
 

 

Solution of Past Paper 

Artificial Intelligence 

DC-324 

Q.1 Write short notes on the following: (6 x 5 = 30 marks) 

Question # 01 

Define Inference Techniques. (5 marks) 

Inference Techniques refer to the methods or strategies used to draw conclusions 

from data, knowledge bases, or premises in various fields, especially in artificial 

intelligence (AI) and logic. These techniques are crucial for enabling systems to 

make decisions, solve problems, or predict outcomes based on the given 

information. 

Key Types of Inference Techniques include: 

1. Deductive Inference: This technique involves reasoning from general 

premises to specific conclusions. If the premises are true, the conclusion 

must be true. It's commonly used in formal logic and mathematics. 

2. Inductive Inference: Inductive reasoning involves making generalized 

conclusions based on specific instances or observations. While the 

conclusions may be probable, they are not guaranteed to be true. 

3. Abductive Inference: This technique is used to form the best explanation 

from incomplete or ambiguous data. It’s often used in diagnostic 

applications, where the goal is to find the most likely cause of a given set 

of symptoms. 

4. Probabilistic Inference: This method involves calculating the likelihood 

of various outcomes based on known probabilities. It’s widely used in 

statistical models and machine learning. 

Question # 02 

What is Heuristics? How to use it in problem-solving? (5 marks) 



 

 

Heuristics are problem-solving strategies or approaches that use practical 

methods or shortcuts to produce solutions that may not be perfect but are 

sufficient for reaching an immediate goal. They are often used when facing 

complex problems where finding an optimal solution is impractical or time-

consuming. Heuristics rely on experience, intuition, and common sense to 

simplify decision-making processes. 

Using Heuristics in Problem-Solving: 

1. Identify the Problem: 

o Clearly define the problem you are trying to solve. Understanding 

the problem's nature is the first step in applying heuristics. 

2. Use Rule of Thumb: 

o Apply a general rule or a common strategy that is known to produce 

good results in similar situations. For example, in a large search 

problem, you might prioritize areas that have historically yielded the 

best results. 

3. Break Down the Problem: 

o Simplify the problem by breaking it into smaller, more manageable 

parts. Address each part separately, using heuristic methods such as 

trial and error or pattern recognition. 

4. Look for Analogies: 

o Find similarities between the current problem and past problems. 

Applying solutions that worked in similar situations can be a useful 

heuristic approach. 

5. Prioritize and Focus: 

o Focus on the most critical aspects of the problem that will have the 

greatest impact on the solution. This involves recognizing which 

parts of the problem can be ignored or approximated. 

Question # 03 

Describe different categories of Expert Systems. Explain only one 

in detail. (5 marks) 

Expert systems are AI programs that mimic the decision-making abilities of a 

human expert. They are categorized into: 

• Rule-based systems: Use if-then rules to derive conclusions. 

• Frame-based systems: Use structured frameworks to represent 

knowledge. 

• Fuzzy logic systems: Handle uncertain or imprecise information. 

• Neural network-based systems: Learn from data to make decisions. 



 

 

Detailed Explanation (Rule-based systems): 

• Rule-based systems rely on a set of if-then rules that represent knowledge 

in a specific domain. These rules are used to infer conclusions based on the 

input data. The inference engine applies these rules to the known facts to 

derive new information or decisions. 

 

Question # 04 

What are Rational Agents? Describe briefly. (5 marks) 

A rational agent is an entity that acts to achieve the best possible outcome or, 

when there is uncertainty, the best expected outcome based on the information it 

possesses. It perceives its environment through sensors and acts upon that 

environment using actuators. Rationality is defined in terms of the agent's 

performance measure, which evaluates the success of its actions in fulfilling its 

goals. 

Key aspects of a rational agent include: 

1. Perception: Gathers information from the environment. 

2. Performance Measure: A criterion for success. 

3. Actions: Acts to maximize the performance measure. 

4. Rationality: The agent selects actions that maximize its performance 

based on the available knowledge. 

 



 

 

Question # 05 

What is a Bidirectional Search? How is it useful? (5 marks) 

Bidirectional Search is a graph search algorithm that simultaneously searches 

from both the initial state (start node) and the goal state (goal node) with the aim 

of meeting in the middle. This approach reduces the search space, making it more 

efficient than traditional unidirectional search methods, particularly in large or 

complex graphs. 

