

Solution of Past Paper

Artificial Intelligence

DC-324

Q.1 Write short notes on the following: (6 x 5 = 30 marks)

Question # 01

Define Inference Techniques. (5 marks)

Inference Techniques refer to the methods or strategies used to draw conclusions

from data, knowledge bases, or premises in various fields, especially in artificial

intelligence (AI) and logic. These techniques are crucial for enabling systems to

make decisions, solve problems, or predict outcomes based on the given

information.

Key Types of Inference Techniques include:

1. Deductive Inference: This technique involves reasoning from general

premises to specific conclusions. If the premises are true, the conclusion

must be true. It's commonly used in formal logic and mathematics.

2. Inductive Inference: Inductive reasoning involves making generalized

conclusions based on specific instances or observations. While the

conclusions may be probable, they are not guaranteed to be true.

3. Abductive Inference: This technique is used to form the best explanation

from incomplete or ambiguous data. It’s often used in diagnostic

applications, where the goal is to find the most likely cause of a given set

of symptoms.

4. Probabilistic Inference: This method involves calculating the likelihood

of various outcomes based on known probabilities. It’s widely used in

statistical models and machine learning.

Question # 02

What is Heuristics? How to use it in problem-solving? (5 marks)

Heuristics are problem-solving strategies or approaches that use practical

methods or shortcuts to produce solutions that may not be perfect but are

sufficient for reaching an immediate goal. They are often used when facing

complex problems where finding an optimal solution is impractical or time-

consuming. Heuristics rely on experience, intuition, and common sense to

simplify decision-making processes.

Using Heuristics in Problem-Solving:

1. Identify the Problem:

o Clearly define the problem you are trying to solve. Understanding

the problem's nature is the first step in applying heuristics.

2. Use Rule of Thumb:

o Apply a general rule or a common strategy that is known to produce

good results in similar situations. For example, in a large search

problem, you might prioritize areas that have historically yielded the

best results.

3. Break Down the Problem:

o Simplify the problem by breaking it into smaller, more manageable

parts. Address each part separately, using heuristic methods such as

trial and error or pattern recognition.

4. Look for Analogies:

o Find similarities between the current problem and past problems.

Applying solutions that worked in similar situations can be a useful

heuristic approach.

5. Prioritize and Focus:

o Focus on the most critical aspects of the problem that will have the

greatest impact on the solution. This involves recognizing which

parts of the problem can be ignored or approximated.

Question # 03

Describe different categories of Expert Systems. Explain only one

in detail. (5 marks)

Expert systems are AI programs that mimic the decision-making abilities of a

human expert. They are categorized into:

• Rule-based systems: Use if-then rules to derive conclusions.

• Frame-based systems: Use structured frameworks to represent

knowledge.

• Fuzzy logic systems: Handle uncertain or imprecise information.

• Neural network-based systems: Learn from data to make decisions.

Detailed Explanation (Rule-based systems):

• Rule-based systems rely on a set of if-then rules that represent knowledge

in a specific domain. These rules are used to infer conclusions based on the

input data. The inference engine applies these rules to the known facts to

derive new information or decisions.

Question # 04

What are Rational Agents? Describe briefly. (5 marks)

A rational agent is an entity that acts to achieve the best possible outcome or,

when there is uncertainty, the best expected outcome based on the information it

possesses. It perceives its environment through sensors and acts upon that

environment using actuators. Rationality is defined in terms of the agent's

performance measure, which evaluates the success of its actions in fulfilling its

goals.

Key aspects of a rational agent include:

1. Perception: Gathers information from the environment.

2. Performance Measure: A criterion for success.

3. Actions: Acts to maximize the performance measure.

4. Rationality: The agent selects actions that maximize its performance

based on the available knowledge.

Question # 05

What is a Bidirectional Search? How is it useful? (5 marks)

Bidirectional Search is a graph search algorithm that simultaneously searches

from both the initial state (start node) and the goal state (goal node) with the aim

of meeting in the middle. This approach reduces the search space, making it more

efficient than traditional unidirectional search methods, particularly in large or

complex graphs.

How It Works:

• Forward Search: Starts from the initial state and explores the graph

toward the goal state.

