
PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

PYTHON PROGRAMMING

[R17A0554]

LECTURE NOTES

B.TECH III YEAR – II SEM (R17)

(2019-20)

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

MALLA REDDY COLLEGE OF ENGINEERING &

TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015

Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

SYLLABUS

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

III Year B. Tech CSE -II SEM L T/P/D C

3 - / - / - 3

OPEN ELECTIVE III

(R17A0554) PYTHON PROGRAMMING

OBJECTIVES:

 To read and write simple Python programs.

 To develop Python programs with conditionals and loops.

 To define Python functions and call them.

 To use Python data structures –- lists, tuples, dictionaries.

 To do input/output with files in Python.

UNIT I

INTRODUCTION DATA, EXPRESSIONS, STATEMENTS

Introduction to Python and installation, data types: Int, float, Boolean, string, and list; variables,

expressions, statements, precedence of operators, comments; modules, functions--- function and its use,

flow of execution, parameters and arguments.

UNIT II

CONTROL FLOW, LOOPS

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional

(if-elif-else); Iteration: while, for, break, continue.

UNIT III

FUNCTIONS, ARRAYS

Fruitful functions: return values, parameters, local and global scope, function composition, recursion;

Strings: string slices, immutability, string functions and methods, string module; Python arrays, Access

the Elements of an Array, array methods.

UNIT IV

LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters,

list comprehension; Tuples: tuple assignment, tuple as return value, tuple comprehension; Dictionaries:

operations and methods, comprehension;

UNIT V

FILES, EXCEPTIONS, MODULES, PACKAGES

Files and exception: text files, reading and writing files, command line arguments, errors and

exceptions, handling exceptions, modules (datetime, time, OS , calendar, math module), Explore

packages.

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

OUTCOMES: Upon completion of the course, students will be able to

 Read, write, execute by hand simple Python programs.

 Structure simple Python programs for solving problems.

 Decompose a Python program into functions.

 Represent compound data using Python lists, tuples, dictionaries.

 Read and write data from/to files in Python Programs

TEXT BOOKS

1. Allen B. Downey, ``Think Python: How to Think Like a Computer Scientist‘‘, 2nd edition,

Updated for Python 3, Shroff/O‘Reilly Publishers, 2016.

2. R. Nageswara Rao, “Core Python Programming”, dreamtech

3. Python Programming: A Modern Approach, Vamsi Kurama, Pearson

REFERENCE BOOKS:

1. Core Python Programming, W.Chun, Pearson.
2. Introduction to Python, Kenneth A. Lambert, Cengage

3. Learning Python, Mark Lutz, Orielly

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

INDEX

UNIT

TOPIC

PAGE NO

I

INTRODUCTION DATA,

EXPRESSIONS, STATEMENTS
1

Introduction to Python and installation 1

data types: Int 6

float 7

Boolean 8

string 8

List 10

variables 11

expressions 13

statements 16

precedence of operators 17

comments 18

modules 19

functions ----- function and its use 20

flow of execution 21

parameters and arguments 26

II

CONTROL FLOW, LOOPS 35
Conditionals: Boolean values and
operators,

35

conditional (if) 36

alternative (if-else) 37

chained conditional (if-elif-else) 39

Iteration: while, for, break, continue. 41

III

FUNCTIONS, ARRAYS 55

Fruitful functions: return values 55

parameters 57

local and global scope 59

function composition 62

recursion 63

Strings: string slices 64

immutability 66

string functions and methods 67

string module 72

Python arrays 73

Access the Elements of an Array 75

Array methods 76

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

IV

LISTS, TUPLES, DICTIONARIES 78
Lists 78
list operations 79
list slices 80
list methods 81
list loop 83
mutability 85
aliasing 87
cloning lists 88
list parameters 89
list comprehension 90
Tuples 91
tuple assignment 94
tuple as return value 95
tuple comprehension 96
Dictionaries 97
operations and methods 97
comprehension 102

V FILES, EXCEPTIONS,

MODULES, PACKAGES
103

Files and exception: text files 103
reading and writing files 104
command line arguments 109
errors and exceptions 112
handling exceptions 114
modules (datetime, time, OS , calendar,
math module)

121

Explore packages 134

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

1

UNIT – I

INTRODUCTION DATA, EXPRESSIONS, STATEMENTS

Introduction to Python and installation, data types: Int, float, Boolean, string, and list;

variables, expressions, statements, precedence of operators, comments; modules, functions--

- function and its use, flow of execution, parameters and arguments.