How It Works: 

• Forward Search: Starts from the initial state and explores the graph 

toward the goal state. 

• Backward Search: Starts from the goal state and explores the graph 

toward the initial state. 

• Meeting Point: The search stops when the two searches meet at a common 

node, indicating that a path from the start to the goal has been found. 

Benefits: 

1. Reduced Search Space: Instead of searching through all nodes from start 

to goal, bidirectional search only needs to explore half the nodes from both 

directions, reducing the total number of nodes explored. 

2. Faster Execution: Since it reduces the search space, the algorithm often 

finds the shortest path faster than unidirectional search methods, especially 

in large graphs. 

3. Memory Efficiency: By limiting the number of nodes explored, 

bidirectional search can be more memory efficient, particularly when 

combined with strategies like BFS (Breadth-First Search) in each direction. 

Example Use Case: 

Bidirectional search is particularly useful in scenarios such as pathfinding in maps 

(e.g., finding the shortest route between two cities) or solving puzzles like the 15-

puzzle, where the start and goal states are well-defined. 

Question # 06 

What is Iterative Deepening Depth-First Search? How is it better 

than Depth-Limited Search? (5 marks) 



 

 

Iterative Deepening Depth-First Search (IDDFS) is a search algorithm that 

combines the advantages of both Depth-First Search (DFS) and Breadth-First 

Search (BFS). It repeatedly applies a Depth-Limited Search (DLS) with 

increasing depth limits, starting from zero and incrementing by one at each 

iteration, until the solution is found or a specified depth limit is reached. 

How IDDFS works: 

1. Initial Depth-Limited Search: Start with a depth limit of 0 and perform a 

DFS. 

2. Increment Depth: If the solution is not found, increase the depth limit by 

1 and perform another DFS, but with the new depth limit. 

3. Repeat: Continue this process until the solution is found. 

Advantages over Depth-Limited Search (DLS): 

1. Completeness: IDDFS is complete, meaning it is guaranteed to find a 

solution if one exists. DLS is not complete because it might miss solutions 

if they are deeper than the depth limit. 

2. Optimality: IDDFS finds the shortest path to a solution, just like BFS, 

because it explores all nodes at a given depth before going deeper. DLS, 

on the other hand, might find a solution that is not optimal if the depth limit 

is set too high. 

3. Memory Efficiency: IDDFS uses less memory compared to BFS. Since 

each iteration of DFS in IDDFS only stores nodes up to the current depth 

limit, it requires less memory, similar to DFS. 

4. Combines Benefits: IDDFS combines the depth-first's low memory usage 

with the breadth-first's completeness and optimality, making it an effective 

algorithm for many search problems. 

Q.2 Answer the following questions: (3 x 10 = 30 marks) 

Question # 01 

What is a Neural Network? Explain with an example. (10 marks) 

A neural network is a computational model inspired by the way biological neural 

networks in the human brain process information. It is composed of a large 

number of highly interconnected processing elements known as neurons, which 

work together to solve specific problems. Neural networks are particularly useful 

for tasks that involve pattern recognition, classification, and prediction, and they 

are the foundation of deep learning. 



 

 

Structure of Neural Networks: 

A basic neural network consists of three types of layers: 

1. Input Layer: This layer receives the input features of the data. Each 

neuron in this layer represents an input variable, and the number of neurons 

in the input layer corresponds to the number of features in the dataset. 

2. Hidden Layer(s): These layers lie between the input and output layers. 

They perform computations and transformations on the input data by 

applying weights to inputs, summing them, and passing them through an 

activation function. A neural network can have one or multiple hidden 

layers, which allow it to learn complex patterns. 

3. Output Layer: This layer provides the final output of the network, which 

can be a classification label, a regression value, or other outcomes 

depending on the task. The number of neurons in this layer corresponds to 

the number of possible output classes or the dimensionality of the output. 

How It Works: 

• Forward Propagation: During the forward propagation phase, input data 

is fed into the network, and it passes through each layer of the network. 

Each neuron in the network calculates a weighted sum of its inputs, applies 

an activation function, and produces an output. This process continues until 

the data reaches the output layer. 

• Activation Functions: These are mathematical functions applied to the 

output of each neuron to introduce non-linearity into the model, which is 

crucial for learning complex patterns. Common activation functions 

include the sigmoid function, hyperbolic tangent (tanh), and rectified linear 

unit (ReLU). 

