress represents about 10 terabytes of data).

Source: https://human-memory.net/brain-neurons-synapses/

- Claims about the brain are vague.
- We know something about the brain, but we do not know most of the crucial functioning.

So what is this course about?

- Modelling what we do not understand seems foolish.
- However, there do exist numerous practical techniques that give machines the illusion of being intelligent.
- This is the domain of artificial intelligence, pattern recognition, machine learning and deep learning.

So what is this course about?

- Instead of attempting to mimic the complex workings of a biological brain, this course
 - aims at explaining mathematically well-founded techniques for analysing patterns and learning from them, and is therefore
 - a mathematically involved introduction into the field of pattern recognition and machine learning.
- It will prepare you for further study/research in machine learning, computer vision, natural language processing and others areas attempting to solve AI type problems.

Prerequisites

- The course is designed to be self-contained.
- Required mathematical details will be covered in the lectures.
- However, this is a math-heavy course. Students are encouraged¹ to brush up on their knowledge of
 - Probability (Bernoulli, Binomial, Gaussian, Discrete, Continuous)
 - Calculus (Differentiation, Partial derivatives, Chain rule)
 - Linear Algebra (Vectors, Matrices, Dot-product, Orthogonality, Eigenvectors, SVD)
- ► This is also a *code-heavy* course. Be ready to become good at coding.

¹ordered

Programming Environment

We will be using

- Python
- ► PyTorch
- ► Google Colaboratory
- Jupyter notebooks

Machine Learning vs. Artificial Intelligence

Al: software that solves problems by itself.

ML: algorithms and models that *learn* from processed data.

Introduction

- Machine Learning is concerned with automatic discovery of regularities in data.
- Regularity implies order.
- Learning implies exploiting order to make predictions.

Machine Learning

Supervised Learning

- ► Classification: Assign x to *discrete* categories.
 - Examples: Digit recognition, face recognition, etc...
- Regression: Find *continuous* values for x.
 - Examples: Price prediction, profit prediction.

Unsupervised Learning

- Clustering: Discover groups of similar examples.
- ▶ Density Estimation: Determine probability distribution of data.
- Dimensionality Reduction: Map data to a lower dimensional space.

Reinforcement Learning

Find actions that maximise a reward within an environment.

Figure: Based on the current state of the game (environment), each action of the player changes the state and yields a reward – points or death. The player learns to reinforce taking actions that lead to positive reward and not taking actions that lead to negative reward. Source: https://www.freecodecamp.org/news/a-brief-introduction-to-reinforcement-learning-7799af5840db/

Applications of Machine Learning

https://doi.org/10.1145/3234150