Introduction to Python and installation:

Python is a widely used general-purpose, high level programming language. It was initially

designed by Guido van Rossum in 1991 and developed by Python Software Foundation. It

was mainly developed for emphasis on code readability, and its syntax allows programmers

to express concepts in fewer lines of code.

Python is a programming language that lets you work quickly and integrate systems more

efficiently.

There are two major Python versions- Python 2 and Python 3.

• On 16 October 2000, Python 2.0 was released with many new features.

• On 3rd December 2008, Python 3.0 was released with more testing and includes new

features.

Beginning with Python programming:

1) Finding an Interpreter:

Before we start Python programming, we need to have an interpreter to interpret and run our

programs. There are certain online interpreters like https://ide.geeksforgeeks.org/,

http://ideone.com/ or http://codepad.org/ that can be used to start Python without installing an

interpreter.

Windows: There are many interpreters available freely to run Python scripts like IDLE

(Integrated Development Environment) which is installed when you install the python

software from http://python.org/downloads/

2) Writing first program:

Script Begins

Statement1

https://www.geeksforgeeks.org/python-programming-language/
https://ide.geeksforgeeks.org/
http://ideone.com/
http://codepad.org/
http://python.org/

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

2

Statement2

Statement3

Script Ends

Differences between scripting language and programming language:

Why to use Python:

The following are the primary factors to use python in day-to-day life:

1. Python is object-oriented

Structure supports such concepts as polymorphism, operation overloading and

multiple inheritance.

2. Indentation

Indentation is one of the greatest feature in python

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

3

3. It’s free (open source)

Downloading python and installing python is free and easy

4. It’s Powerful

 Dynamic typing

 Built-in types and tools

 Library utilities

 Third party utilities (e.g. Numeric, NumPy, sciPy)

 Automatic memory management

5. It’s Portable

 Python runs virtually every major platform used today

 As long as you have a compaitable python interpreter installed, python

programs will run in exactly the same manner, irrespective of platform.

6. It’s easy to use and learn

 No intermediate compile

 Python Programs are compiled automatically to an intermediate form called

byte code, which the interpreter then reads.

 This gives python the development speed of an interpreter without the

performance loss inherent in purely interpreted languages.

 Structure and syntax are pretty intuitive and easy to grasp.

7. Interpreted Language

Python is processed at runtime by python Interpreter

8. Interactive Programming Language

Users can interact with the python interpreter directly for writing the programs

9. Straight forward syntax

The formation of python syntax is simple and straight forward which also makes it

popular.

Installation:

There are many interpreters available freely to run Python scripts like IDLE (Integrated

Development Environment) which is installed when you install the python software from

http://python.org/downloads/

Steps to be followed and remembered:

Step 1: Select Version of Python to Install.

Step 2: Download Python Executable Installer.

Step 3: Run Executable Installer.

Step 4: Verify Python Was Installed On Windows.

http://python.org/downloads/

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

4

Step 5: Verify Pip Was Installed.

Step 6: Add Python Path to Environment Variables (Optional)

Working with Python

Python Code Execution:

Python’s traditional runtime execution model: Source code you type is translated to byte

code, which is then run by the Python Virtual Machine (PVM). Your code is automatically

compiled, but then it is interpreted.

Source Byte code Runtime

Source code extension is .py

Byte code extension is .pyc (Compiled python code)

There are two modes for using the Python interpreter:

• Interactive Mode

• Script Mode

m.py

m.pyc

PVM

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

5

Running Python in interactive mode:

Without passing python script file to the interpreter, directly execute code to Python prompt.

Once you’re inside the python interpreter, then you can start.