• Backpropagation and Training: The network is trained using a process 

called backpropagation, which adjusts the weights of the connections to 

minimize the difference between the predicted output and the actual output 

(i.e., minimizing the loss function). The training process involves feeding 

input data into the network, comparing the output to the true labels, 

calculating the error, and propagating this error backward through the 

network to update the weights using gradient descent. 

Example: 

Consider a neural network designed for image classification, such as identifying 

handwritten digits in the MNIST dataset. The input layer would consist of 784 

neurons (one for each pixel in a 28x28 grayscale image). The network might have 

a few hidden layers, each with several hundred neurons, which learn to recognize 

patterns like edges, shapes, and textures in the images. Finally, the output layer 



 

 

would have 10 neurons, each representing a digit (0-9). The network is trained on 

thousands of labelled images, adjusting its weights to minimize the error in digit 

recognition. Once trained, the network can accurately classify new, unseen 

images of digits. 

Neural networks have become fundamental tools in many AI applications, 

including natural language processing, speech recognition, and autonomous 

vehicles, due to their ability to learn and generalize from large datasets. 

 

 

Question # 02 

What is a Genetic Algorithm? Explain with an example.  

(10 marks) 

A Genetic Algorithm (GA) is an optimization and search heuristic inspired by the 

process of natural selection in biological evolution. It is used to find approximate 

solutions to optimization and search problems. GA’s are particularly useful when 

the search space is large, complex, or poorly understood, and when the objective 

function is noisy or discontinuous. 

Components of a Genetic Algorithm: 

1. Population: A GA starts with a population of potential solutions, called 

individuals or chromosomes. Each individual is typically represented by a 

binary string, though other encodings (e.g., real numbers) are also used. 

The population represents different points in the search space. 



 

 

2. Fitness Function: The fitness function evaluates how good each 

individual is at solving the problem. It assigns a fitness score based on how 

close the individual is to the optimal solution. The goal is to maximize (or 

minimize) this fitness score. 

3. Selection: Individuals are selected from the current population to be 

parents for the next generation. The selection process favour individuals 

with higher fitness scores, increasing the likelihood that their genetic 

material (encoded solutions) will be passed on to the next generation. 

4. Crossover (Recombination): During crossover, pairs of parents are 

selected, and their genetic material is combined to produce offspring. The 

crossover operator might, for example, swap sections of the parents' binary 

strings to create new individuals. This process introduces new 

combinations of traits into the population. 

5. Mutation: Mutation introduces random changes to individual genes in the 

offspring, ensuring genetic diversity within the population. For example, 

in a binary-encoded individual, a mutation might flip a bit from 0 to 1. 

Mutation helps the GA to explore the search space more thoroughly and 

avoid local optima. 

6. Replacement: The new generation of offspring replaces the old 

population. The GA repeats the selection, crossover, mutation, and 

replacement steps for many generations until it finds an optimal or 

satisfactory solution. 

Example: 

Suppose we want to use a GA to optimize the design of an antenna for a 

spacecraft. The design problem is highly complex due to the numerous 

parameters involved, such as the length, width, and material of the antenna, and 

how these parameters interact with each other to affect performance (e.g., signal 

strength, bandwidth). 

1. Encoding: Each individual in the population represents a potential antenna 

design. The design parameters are encoded as a binary string. For example, 

if there are 10 parameters, each represented by 5 bits, then each individual 

might be a 50-bit binary string. 

2. Fitness Function: The fitness function evaluates how well each antenna 

design meets the objectives (e.g., maximizing signal strength and 

minimizing interference). The fitness score might be a weighted sum of 

these objectives, penalizing designs that do not meet certain constraints. 

3. Selection: The algorithm selects the top-performing designs based on their 

fitness scores to serve as parents for the next generation. 



 

 

4. Crossover and Mutation: Crossover combines the traits of two parent 

designs to create a new design, while mutation randomly alters some 

design parameters, introducing new potential solutions into the population. 

5. Evolution: Over many generations, the GA evolves the population, 

gradually improving the antenna designs. The best designs from each 

generation are carried forward, and after sufficient iterations, the GA 

produces a highly optimized antenna design. 

Applications of Genetic Algorithms: GA’s are used in a wide range of fields, 

including engineering design, robotics, financial modelling, bioinformatics, and 

artificial intelligence. They are particularly effective for solving problems where 

traditional optimization techniques struggle, such as in highly non-linear, multi-

modal, or poorly understood environments. 