• Backward Search: Starts from the goal state and explores the graph

toward the initial state.

• Meeting Point: The search stops when the two searches meet at a common

node, indicating that a path from the start to the goal has been found.

Benefits:

1. Reduced Search Space: Instead of searching through all nodes from start

to goal, bidirectional search only needs to explore half the nodes from both

directions, reducing the total number of nodes explored.

2. Faster Execution: Since it reduces the search space, the algorithm often

finds the shortest path faster than unidirectional search methods, especially

in large graphs.

3. Memory Efficiency: By limiting the number of nodes explored,

bidirectional search can be more memory efficient, particularly when

combined with strategies like BFS (Breadth-First Search) in each direction.

Example Use Case:

Bidirectional search is particularly useful in scenarios such as pathfinding in maps

(e.g., finding the shortest route between two cities) or solving puzzles like the 15-

puzzle, where the start and goal states are well-defined.

Question # 06

What is Iterative Deepening Depth-First Search? How is it better

than Depth-Limited Search? (5 marks)

Iterative Deepening Depth-First Search (IDDFS) is a search algorithm that

combines the advantages of both Depth-First Search (DFS) and Breadth-First

Search (BFS). It repeatedly applies a Depth-Limited Search (DLS) with

increasing depth limits, starting from zero and incrementing by one at each

iteration, until the solution is found or a specified depth limit is reached.

How IDDFS works:

1. Initial Depth-Limited Search: Start with a depth limit of 0 and perform a

DFS.

2. Increment Depth: If the solution is not found, increase the depth limit by

1 and perform another DFS, but with the new depth limit.

3. Repeat: Continue this process until the solution is found.

Advantages over Depth-Limited Search (DLS):

1. Completeness: IDDFS is complete, meaning it is guaranteed to find a

solution if one exists. DLS is not complete because it might miss solutions

if they are deeper than the depth limit.

2. Optimality: IDDFS finds the shortest path to a solution, just like BFS,

because it explores all nodes at a given depth before going deeper. DLS,

on the other hand, might find a solution that is not optimal if the depth limit

is set too high.

3. Memory Efficiency: IDDFS uses less memory compared to BFS. Since

each iteration of DFS in IDDFS only stores nodes up to the current depth

limit, it requires less memory, similar to DFS.

4. Combines Benefits: IDDFS combines the depth-first's low memory usage

with the breadth-first's completeness and optimality, making it an effective

algorithm for many search problems.

Q.2 Answer the following questions: (3 x 10 = 30 marks)

Question # 01

What is a Neural Network? Explain with an example. (10 marks)

A neural network is a computational model inspired by the way biological neural

networks in the human brain process information. It is composed of a large

number of highly interconnected processing elements known as neurons, which

work together to solve specific problems. Neural networks are particularly useful

for tasks that involve pattern recognition, classification, and prediction, and they

are the foundation of deep learning.

Structure of Neural Networks:

A basic neural network consists of three types of layers:

1. Input Layer: This layer receives the input features of the data. Each

neuron in this layer represents an input variable, and the number of neurons

in the input layer corresponds to the number of features in the dataset.

2. Hidden Layer(s): These layers lie between the input and output layers.

They perform computations and transformations on the input data by

applying weights to inputs, summing them, and passing them through an

activation function. A neural network can have one or multiple hidden

layers, which allow it to learn complex patterns.

3. Output Layer: This layer provides the final output of the network, which

can be a classification label, a regression value, or other outcomes

depending on the task. The number of neurons in this layer corresponds to

the number of possible output classes or the dimensionality of the output.

How It Works:

• Forward Propagation: During the forward propagation phase, input data

is fed into the network, and it passes through each layer of the network.

Each neuron in the network calculates a weighted sum of its inputs, applies

an activation function, and produces an output. This process continues until

the data reaches the output layer.

• Activation Functions: These are mathematical functions applied to the

output of each neuron to introduce non-linearity into the model, which is

crucial for learning complex patterns. Common activation functions

include the sigmoid function, hyperbolic tangent (tanh), and rectified linear

unit (ReLU).