>>> print("hello world")

hello world

Relevant output is displayed on subsequent lines without the >>> symbol

>>> x=[0,1,2]

Quantities stored in memory are not displayed by default.

>>> x

#If a quantity is stored in memory, typing its name will display it.

[0, 1, 2]

>>> 2+3

5

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt the python

interpreter uses to indicate that it is ready. If the programmer types 2+6, the interpreter replies

8.

Running Python in script mode:

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

6

Alternatively, programmers can store Python script source code in a file with

the .py extension, and use the interpreter to execute the contents of the file. To execute the

script by the interpreter, you have to tell the interpreter the name of the file. For example, if

you have a script name MyFile.py and you're working on Unix, to run the script you have to

type:

python MyFile.py

Working with the interactive mode is better when Python programmers deal with small pieces

of code as you can type and execute them immediately, but when the code is more than 2-4

lines, using the script for coding can help to modify and use the code in future.

Example:

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

7

UNIT – IV

LISTS, TUPLES, DICTIONARIES

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list

parameters, list comprehension; Tuples: tuple assignment, tuple as return value, tuple

comprehension; Dictionaries: operations and methods, comprehension;

Lists, Tuples, Dictionaries:

List:

 It is a general purpose most widely used in data structures

 List is a collection which is ordered and changeable and allows duplicate members.

(Grow and shrink as needed, sequence type, sortable).

 To use a list, you must declare it first. Do this using square brackets and separate

values with commas.

 We can construct / create list in many ways.

Ex:

>>> list1=[1,2,3,'A','B',7,8,[10,11]]

>>> print(list1)

[1, 2, 3, 'A', 'B', 7, 8, [10, 11]]

>>> x=list()

>>> x

[]

>>> tuple1=(1,2,3,4)

>>> x=list(tuple1)

>>> x

[1, 2, 3, 4]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

8

List operations:

These operations include indexing, slicing, adding, multiplying, and checking for

membership

Basic List Operations:

Lists respond to the + and * operators much like strings; they mean concatenation and

repetition here too, except that the result is a new list, not a string.

Python Expression Results Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes

Because lists are sequences, indexing and slicing work the same way for lists as they do for

strings.

Assuming following input −

L = ['mrcet', 'college', 'MRCET!']

Python Expression Results Description

L[2] MRCET Offsets start at zero

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

9

L[-2] college Negative: count from the right

L[1:] ['college', 'MRCET!'] Slicing fetches sections

List slices:

>>> list1=range(1,6)

>>> list1

range(1, 6)

>>> print(list1)

range(1, 6)

>>> list1=[1,2,3,4,5,6,7,8,9,10]

>>> list1[1:]

[2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> list1[:1]

[1]

>>> list1[2:5]

[3, 4, 5]

>>> list1[:6]

[1, 2, 3, 4, 5, 6]

>>> list1[1:2:4]

[2]

>>> list1[1:8:2]

[2, 4, 6, 8]

List methods:

The list data type has some more methods. Here are all of the methods of list objects:

 Del()

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

10

 Append()

 Extend()

 Insert()

 Pop()

 Remove()

 Reverse()

 Sort()

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

[5, 8, 6]

>>> del(x)

>>> x # complete list gets deleted

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

[1, 2, 3, 4, 3, 6, 9, 1]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

11

>>> x.insert(2,10) #insert(index no, item to be inserted)

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not

specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

12

[1, 2, 10, 4, 6]

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

List loop:

Loops are control structures used to repeat a given section of code a certain number of times

or until a particular condition is met.

Method #1: For loop

#list of items

list = ['M','R','C','E','T']

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

13

i = 1

#Iterating over the list

for item in list:

print ('college ',i,' is ',item)

i = i+1

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/lis.py

college 1 is M

college 2 is R

college 3 is C

college 4 is E

college 5 is T

Method #2: For loop and range()

In case we want to use the traditional for loop which iterates from number x to number y.

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

getting length of list

length = len(list)

Iterating the index
same as 'for i in range(len(list))'

for i in range(length):

print(list[i])

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/listlooop.py

1

3

5

7
9

Method #3: using while loop

Python3 code to iterate over a list

list = [1, 3, 5, 7, 9]

Getting length of list

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

14

length = len(list)

i = 0

Iterating using while loop

while i < length:

print(list[i])

i += 1

Mutability:

A mutable object can be changed after it is created, and an immutable object can't.