Diagram: 

Here is the diagram of Generic Algorithm Process: 

 

 

Question # 03 

What is the Task Environment of an Agent? Describe different 

task environments briefly. (10 marks) 

In artificial intelligence (AI), the task environment refers to the external setting 

in which an agent operates and interacts. It encompasses everything the agent 

must consider to make decisions and achieve its goals. Understanding the task 

environment is crucial for designing intelligent agents because it dictates the 



 

 

agent's perceptual and action capabilities, as well as the challenges it must 

overcome. 

 

Key Characteristics of Task Environments: 

1. Fully Observable vs. Partially Observable: 

o Fully Observable: In a fully observable environment, the agent has 

access to the complete state of the environment at all times. This 

allows the agent to make informed decisions without any uncertainty 

about the current situation. For example, in a game like chess, the 

entire board is visible, so the environment is fully observable. 

o Partially Observable: In a partially observable environment, the 

agent only has partial information about the state. This could be due 

to sensors' limitations or inherent uncertainties in the environment. 

For example, a self-driving car may not have complete visibility of 

the road due to fog or other vehicles obstructing its view. 

2. Deterministic vs. Stochastic: 

o Deterministic: In a deterministic environment, the next state is 

entirely determined by the current state and the agent's action. There 

is no randomness involved. For instance, a mathematical puzzle 

where the outcome is predictable and depends solely on the agent's 

moves is deterministic. 

o Stochastic: In a stochastic environment, there is randomness, 

meaning the same action in the same state can lead to different 

outcomes. For example, in stock market trading, the outcome of an 

investment decision is influenced by random market fluctuations, 

making the environment stochastic. 

3. Static vs. Dynamic: 

o Static: In a static environment, the world does not change while the 

agent is deliberating. The agent can take its time to decide without 

worrying about changes in the environment. An example of a static 

environment is a crossword puzzle, where the puzzle does not 

change as the solver thinks. 

o Dynamic: In a dynamic environment, the environment changes over 

time, and these changes can happen independently of the agent's 

actions. For instance, in real-time strategy games, other players or 

the environment may change during the agent's decision-making 

process. 

4. Discrete vs. Continuous: 

o Discrete: A discrete environment has a finite number of states and 

actions. The agent's actions lead to transitions between distinct 



 

 

states. For example, in a board game like tic-tac-toe, the board has a 

finite number of configurations, and the player’s actions are discrete 

moves. 

o Continuous: A continuous environment has an infinite number of 

possible states and actions. For example, a robot navigating through 

physical space may have infinitely many possible positions and 

actions, making the environment continuous. 

5. Episodic vs. Sequential: 

o Episodic: In an episodic environment, the agent's experiences are 

divided into episodes, and each episode is independent of the others. 

The agent’s action in one episode does not affect the next. For 

instance, in image recognition tasks, the classification of one image 

does not impact the classification of another. 

o Sequential: In a sequential environment, the current decision may 

affect future decisions. The agent’s actions have long-term 

consequences. For example, in a game of chess, each move impacts 

the entire game, so the environment is sequential. 

Examples of Task Environments: 

1. Autonomous Vehicles: An autonomous vehicle operates in a highly 

dynamic, partially observable, and continuous environment. The car must 

navigate through traffic, avoid obstacles, and respond to changes in real-

time, all while dealing with incomplete information (e.g., hidden 

pedestrians). 

2. Robotic Vacuum Cleaners: A robotic vacuum operates in a dynamic, 

partially observable, and discrete environment. It must navigate a home 

environment where objects and people can move, requiring the robot to 

adjust its path while having limited information about the entire layout. 

3. Medical Diagnosis Systems: These systems work in a partially observable 

and stochastic environment. The system must make diagnoses based on 

incomplete patient information and deal with the uncertainty of symptoms 

that could point to multiple diseases. 

Designing Agents for Task Environments: 

When designing an agent, understanding the task environment allows AI 

developers to choose the right strategies and algorithms. For instance, in a fully 

observable and deterministic environment, a rule-based system might suffice. 

However, in a partially observable, stochastic, and dynamic environment, the 

agent might require more advanced techniques such as machine learning, 

probabilistic reasoning, and real-time decision-making. 



 

 

Understanding these characteristics helps in crafting intelligent agents that can 

function effectively in their intended environments, ensuring that they are both 

robust and adaptable to the challenges they will face. 

 

 

 

 

 

 

 