• Backpropagation and Training: The network is trained using a process

called backpropagation, which adjusts the weights of the connections to

minimize the difference between the predicted output and the actual output

(i.e., minimizing the loss function). The training process involves feeding

input data into the network, comparing the output to the true labels,

calculating the error, and propagating this error backward through the

network to update the weights using gradient descent.

Example:

Consider a neural network designed for image classification, such as identifying

handwritten digits in the MNIST dataset. The input layer would consist of 784

neurons (one for each pixel in a 28x28 grayscale image). The network might have

a few hidden layers, each with several hundred neurons, which learn to recognize

patterns like edges, shapes, and textures in the images. Finally, the output layer

would have 10 neurons, each representing a digit (0-9). The network is trained on

thousands of labelled images, adjusting its weights to minimize the error in digit

recognition. Once trained, the network can accurately classify new, unseen

images of digits.

Neural networks have become fundamental tools in many AI applications,

including natural language processing, speech recognition, and autonomous

vehicles, due to their ability to learn and generalize from large datasets.

Question # 02

What is a Genetic Algorithm? Explain with an example.

(10 marks)

A Genetic Algorithm (GA) is an optimization and search heuristic inspired by the

process of natural selection in biological evolution. It is used to find approximate

solutions to optimization and search problems. GA’s are particularly useful when

the search space is large, complex, or poorly understood, and when the objective

function is noisy or discontinuous.

Components of a Genetic Algorithm:

1. Population: A GA starts with a population of potential solutions, called

individuals or chromosomes. Each individual is typically represented by a

binary string, though other encodings (e.g., real numbers) are also used.

The population represents different points in the search space.

2. Fitness Function: The fitness function evaluates how good each

individual is at solving the problem. It assigns a fitness score based on how

close the individual is to the optimal solution. The goal is to maximize (or

minimize) this fitness score.

3. Selection: Individuals are selected from the current population to be

parents for the next generation. The selection process favour individuals

with higher fitness scores, increasing the likelihood that their genetic

material (encoded solutions) will be passed on to the next generation.

4. Crossover (Recombination): During crossover, pairs of parents are

selected, and their genetic material is combined to produce offspring. The

crossover operator might, for example, swap sections of the parents' binary

strings to create new individuals. This process introduces new

combinations of traits into the population.

5. Mutation: Mutation introduces random changes to individual genes in the

offspring, ensuring genetic diversity within the population. For example,

in a binary-encoded individual, a mutation might flip a bit from 0 to 1.

Mutation helps the GA to explore the search space more thoroughly and

avoid local optima.

6. Replacement: The new generation of offspring replaces the old

population. The GA repeats the selection, crossover, mutation, and

replacement steps for many generations until it finds an optimal or

satisfactory solution.

Example:

Suppose we want to use a GA to optimize the design of an antenna for a

spacecraft. The design problem is highly complex due to the numerous

parameters involved, such as the length, width, and material of the antenna, and

how these parameters interact with each other to affect performance (e.g., signal

strength, bandwidth).

1. Encoding: Each individual in the population represents a potential antenna

design. The design parameters are encoded as a binary string. For example,

if there are 10 parameters, each represented by 5 bits, then each individual

might be a 50-bit binary string.

2. Fitness Function: The fitness function evaluates how well each antenna

design meets the objectives (e.g., maximizing signal strength and

minimizing interference). The fitness score might be a weighted sum of

these objectives, penalizing designs that do not meet certain constraints.

3. Selection: The algorithm selects the top-performing designs based on their

fitness scores to serve as parents for the next generation.

4. Crossover and Mutation: Crossover combines the traits of two parent

designs to create a new design, while mutation randomly alters some

design parameters, introducing new potential solutions into the population.

5. Evolution: Over many generations, the GA evolves the population,

gradually improving the antenna designs. The best designs from each

generation are carried forward, and after sufficient iterations, the GA

produces a highly optimized antenna design.

Applications of Genetic Algorithms: GA’s are used in a wide range of fields,

including engineering design, robotics, financial modelling, bioinformatics, and

artificial intelligence. They are particularly effective for solving problems where

traditional optimization techniques struggle, such as in highly non-linear, multi-

modal, or poorly understood environments.