Append: Append an item to a list

>>> x=[1,5,8,4]

>>> x.append(10)

>>> x

[1, 5, 8, 4, 10]

Extend: Append a sequence to a list.

>>> x=[1,2,3,4]

>>> y=[3,6,9,1]

>>> x.extend(y)

>>> x

Delete: Delete a list or an item from a list

>>> x=[5,3,8,6]

>>> del(x[1]) #deletes the index position 1 in a list

>>> x

[5, 8, 6]

Insert: To add an item at the specified index, use the insert () method:

>>> x=[1,2,4,6,7]

>>> x.insert(2,10) #insert(index no, item to be inserted)

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

15

>>> x

[1, 2, 10, 4, 6, 7]

>>> x.insert(4,['a',11])

>>> x

[1, 2, 10, 4, ['a', 11], 6, 7]

Pop: The pop() method removes the specified index, (or the last item if index is not

specified) or simply pops the last item of list and returns the item.

>>> x=[1, 2, 10, 4, 6, 7]

>>> x.pop()

7

>>> x

[1, 2, 10, 4, 6]

>>> x=[1, 2, 10, 4, 6]

>>> x.pop(2)

10

>>> x

[1, 2, 4, 6]

Remove: The remove() method removes the specified item from a given list.

>>> x=[1,33,2,10,4,6]

>>> x.remove(33)

>>> x

[1, 2, 10, 4, 6]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

16

>>> x.remove(4)

>>> x

[1, 2, 10, 6]

Reverse: Reverse the order of a given list.

>>> x=[1,2,3,4,5,6,7]

>>> x.reverse()

>>> x

[7, 6, 5, 4, 3, 2, 1]

Sort: Sorts the elements in ascending order

>>> x=[7, 6, 5, 4, 3, 2, 1]

>>> x.sort()

>>> x

[1, 2, 3, 4, 5, 6, 7]

>>> x=[10,1,5,3,8,7]

>>> x.sort()

>>> x

[1, 3, 5, 7, 8, 10]

Aliasing:

1. An alias is a second name for a piece of data, often easier (and more useful) than

making a copy.

2. If the data is immutable, aliases don’t matter because the data can’t change.

3. But if data can change, aliases can result in lot of hard – to – find bugs.
4. Aliasing happens whenever one variable’s value is assigned to another variable.

For ex:

a = [81, 82, 83]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

17

b = [81, 82, 83]
print(a == b)

print(a is b)

b = a

print(a == b)

print(a is b)

b[0] = 5

print(a)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/alia.py

True

False

True

True

[5, 82, 83]

Because the same list has two different names, a and b, we say that it is aliased. Changes made

with one alias affect the other. In the example above, you can see that a and b refer to the same

list after executing the assignment statement b = a.

Cloning Lists:

If we want to modify a list and also keep a copy of the original, we need to be able to make a

copy of the list itself, not just the reference. This process is sometimes called cloning, to avoid

the ambiguity of the word copy.

The easiest way to clone a list is to use the slice operator. Taking any slice of a creates a new

list. In this case the slice happens to consist of the whole list.

Example:

a = [81, 82, 83]

b = a[:] # make a clone using slice

print(a == b)

print(a is b)

b[0] = 5

print(a)

print(b)

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

18

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/pyyy/clo.py

True

False

[81, 82, 83]

[5, 82, 83]
Now we are free to make changes to b without worrying about a

List parameters:

Passing a list as an argument actually passes a reference to the list, not a copy of the list. Since

lists are mutable, changes made to the elements referenced by the parameter change the same

list that the argument is referencing.

for example, the function below takes a list as an argument and multiplies each element in

the list by 2:

def doubleStuff(List):

""" Overwrite each element in aList with double its value. """

for position in range(len(List)):

List[position] = 2 * List[position]

things = [2, 5, 9]

print(things)

doubleStuff(things)

print(things)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/lipar.py ==

[2, 5, 9]

[4, 10, 18]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

19

List comprehension:

List:

List comprehensions provide a concise way to create lists. Common applications are to make

new lists where each element is the result of some operations applied to each member of

another sequence or iterable, or to create a subsequence of those elements that satisfy a certain

condition.

