
Android Application Development

Android Application



AndroidManifest.xml
● Each Android project includes a manifest file, 

AndroidManifest.xml, stored in the root of its project 
hierarchy. 

● The manifest defines the structure and metadata of your 
application, its components, and its requirements.



AndroidManifest.xml
● Includes nodes for each of the Activities, Services, Content 

Providers, and Broadcast Receivers that make up your application 
and, using Intent Filters and Permissions, determines how they 
interact with each other and with other applications.

● Specifies application metadata (such as its icon, version number, or 
theme), and additional top-level nodes can specify any required 
permissions and define hardware, screen, or platform requirements

● The manifest is made up of a root manifest tag with a package 
attribute set to the project’s package. It should also include an xmlns:
android attribute that supplies several system attributes used within 
the file.



AndroidManifest.xml
● versionCode: Define the current application version as an integer 

that increases with each version iteration
● versionName: Specify a public version that will be displayed to users
● installLocation: Specify whether to allow (or prefer) for your 

application be installed on external storage (usually an SD card) 
[preferExternal|auto]



AndroidManifest.xml

● uses-sdk: Enables to define a minimum and maximum SDK version 
that must be available on a device for your application to function 
properly, and target SDK for which it has been designed. 
[minSDKVersion, maxSDKVersion, and targetSDKVersion].
○ The minimum SDK version specifies the lowest version of the SDK. 

If not specified a minimum version, it defaults to 1, and your 
application crashes when it attempts to access unavailable APIs.

○ The target SDK version attribute enables you to specify the 
platform against which you did your development and testing. 
Good practice is to update the target SDK of your application to 
the latest platform release after you confirm it behaves as 
expected, even if you aren’t making use of any new APIs.

○ maxSDKVersion: Unnecessary



AndroidManifest.xml
● uses-configuration: Specifies each combination of input mechanisms are 

supported by your application. Normally no need to include this node, though 
it can be useful for games that require particular input controls. 
○ reqFiveWayNav — Specify true for this attribute if you require an input 

device capable of navigating up, down, left, and right and of clicking the 
current selection. This includes both trackballs and directional pads (D-
pads).

○ reqHardKeyboard — If your application requires a hardware keyboard, 
specify true.

○ reqKeyboardType — Lets you specify the keyboard type as one of nokeys, 
qwerty, twelvekey, or undefined.

○ reqNavigation — Specify the attribute value as one of nonav, dpad, 
trackball, wheel, or undefined as a required navigation device.

○ reqTouchScreen — Select one of notouch, stylus, finger, or undefined to 
spec- ify the required touchscreen input.



AndroidManifest.xml
● uses-feature — Use multiple uses-feature nodes to specify which hardware 

features your application requires. This prevents your application from being 
installed on a device that does not include a required piece of hardware, such 
as NFC hardware, as follows:

<uses-feature android:name=”android.hardware.nfc” />

You can require support for any hardware that is optional on a compatible device. 
Currently, optional hardware features include the following:

○ Bluetooth
○ Camera
○ Location 
○ Microphone 
○ NFC 
○ Sensors
○ Telephony
○ Touchscreen
○ USB
○ Wi-Fi

http://developer.android.com/guide/topics/manifest/uses-feature-element. 
html#features-reference.

http://developer.android.com/guide/topics/manifest/uses-feature-element.
http://developer.android.com/guide/topics/manifest/uses-feature-element.
http://developer.android.com/guide/topics/manifest/uses-feature-element.
http://developer.android.com/guide/topics/manifest/uses-feature-element.


AndroidManifest.xml
● supports-screens — Enables you to specify the screen sizes your application 

has been designed and tested to. On devices with supported screens, your 
application is laid out normally using the scaling properties associated with 
the layout files you supply.
○ smallScreens —typically, QVGA screens
○ normalScreens — HVGA, including WVGA and WQVGA.
○ largeScreens — Screens larger than normal.
○ xlargeScreens — Typically tablet devices.

● Honeycomb MR2 (API level 13) introduced additional attributes:
○ requiresSmallestWidthDp
○ compatibleWidthLimitDp 
○ largestWidthLimitDp 



AndroidManifest.xml
● uses-permission — (Security model), declare the user permissions your 

application requires. Each permission you specify will be presented to the 
user before the application is installed. Permissions are required for many APIs 
and method calls, generally those with an associated cost or security 
implication (such as dialing, receiving SMS, or using the location-based 
services).

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

● permission — Your application components can also create permissions to 
restrict access to shared application components. 
○ Your application components can then create permissions by adding an 

android:permission attribute. Then you can include a uses-permission tag 
in your manifest to use these protected components, both in the 
application that includes the protected component and any other 
application that wants to use it.



AndroidManifest.xml
● application — A manifest can contain only one application node. 

○ During development if you include a debuggable attribute set to true to 
enable debugging, then be sure to disable it for your release builds.

○ The application node also acts as a container for the Activity, Service, 
Content Provider, and Broadcast Receiver nodes that specify the 
application components. You specify the name of your custom application 
class using the android:name attribute.

● activity
● service
● provider
● receiver
● uses-library



Runtime Configuration Changes
● Android handles runtime changes to the language, location, and hardware by 

terminating and restarting the active Activity. 
● In some special cases this default behavior may be inconvenient. 
● To have an Activity listen for runtime configuration changes, add an android:

configChanges attribute to its manifest node, specifying the configuration 
changes you want to handle.
○ mcc+mnc
○ locale
○ keyboardHidden
○ keyboard
○ fontScale
○ uiMode
○ orientation
○ screenLayout
○ screenSize
○ smallestScreenSize



Runtime Configuration Changes
● You can select multiple events you want to handle yourself

Test an activity with+without 
configChanges while changing orientation



Runtime Configuration Changes
● Adding an android:configChanges attribute suppresses the restart for the 

specified configuration changes, instead triggering the 
onConfigurationChanged handler in the associated Activity. Override this 
method to handle the configuration changes yourself, using the passed-in 
Configuration object



Android Application Lifecycle
● Application Class
● Events
● Application Lifecycle
● Application Singleton



Android Activities Revisited
Activity Stacks



Android Activities Revisited
Activity States