Diagram:

Here is the diagram of Generic Algorithm Process:

Question # 03

What is the Task Environment of an Agent? Describe different

task environments briefly. (10 marks)

In artificial intelligence (AI), the task environment refers to the external setting

in which an agent operates and interacts. It encompasses everything the agent

must consider to make decisions and achieve its goals. Understanding the task

environment is crucial for designing intelligent agents because it dictates the

agent's perceptual and action capabilities, as well as the challenges it must

overcome.

Key Characteristics of Task Environments:

1. Fully Observable vs. Partially Observable:

o Fully Observable: In a fully observable environment, the agent has

access to the complete state of the environment at all times. This

allows the agent to make informed decisions without any uncertainty

about the current situation. For example, in a game like chess, the

entire board is visible, so the environment is fully observable.

o Partially Observable: In a partially observable environment, the

agent only has partial information about the state. This could be due

to sensors' limitations or inherent uncertainties in the environment.

For example, a self-driving car may not have complete visibility of

the road due to fog or other vehicles obstructing its view.

2. Deterministic vs. Stochastic:

o Deterministic: In a deterministic environment, the next state is

entirely determined by the current state and the agent's action. There

is no randomness involved. For instance, a mathematical puzzle

where the outcome is predictable and depends solely on the agent's

moves is deterministic.

o Stochastic: In a stochastic environment, there is randomness,

meaning the same action in the same state can lead to different

outcomes. For example, in stock market trading, the outcome of an

investment decision is influenced by random market fluctuations,

making the environment stochastic.

3. Static vs. Dynamic:

o Static: In a static environment, the world does not change while the

agent is deliberating. The agent can take its time to decide without

worrying about changes in the environment. An example of a static

environment is a crossword puzzle, where the puzzle does not

change as the solver thinks.

o Dynamic: In a dynamic environment, the environment changes over

time, and these changes can happen independently of the agent's

actions. For instance, in real-time strategy games, other players or

the environment may change during the agent's decision-making

process.

4. Discrete vs. Continuous:

o Discrete: A discrete environment has a finite number of states and

actions. The agent's actions lead to transitions between distinct

states. For example, in a board game like tic-tac-toe, the board has a

finite number of configurations, and the player’s actions are discrete

moves.

o Continuous: A continuous environment has an infinite number of

possible states and actions. For example, a robot navigating through

physical space may have infinitely many possible positions and

actions, making the environment continuous.

5. Episodic vs. Sequential:

o Episodic: In an episodic environment, the agent's experiences are

divided into episodes, and each episode is independent of the others.

The agent’s action in one episode does not affect the next. For

instance, in image recognition tasks, the classification of one image

does not impact the classification of another.

o Sequential: In a sequential environment, the current decision may

affect future decisions. The agent’s actions have long-term

consequences. For example, in a game of chess, each move impacts

the entire game, so the environment is sequential.

Examples of Task Environments:

1. Autonomous Vehicles: An autonomous vehicle operates in a highly

dynamic, partially observable, and continuous environment. The car must

navigate through traffic, avoid obstacles, and respond to changes in real-

time, all while dealing with incomplete information (e.g., hidden

pedestrians).

2. Robotic Vacuum Cleaners: A robotic vacuum operates in a dynamic,

partially observable, and discrete environment. It must navigate a home

environment where objects and people can move, requiring the robot to

adjust its path while having limited information about the entire layout.

3. Medical Diagnosis Systems: These systems work in a partially observable

and stochastic environment. The system must make diagnoses based on

incomplete patient information and deal with the uncertainty of symptoms

that could point to multiple diseases.

Designing Agents for Task Environments:

When designing an agent, understanding the task environment allows AI

developers to choose the right strategies and algorithms. For instance, in a fully

observable and deterministic environment, a rule-based system might suffice.

However, in a partially observable, stochastic, and dynamic environment, the

agent might require more advanced techniques such as machine learning,

probabilistic reasoning, and real-time decision-making.

Understanding these characteristics helps in crafting intelligent agents that can

function effectively in their intended environments, ensuring that they are both

robust and adaptable to the challenges they will face.