For example, assume we want to create a list of squares, like:

>>> list1=[]

>>> for x in range(10):

list1.append(x**2)

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

This is also equivalent to

>>> list1=list(map(lambda x:x**2, range(10)))

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

(or)

Which is more concise and redable.

>>> list1=[x**2 for x in range(10)]

>>> list1

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

20

Similarily some examples:

>>> x=[m for m in range(8)]

>>> print(x)

[0, 1, 2, 3, 4, 5, 6, 7]

>>> x=[z**2 for z in range(10) if z>4]

>>> print(x)

[25, 36, 49, 64, 81]

>>> x=[x ** 2 for x in range (1, 11) if x % 2 == 1]

>>> print(x)

[1, 9, 25, 49, 81]

>>> a=5

>>> table = [[a, b, a * b] for b in range(1, 11)]

>>> for i in table:

print(i)

[5, 1, 5]

[5, 2, 10]

[5, 3, 15]

[5, 4, 20]

[5, 5, 25]
[5, 6, 30]

[5, 7, 35]

[5, 8, 40]

[5, 9, 45]
[5, 10, 50]

Tuples:

A tuple is a collection which is ordered and unchangeable. In Python tuples are written

with round brackets.

 Supports all operations for sequences.

 Immutable, but member objects may be mutable.

 If the contents of a list shouldn’t change, use a tuple to prevent items from

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

21

accidently being added, changed, or deleted.

 Tuples are more efficient than list due to python’s implementation.

We can construct tuple in many ways:

X=() #no item tuple

X=(1,2,3)

X=tuple(list1)

X=1,2,3,4

Example:

>>> x=(1,2,3)

>>> print(x)

(1, 2, 3)

>>> x

(1, 2, 3)

>>> x=()

>>> x

()

>>> x=[4,5,66,9]

>>> y=tuple(x)

>>> y

(4, 5, 66, 9)

>>> x=1,2,3,4

>>> x
(1, 2, 3, 4)

Some of the operations of tuple are:

 Access tuple items

 Change tuple items

 Loop through a tuple

 Count()

 Index()

 Length()

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

22

Access tuple items: Access tuple items by referring to the index number, inside square

brackets

>>> x=('a','b','c','g')

>>> print(x[2])

c

Change tuple items: Once a tuple is created, you cannot change its values. Tuples

are unchangeable.

>>> x=(2,5,7,'4',8)

>>> x[1]=10

Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>

x[1]=10

TypeError: 'tuple' object does not support item assignment

>>> x

(2, 5, 7, '4', 8) # the value is still the same

Loop through a tuple: We can loop the values of tuple using for loop

>>> x=4,5,6,7,2,'aa'

>>> for i in x:
print(i)

4

5

6

7

2
aa

Count (): Returns the number of times a specified value occurs in a tuple

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> x.count(2)

4

Index (): Searches the tuple for a specified value and returns the position of where it

was found

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

23

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)
>>> x.index(2)

1

(Or)

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=x.index(2)
>>> print(y)

1

Length (): To know the number of items or values present in a tuple, we use len().

>>> x=(1,2,3,4,5,6,2,10,2,11,12,2)

>>> y=len(x)
>>> print(y)

12

Tuple Assignment

Python has tuple assignment feature which enables you to assign more than one variable at a

time. In here, we have assigned tuple 1 with the college information like college name, year,

etc. and another tuple 2 with the values in it like number (1, 2, 3… 7).

For Example,

Here is the code,

 >>> tup1 = ('mrcet', 'eng college','2004','cse', 'it','csit');

 >>> tup2 = (1,2,3,4,5,6,7);

 >>> print(tup1[0])

 mrcet

 >>> print(tup2[1:4])

 (2, 3, 4)

Tuple 1 includes list of information of mrcet

Tuple 2 includes list of numbers in it

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

24

We call the value for [0] in tuple and for tuple 2 we call the value between 1 and 4

Run the above code- It gives name mrcet for first tuple while for second tuple it gives

number (2, 3, 4)

Tuple as return values:

A Tuple is a comma separated sequence of items. It is created with or without (). Tuples are

immutable.

A Python program to return multiple values from a method using tuple

This function returns a tuple

def fun():

str = "mrcet college"

x = 20

return str, x; # Return tuple, we could also

write (str, x)

Driver code to test above method

str, x = fun() # Assign returned tuple

print(str)

print(x)

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/tupretval.py

mrcet college

20

 Functions can return tuples as return values.

def circleInfo(r):

""" Return (circumference, area) of a circle of radius r """

c = 2 * 3.14159 * r

a = 3.14159 * r * r

return (c, a)

print(circleInfo(10))

Output:

C:/Users/MRCET/AppData/Local/Programs/Python/Python38-32/functupretval.py

(62.8318, 314.159)

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

25

def f(x):

y0 = x + 1

y1 = x * 3

y2 = y0 ** y3

return (y0, y1, y2)

Tuple comprehension:

Tuple Comprehensions are special: The result of a tuple comprehension is special. You

might expect it to produce a tuple, but what it does is produce a special "generator" object

that we can iterate over.

For example:

>>> x = (i for i in 'abc') #tuple comprehension

>>> x
<generator object <genexpr> at 0x033EEC30>

>>> print(x)

<generator object <genexpr> at 0x033EEC30>

You might expect this to print as ('a', 'b', 'c') but it prints as <generator object <genexpr>

at 0x02AAD710> The result of a tuple comprehension is not a tuple: it is actually a

generator. The only thing that you need to know now about a generator now is that you

can iterate over it, but ONLY ONCE.

So, given the code

>>> x = (i for i in 'abc')
>>> for i in x:

print(i)

a

b

c

Create a list of 2-tuples like (number, square):

>>> z=[(x, x**2) for x in range(6)]

>>> z
[(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

26

Set:

Similarly to list comprehensions, set comprehensions are also supported:

>>> a = {x for x in 'abracadabra' if x not in 'abc'}

>>> a
{'r', 'd'}

>>> x={3*x for x in range(10) if x>5}

>>> x
{24, 18, 27, 21}

Dictionaries:

A dictionary is a collection which is unordered, changeable and indexed. In Python

dictionaries are written with curly brackets, and they have keys and values.

 Key-value pairs

 Unordered

We can construct or create dictionary like:

X={1:’A’,2:’B’,3:’c’}

X=dict([(‘a’,3) (‘b’,4)]

X=dict(‘A’=1,’B’ =2)

Example:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1
{'brand': 'mrcet', 'model': 'college', 'year': 2004}

Operations and methods:

Methods that are available with dictionary are tabulated below. Some of them have already

been used in the above examples.

Method Description

clear() Remove all items form the dictionary.

https://docs.python.org/3/tutorial/datastructures.html#tut-listcomps
https://www.programiz.com/python-programming/methods/dictionary/clear

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

27

copy() Return a shallow copy of the dictionary.

fromkeys(seq[, v])

Return a new dictionary with keys from seq and

value equal to v (defaults to None).

get(key[,d])

Return the value of key. If key doesnot exit,

return d (defaults to None).

items()

Return a new view of the dictionary's items

(key, value).

keys() Return a new view of the dictionary's keys.

pop(key[,d])

Remove the item with key and return its value

or d if key is not found. If d is not provided

and key is not found, raises KeyError.

popitem()

Remove and return an arbitary item (key,

value). Raises KeyError if the dictionary is

empty.

setdefault(key[,d])

If key is in the dictionary, return its value. If

not, insert key with a value of d and

return d (defaults to None).

update([other])

Update the dictionary with the key/value pairs

from other, overwriting existing keys.

values() Return a new view of the dictionary's values

Below are some dictionary operations:

https://www.programiz.com/python-programming/methods/dictionary/copy
https://www.programiz.com/python-programming/methods/dictionary/fromkeys
https://www.programiz.com/python-programming/methods/dictionary/get
https://www.programiz.com/python-programming/methods/dictionary/items
https://www.programiz.com/python-programming/methods/dictionary/keys
https://www.programiz.com/python-programming/methods/dictionary/pop
https://www.programiz.com/python-programming/methods/dictionary/popitem
https://www.programiz.com/python-programming/methods/dictionary/setdefault
https://www.programiz.com/python-programming/methods/dictionary/update
https://www.programiz.com/python-programming/methods/dictionary/values

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

28

To access specific value of a dictionary, we must pass its key,

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> x=dict1["brand"]

>>> x
'mrcet'

To access keys and values and items of dictionary:

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1.keys()

dict_keys(['brand', 'model', 'year'])

>>> dict1.values()

dict_values(['mrcet', 'college', 2004])

>>> dict1.items()

dict_items([('brand', 'mrcet'), ('model', 'college'), ('year', 2004)])

>>> for items in dict1.values():

print(items)

mrcet

college

2004

>>> for items in dict1.keys():

print(items)

brand

model

year

>>> for i in dict1.items():

print(i)

('brand', 'mrcet')

('model', 'college')
('year', 2004)

Some more operations like:

 Add/change

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

29

 Remove

 Length

 Delete

Add/change values: You can change the value of a specific item by referring to its key

name

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> dict1["year"]=2005

>>> dict1
{'brand': 'mrcet', 'model': 'college', 'year': 2005}

Remove(): It removes or pop the specific item of dictionary.

>>> dict1 = {"brand":"mrcet","model":"college","year":2004}

>>> print(dict1.pop("model"))

college

>>> dict1

{'brand': 'mrcet', 'year': 2005}

Delete: Deletes a particular item.

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> del x[5]
>>> x

Length: we use len() method to get the length of dictionary.

>>>{1: 1, 2: 4, 3: 9, 4: 16}

{1: 1, 2: 4, 3: 9, 4: 16}

>>> y=len(x)

>>> y

4

Iterating over (key, value) pairs:

>>> x = {1:1, 2:4, 3:9, 4:16, 5:25}

>>> for key in x:
print(key, x[key])

1 1

2 4

3 9

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

30

4 16
5 25

>>> for k,v in x.items():

print(k,v)

1 1

2 4

3 9
4 16

5 25

List of Dictionaries:

>>> customers = [{"uid":1,"name":"John"},
{"uid":2,"name":"Smith"},

{"uid":3,"name":"Andersson"},

]

>>> >>> print(customers)
[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'Andersson'}]

Print the uid and name of each customer

>>> for x in customers:

print(x["uid"], x["name"])

1 John

2 Smith
3 Andersson

Modify an entry, This will change the name of customer 2 from Smith to Charlie

>>> customers[2]["name"]="charlie"
>>> print(customers)

[{'uid': 1, 'name': 'John'}, {'uid': 2, 'name': 'Smith'}, {'uid': 3, 'name': 'charlie'}]

Add a new field to each entry

>>> for x in customers:

x["password"]="123456" # any initial value

>>> print(customers)

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

31

[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 2, 'name': 'Smith', 'password':

'123456'}, {'uid': 3, 'name': 'charlie', 'password': '123456'}]

Delete a field

>>> del customers[1]

>>> print(customers)
[{'uid': 1, 'name': 'John', 'password': '123456'}, {'uid': 3, 'name': 'charlie', 'password':

'123456'}]

>>> del customers[1]

>>> print(customers)
[{'uid': 1, 'name': 'John', 'password': '123456'}]

Delete all fields

>>> for x in customers:

del x["uid"]

>>> x
{'name': 'John', 'password': '123456'}

Comprehension:

Dictionary comprehensions can be used to create dictionaries from arbitrary key and

value expressions:

>>> z={x: x**2 for x in (2,4,6)}

>>> z
{2: 4, 4: 16, 6: 36}

>>> dict11 = {x: x*x for x in range(6)}

>>> dict11
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

PYTHON
PROGRAMMING

III YEAR/II
SEM

MRCE
T

32

